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Abstract: In this paper, the Holling type II functional response extended for n different species of 
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ecological threshold parameter for the predator free equilibrium point of the model is established. 
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analytical results. 
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1. Introduction 

To understand and analyze the dynamic relationships between preys and predators, thousands of 

mathematical models have been considered. Lotka and Voltera used mathematical tools to model the 

prey-predator interaction, and their model is called the Lotka-Voltera model. Their model has been 

developed by many researchers, as they take into account many factors like time delay, harvesting 

factor and spreading disease among populations [1–6]. The major element in predator prey 

interaction is the functional response for the predator, the number of consumed prey per predator per 

unit time. In [7], Van Leeuwen, Edwin, et al. studied the generalization of functional response for a 

predator that switches between multiple species. Tapan Kumar in [8] used Holling type II in stability 
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analysis of a prey-predator model incorporating a prey refuge. The most useful functional response is 

the Holling type II functional response, which is characterized by decelerating intake rate [9]. Many 

authors used this type of functional response for modeling the dynamics of interactions between 

predator and prey. Molla and Hafizul studied the dynamics of a predator prey model with Holling 

Type II functional response [10]. Eletterby in [11] discussed the global stability and persistence of a 

two prey and one predator model. Sirisubtawee S, Khansai N, in [12] considered the predator prey 

model with generalized Holling type IV functional response. In nature, there are many predator 

species that consume more than one species of prey. For example, lions usually predate a number of 

large land-based animals, such as antelopes, buffaloes, crocodiles, giraffes, pigs, zebra, wild dogs 

and wildebees. There are some works modeling one predator and multiple preys [13,14] which do 

not use Holling type II functional response in their work. In this paper, first we extend the Holling 

type II functional response to n-classes (species) of prey, and then we will also consider a 

predator-n-prey model with the extended Holling type II functional response. We have arranged the 

paper as follows: In Section 2, we derive the extended Holling type II functional response for n 

species of prey. In Section 3 a mathematical model for dynamics of interaction between one predator 

and its n classes of prey with the extended Holling type II for n classes of prey and a simplex 

invariant attractor set for the proposed model is found. In Section 4, the permanence of the proposed 

model is proved under certain conditions. In Section 5, an ecological threshold parameter is 

established and local and global stabilities of the predator free equilibrium point are studied. In 

Section 6 the model is also solved numerically using the Runge-Kutta method. 

2. Holling type II functional response to n-preys 

In this section, we extend the Holing type functional response for more than one species of prey. 

Suppose a predator consumes n different classes of prey, and for 𝑖 = 1,2, … , 𝑛, assume the following: 

i. 𝑋𝑖 is the number of prey in the 𝑖𝑡ℎ class. 

ii. 𝑁𝑖 is the number of prey in the 𝑖𝑡ℎ class predated by the predator at unit time 𝑡. 

iii. 𝑇𝑠𝑒𝑎𝑟𝑐ℎ is the time for searching for the prey at unit time 𝑡. 

iv. 𝑇𝑖 is the handling time for eating one prey in the 𝑖𝑡ℎ class. 

Then 𝑁𝑖 is proportional to 𝑋𝑖 and 𝑇𝑠𝑒𝑎𝑟𝑐ℎ = 𝑡 − ∑ 𝑁𝑗𝑇𝑗
𝑛
𝑗=1  

Therefore, 𝑁𝑖 = 𝛼𝑖𝑋𝑖(𝑡 − ∑ 𝑁𝑗𝑇𝑗
𝑛
𝑗=1 ) where 𝛼𝑖 is the constant of proportionality and can be 

called the predation rate of the prey in the 𝑖𝑡ℎ class. 

Now, 

𝑑𝑁𝑖
𝑑𝑡

= 𝛼𝑖𝑋𝑖 − 𝛼𝑖𝑋𝑖∑
𝑑𝑁𝑗
𝑑𝑡

𝑛

𝑗=1

𝑇𝑗 , 

and 

∑
𝑑𝑁𝑗
𝑑𝑡

𝑛

𝑗=1

𝑇𝑗 =∑(𝛼𝑗𝑋𝑗 − 𝛼𝑗𝑋𝑗∑
𝑑𝑁𝑘
𝑑𝑡

𝑛

𝑘=1

𝑇𝑘)𝑇𝑗

𝑛

𝑗=1

 

= ∑ 𝛼𝑗𝑋𝑗
𝑛
𝑗=1 𝑇𝑗 − (∑

𝑑𝑁𝑗

𝑑𝑡

𝑛
𝑗=1 𝑇𝑗)∑ 𝛼𝑗𝑋𝑗

𝑛
𝑗=1 𝑇𝑗. 
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Therefore, 

∑
𝑑𝑁𝑗
𝑑𝑡

𝑛

𝑗=1

𝑇𝑗 =
∑ 𝛼𝑗𝑋𝑗
𝑛
𝑗=1 𝑇𝑗

1 + ∑ 𝛼𝑗𝑋𝑗
𝑛
𝑗=1 𝑇𝑗

 

and hence 
𝑑𝑁𝑖

𝑑𝑡
=

𝛼𝑖𝑋𝑖

1+∑ 𝛼𝑗𝑇𝑗
𝑛
𝑗=1 𝑋𝑗

 which is the extending Holling type II functional response for n-class 

of prey. 

