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1. Introduction

For any real number x, the Fibonacci polynomials {Fn (x)} and Lucas polynomials {Ln (x)} are
defined by the recurrence relations as follows:

F0 (x) = 0, F1 (x) = 1, Fn (x) = xFn−1 (x) + Fn−2 (x) , n ≥ 2,

and
L0 (x) = 2, L1 (x) = x, Ln (x) = xLn−1 (x) + Ln−2 (x) , n ≥ 2.

For x = 1, the Fibonacci and Lucas polynomials are well known, respectively, Fibonacci sequences
{Fn} and Lucas sequences {Ln}. The various properties of {Fn (x)} and {Ln (x)} have been investigated by
many authors; see [1–5]. In particular, in [6–8] the authors established a series of connection formulaes
between Fibonacci polynomials, Lucas polynomials and Chebyshev polynomials.

In [9], Yi and Zhang considered the convolution involving the Fibonacci polynomials:∑
a1+a2+···+ak=n

Fa1+1 (x) · Fa2+1 (x) · · · Fak+1 (x) ,

where the summation is over all k-dimension nonnegative integer coordinates (a1, a2, · · · , ak) such that
a1 + a2 + · · · + ak = n, and k is any positive integer.
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In [10], Zhang obtained a series of identities that consists of the Fibonacci and Lucas sequences,
by using generating functions for the second kind Chebyshev polynomials {Un (x)} and their partial
derivatives to prove the following:∑

a1+a2+···+ak+1=n

Fm(a1+1) · Fm(a2+1) · · · Fm(ak+1+1) = (−i)mn Fk+1
m

2k · k!
U (k)

n+k

(
im

2
Lm

)
,

and ∑
a1+a2+···+ak+1=n+k+1

Lma1 · Lma2 · · · Lmak+1

= (−i)m(n+k+1) 2
k!

k+1∑
h=0

(
im+2

2
Lm

)h (
k + 1

h

)
U (k)

n+2k+1−h

(
im

2
Lm

)
,

where k,m are any positive integers, n, a1, a2, · · · , ak+1 are nonnegative integers, i is the square root
of −1, U (k) (x) denotes the k-order derivative of U (x) for x, and

(
k+1

h

)
=

(k+1)!
h!(k+1−h)! .

In addition, in [11], the author introduced the bi-periodic Fibonacci polynomials { fn (x)}, defined by

f0 (x) = 0, f1 (x) = 1, fn (x) =

ax fn−1 (x) + fn−2 (x) , i f n is even;
bx fn−1 (x) + fn−2 (x) , i f n is odd,

n ≥ 2, (1.1)

where a, b are any nonzero real numbers, and x is any real numbers. The bi-periodic Lucas polynomials
{ln (x)} are defined by

l0 (x) = 2, l1 (x) = ax, ln (x) =

bxln−1 (x) + ln−2 (x) , i f n is even;
axln−1 (x) + ln−2 (x) , i f n is odd,

n ≥ 2, (1.2)

where a, b are any nonzero real numbers, and x is any real numbers. For x = 1, the bi-periodic
Fibonacci and Lucas polynomials are well known, respectively, bi-periodic Fibonacci and Lucas
sequences.

Recently, in [12], Komatsu and Ramirez considered the convolution identities of order 2, 3 and 4
for the bi-periodic Fibonacci sequences { fn} are given with binomial cofficients. Other works related
to convolved sequences can be found in [13–20].

In this paper inspired by [10], we use the generating function of the first kind Chebyshev
polynomials {Tn (x)}, the second kind Chebyshev polynomials {Un (x)} and their partial derivative to
study the following two theorems:
Theorem 1. Let { fn (x)} be bi-periodic Fibonacci polynomials defined by (1.1), for any positive integer
k, nonnegative integer n, a1, a2, · · · , ak+1. Then, we have the identity

∑
a1+a2+···+ak+1=n

(
b
a

) ξ(a1)+ξ(a2)+···+ξ(ak+1)
2

fa1+1 (x) · fa2+1 (x) · · · fak+1+1 (x)

=
1
k!

⌊ n
2⌋∑

h=0

(−1)h (n + k − h)! · i2h

h! (n − 2h)!

(√
abx

)n−2h
,
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where ⌊z⌋ denotes the floor function, the greatest integer less than or equal to z, ξ (n) = n −
⌊

n
2

⌋
is the

parity function, and i is the square root of −1.
Theorem 2. Let {ln (x)} be bi-periodic Lucas polynomials defined by (1.2), for any positive integer r,
nonnegative integer m, a1, a2, · · · , ar+1. Then, we have the identity

∑
a1+a2+···+ar+1=m

(
b
a

) ξ(a1)+ξ(a2)+···+ξ(ar+1)
2

la1 (x) · la2 (x) · · · lar+1 (x)

=
2r+1 (1 − xt)r+1 (m + r)(

1 − t2) · r!

⌊m
2 ⌋∑

h=0

(−1)h (m + r − h − 1)! · i2h

h! (m − 2h)!

(√
abx

)m−2h
,

where ⌊z⌋ denotes the floor function, the greatest integer less than or equal to z, ξ (n) = n −
⌊

n
2

⌋
is the

parity function, and i is the square root of −1.
From these two theorems we may immediately deduce the following corollaries:

Corollary 1. Let { fn} be bi-periodic Fibonacci sequences and {ln} be bi-periodic Lucas sequences , for
any positive integers k, r, and any nonnegative integers n,m. Then, we have the following:

∑
a1+a2+···+ak+1=n

(
b
a

) ξ(a1)+ξ(a2)+···+ξ(ak+1)
2

fa1+1 · fa2+1 · · · fak+1+1

=
1
k!

⌊ n
2⌋∑

h=0

(−1)h (n + k − h)! · i2h

h! (n − 2h)!

(√
ab

)n−2h
,

and

∑
a1+a2+···+ar+1=m

(
b
a

) ξ(a1)+ξ(a2)+···+ξ(ar+1)
2

la1 · la2 · · · lar+1

=
2r+1 (1 − t)r+1 (m + r)(

1 − t2) · r!

⌊m
2 ⌋∑

h=0

(−1)h (m + r − h − 1)! · i2h

h! (m − 2h)!

(√
ab

)m−2h
,

where ⌊z⌋ denotes the floor function, the greatest integer less than or equal to z, ξ (n) = n −
⌊

n
2

⌋
is the

parity function, and i is the square root of −1.
Corollary 2. Let {Fn (x)} be Fibonacci polynomials and {Ln (x)} be Lucas polynomials , for any positive
integers k, r, and any nonnegative integers n,m. Then, we have the following:∑

a1+a2+···+ak+1=n

Fa1+1 (x) · Fa2+1 (x) · · · Fak+1+1 (x)

=
1
k!

⌊ n
2⌋∑

h=0

(−1)h (n + k − h)! · i2h

h! (n − 2h)!
xn−2h,
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and ∑
a1+a2+···+ar+1=m

La1 (x) · La2 (x) · · · Lar+1 (x)

=
2r+1 (1 − xt)r+1 (m + r)(

1 − t2) · r!

⌊m
2 ⌋∑

h=0

(−1)h (m + r − h − 1)! · i2h

h! (m − 2h)!
xm−2h,

where ⌊z⌋ denotes the floor function, the greatest integer less than or equal to z, and i is the square root
of −1.
Corollary 3. Let {Fn} be Fibonacci sequences and {Ln} be Lucas sequences, for any positive integers
k, r and any nonnegative integers n,m. Then, we have the following:

∑
a1+a2+···+ak+1=n

Fa1+1 · Fa2+1 · · · Fak+1+1 =
1
k!

⌊ n
2⌋∑

h=0

(−1)h (n + k − h)! · i2h

h! (n − 2h)!
,

and ∑
a1+a2+···+ar+1=m

La1 · La2 · · · Lar+1

=
2r+1 (1 − t)r+1 (m + r)(

1 − t2) · r!

⌊m
2 ⌋∑

h=0

(−1)h (m + r − h − 1)! · i2h

h! (m − 2h)!
,

where ⌊z⌋ denotes the floor function, the greatest integer less than or equal to z, and i is the square root
of −1.

2. Auxiliary results

In this section, we shall give several lemmas which are necessary in the proofs of the theorems.
First, we introduce Chebyshev polynomials {Tn (x)} and {Un (x)} . For any positive integer n, the first
kind Chebyshev polynomials {Tn (x)} are defined by

T0 (x) = 1, T1 (x) = x, Tn (x) = 2xTn−1 (x) − Tn−2 (x) , n ≥ 2,

and the second kind Chebyshev polynomials {Un (x)} are defined by

U0 (x) = 1, U1 (x) = 2x, Un (x) = 2xUn−1 (x) − Un−2 (x) , n ≥ 2.

The generating function F (t, x) of the polynomials {Tn (x)} is given by

F (t, x) =
∞∑

n=0

Tn (x) tn =
1 − xt

1 − 2xt + t2 , |x| < 1, |t| < 1, (2.1)

and the generating function G (t, x) of the polynomials {Un (x)} is given by

G (t, x) =
∞∑

n=0

Un (x) tn =
1

1 − 2xt + t2 , |x| < 1, |t| < 1. (2.2)
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Their general expressions are

Tn (x) =
n
2

⌊ n
2⌋∑

h=0

(−1)h (n − h − 1)!
h! (n − 2h)!

(2x)n−2h , |x| < 1, (2.3)

and

Un (x) =
⌊ n

2⌋∑
h=0

(−1)h (n − h)!
h! (n − 2h)!

(2x)n−2h , |x| < 1. (2.4)

Lemma 1. [11] Let { fn (x)} be bi-periodic Fibonacci polynomials, {ln (x)} be bi-periodic Lucas
polynomials, {Tn (x)} be Chebyshev polynomials of the first kind and {Un (x)} be Chebyshev
polynomials of the second kind. For any positive integer n, we have the following identities:

fn+1 (x) =
(a
b

) ξ(n)
2

inUn

 √ab
2i

x
 , (2.5)

and

ln (x) = 2
(a
b

) ξ(n)
2

inTn

 √ab
2i

x
 , (2.6)

where i is the square root of −1, and ξ (n) = n −
⌊

n
2

⌋
is the parity function.

Lemma 2. Let {Un (x)} be Chebyshev polynomials of the second kind, and for any positive integer k
and nonnegative integer n, we have the identity:

∑
a1+a2+···+ak+1=n

Ua1 (x) · Ua2 (x) · · ·Uak+1 (x) =
1
k!

⌊ n
2⌋∑

h=0

(−1)h (n + k − h)!
h! (n − 2h)!

(2x)n−2h .

Proof . Noting that the degree of Un (x) has degree n and taking the partial derivative
(
∂
∂x

)k
on both

sides of (2.2), we have

∂kG (t, x)
∂xk =

(2t)k
· k!(

1 − 2xt + t2)k+1 =

∞∑
n=0

U (k)
n+k (x) tn+k,

where U (k) (x) denotes the k-order derivative of Un (x) for x. Then, we obtain that

∞∑
n=0

 ∑
a1+a2+···+ak+1=n

Ua1 (x) · Ua2 (x) · · ·Uak+1 (x)

 tn =

 ∞∑
n=0

Un (x) tn

k+1

=
1(

1 − 2xt + t2)k+1 =
1

(2t)k
· k!
∂kG (t, x)
∂xk =

1
2k · k!

∞∑
n=0

U (k)
n+k (x) tn.

(2.7)

Comparing the coefficients of tn on both sides of Eq (2.7), we obtain that∑
a1+a2+···+ak+1=n

Ua1 (x) · Ua2 (x) · · ·Uak+1 (x) =
1

2k · k!
U (k)

n+k (x) . (2.8)
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From (2.4), we can deduce the kth derivative of Un+k (x),

U (k)
n+k (x) =

⌊ n
2⌋∑

h=0

(−1)h
(
n + k − h

h

)
(n + k − 2h)k 2n+k−2hxn−2h, (2.9)

where the falling factorial polynomials (x)n are given by

(x)0 = 1, (x)n = x (x − 1) · · · (x − n + 1) , n ≥ 1. (2.10)

Then, combining (2.8) and (2.9), we obtain

∑
a1+a2+···+ak+1=n

Ua1 (x) · Ua2 (x) · · ·Uak+1 (x) =
1
k!

⌊ n
2⌋∑

h=0

(−1)h (n + k − h)!
h! (n − 2i)!

(2x)n−2h .

This completes the proof of the Lemma. □

Lemma 3. Let {Tn (x)} be Chebyshev polynomials of the first kind. For any positive integer r and
nonnegative integer m, we have the identity∑

a1+a2+···+ar+1=m

Ta1 (x) · Ta2 (x) · · · Tar+1 (x)

=
(1 − xt)r+1 (m + r)(

1 − t2) · r!

⌊m
2 ⌋∑

h=0

(−1)h (m + r − h − 1)!
h! (m − 2h)!

(2x)m−2h .

Proof . Noting that the degree of Tm (x) has degree m and taking the partial derivative
(
∂
∂x

)r
on both

sides of (2.1), we have

∂rF (t, x)
∂xr =

(
t − t3

)
(2t)r−1

· r!(
1 − 2xt + t2)r+1 =

∞∑
m=0

T (r)
m+r (x) tm+r,

where T (r) (x) denotes the r-order derivative of Tm (x) for x. Then, we obtain that

∞∑
m=0

 ∑
a1+a2+···+ar+1=m

Ta1 (x) · Ta2 (x) · · · Tar+1 (x)

 tm

=

 ∞∑
m=0

Tm (x) tm

r+1

=
(1 − xt)r+1(

1 − 2xt + t2)r+1

=
(1 − xt)r+1(

t − t3) (2t)r−1
· r!
·
∂rF (t, x)
∂xr =

(1 − xt)r+1(
1 − t2) 2r−1 · r!

∞∑
m=0

T (r)
m+r (x) tm.

(2.11)

Comparing the coefficients of tm on both sides of equation (2.11), we obtain that∑
a1+a1+···+ar+1=m

Ta1 (x) · Ta2 (x) · · · Tar+1 (x) =
(1 − xt)r+1(

1 − t2) 2r−1 · r!
T (r)

m+r (x) . (2.12)
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From (2.3), we can deduce the rth derivative of Tm+r (x),

T (r)
m+r (x) =

m + r
2

⌊m
2 ⌋∑

h=0

(−1)h 1
m + r − h

(
m + r − h

h

)
2m+r−2h (m + r − 2h)r xm−2h. (2.13)

Then, combining (2.12) and (2.13), where the condition (x)n is defined by (2.10), we obtain∑
a1+a2+···+ar+1=m

Ta1 (x) · Ta2 (x) · · · Tar+1 (x)

=
(1 − xt)r+1 (m + r)(

1 − t2) r!

⌊m
2 ⌋∑

h=0

(−1)h (m + r − h − 1)!
h! (m − 2h)!

(2x)m−2h .

This completes the proof of the Lemma. □

3. Proof of the theorems

Proof of Theorem 1. By Lemma 2, we obtain that∑
a1+a2+···+ak+1=n

Ua1

 √ab
2i

x
 · Ua2

 √ab
2i

x
 · · ·Uak+1

 √ab
2i

x


=
1
k!

⌊ n
2⌋∑

h=0

(−1)h (n + k − h)!
h! (n − 2h)!

 √ab
i

x
n−2h

.

By (2.5) of Lemma 1, we obtain that∑
a1+a2+···+ak+1=n

fa1+1 (x) · fa2+1 (x) · · · fak+1+1 (x)(
a
b

) ξ(a1)+ξ(a2)+···+ξ(ak+1)
2

· ia1+a2+···+ak+1

=
1
k!

⌊ n
2⌋∑

h=0

(−1)h (n + k − h)!
h! (n − 2h)!

 √ab
i

x
n−2h

.

Therefore, we obtain ∑
a1+a2+···+ak+1=n

(
b
a

) ξ(a1)+ξ(a2)+···+ξ(ak+1)
2

fa1+1 (x) · fa2+1 (x) · · · fak+1+1 (x)

=
1
k!

⌊ n
2⌋∑

h=0

(−1)h (n + k − h)! · i2h

h! (n − 2h)!

(√
abx

)n−2h
.

This completes the proof of the Theorem. □

Proof of Theorem 2. By Lemma 3, we obtain that∑
a1+a2+···+ar+1=m

Ta1

 √ab
2i

x
 · Ta2

 √ab
2i

x
 · · · Tar+1

 √ab
2i

x


=
(1 − xt)r+1 (m + r)(

1 − t2) r!

⌊m
2 ⌋∑

h=0

(−1)h (m + r − h − 1)!
h! (m − 2h)!

 √ab
i

x
m−2h

.
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By (2.6) of Lemma 1, we obtain that∑
a1+a2+···+ak+1=m

la1 (x) · la2 (x) · · · lar+1 (x)

2r+1
(

a
b

) ξ(a1)+ξ(a2)+···+ξ(ar+1)
2

· ia1+a2+···+ar+1

=
(1 − xt)r+1 (m + r)(

1 − t2) · r!

⌊m
2 ⌋∑

h=0

(−1)h (m + r − h − 1)!
h! (m − 2h)!

 √ab
i

x
m−2h

.

Therefore, we obtain

∑
a1+a2+···+ar+1=m

(
b
a

) ξ(a1)+ξ(a2)+···+ξ(ar+1)
2

la1 (x) · la2 (x) · · · lar+1 (x)

=
2r+1 (1 − xt)r+1 (m + r)(

1 − t2) · r!

⌊m
2 ⌋∑

h=0

(−1)h (m + r − h − 1)!i2h

h! (m − 2h)!

(√
abx

)m−2h
.

This completes the proof of the Theorem. □

4. Conclusions

In this paper, by using generating functions for the Chebyshev polynomials, we have obtained the
convolution formulas involving the bi-periodic Fibonacci and Lucas polynomials. In the past, scholars
considered the convolution of linear recursive polynomials. In this paper, we extend the previous
research to non-linear recursive polynomials. Specifically, we consider the convolution formula of bi-
periodic recursive polynomials. Furthermore, we hope to consider extending the convolution formula
of t-periodic recursive polynomials.
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