3. Model formulation 

Suppose one class of predator consumes n different classes of its prey. Then, to model the 

dynamics of the interactions between the predator and its prey, we assume the following: 

1) Population density of the 𝑖𝑡ℎ class of prey is denoted by 𝑋𝑖 , and the predator is denoted by 

𝑌. 

2) Each class of prey 𝑋𝑖  grows logistically with carrying capacity 𝐾𝑖 > 0 and an inherent 

growth rate 𝑟𝑖 > 0. 

The predator species consumes each class of the prey according to the extended Holling type II 

functional response to n preys. However, in the absence of prey populations, the predator population 

grows exponentially. 

Then, such interaction dynamics can be modeled mathematically as follows: 

𝑑𝑋𝑖

𝑑𝑇
= 𝑟𝑖𝑋𝑖 (1 −

𝑋𝑖

𝑘𝑖
) −

𝛼1𝑋𝑖𝑌

1+∑ 𝛼𝑗𝑋𝑗
𝑛
𝑗=1 𝑇𝑗

 𝑖 = 1,2,3, … , 𝑛,    (1) 

𝑑𝑌

𝑑𝑇
=

∑ 𝜃𝑖𝑋𝑗𝑌
𝑛
𝑗=1

1 + ∑ 𝛼𝑗𝑋𝑗
𝑛
𝑗=1 𝑇𝑗

− 𝑑𝑌. 

Here, the new parameters 𝜃𝑖 and 𝛼𝑖 for 𝑖 = 1,2,3. . , 𝑛 are the conversion rate of 𝑋𝑖 and predation 

rate of 𝑋𝑖 , respectively, where 𝜃𝑖 < 𝛼𝑖  ∀𝑖, and 𝑑 represents the natural death rate of Y. Note that 

the above system contains a lot of parameters which make the analysis difficult. So, we can reduce 

the number of parameters by using the following dimensionless variables: 

𝑡 = 𝑑𝑇, 𝑥𝑖 =
𝑋𝑖

𝐾𝑖
 and 𝑦 = 𝑑𝑌, 

Accordingly, system (1) can be rewritten in the following non dimensional form: 

𝑑𝑥𝑖

𝑑𝑡
= 𝑎𝑖𝑥𝑖(1 − 𝑥𝑖) −

𝑝𝑖𝑥𝑖𝑦

1+∑ 𝑏𝑗𝑥𝑗
𝑛
𝑗=1

 𝑖 = 1,2,3, … , 𝑛,     (2) 

𝑑𝑦

𝑑𝑡
=

∑ 𝑐𝑖𝑥𝑗𝑦
𝑛
𝑗=1

1 + ∑ 𝑏𝑗𝑥𝑗
𝑛
𝑗=1

− 𝑦, 

where 𝑎𝑖 =
𝑟𝑖

𝑑
, 𝑏𝑖 = 𝛼𝑖𝑇𝑖𝐾𝑖, 𝑝𝑖 =

𝛼𝑖𝐾𝑖

𝑑
 and 𝑐𝑖 =

𝜃𝑖𝐾𝑖

𝑑
, for 𝑖 = 1,2,3,… , 𝑛. 

It is observed that the non-dimensional system contains 4𝑛 + 1 parameters, while the original 

system contains (6n+1) parameters. 
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In addition, in the following theorem, some properties of all solutions for the system that 

initiates 𝑅+
𝑛+1 are given. 

Theorem 1. In system (2), 

i. all solutions that initiate with non-negative condition are unique and non-negative; 

ii. the simplex set Ω𝑛 = {(𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛, 𝑦) ∈ 𝑅+
𝑛+1;  𝑥𝑖 ≤ 1𝑎𝑛𝑑 𝑦 + ∑ 𝑥𝑗

𝑛
𝑗=1 ≤ 𝑛 + ∑ 𝑎𝑗

𝑛
𝑗=1 } is 

positively invariant and an attractor. 

Proof (i). The right hand side of each equation in system (2) is continuous and has partial derivatives 

on the space 𝑅+
𝑛+1. Therefore, they satisfy the Lipschitzian condition. Then, by uniqueness theorem, 

the solution is unique, and since the solution initiates at a non negative point, 
𝑑𝑥𝑖

𝑑𝑡
= 0 at 𝑥𝑖 = 0; 𝑖 =

1,2, … , 𝑛 and 
𝑑𝑦

𝑑𝑡
= 0 at 𝑦 = 0. Thus, no compartment of the solution of system (2) can cross zero. 

Therefore, the solution is always non negative. 

Proof (ii). Suppose that (𝑥1(𝑡), 𝑥2(𝑡), 𝑥3(𝑡), … , 𝑥𝑛(𝑡), 𝑦(𝑡)) is a solution of system (2), and initiate 

Ω𝑛. 

For each 𝑖 = 1,2,3, … , 𝑛, 

𝑑𝑥𝑖

𝑑𝑡
≤ 𝑎𝑖𝑥𝑖(1 − 𝑥𝑖). 

Solving the above inequality, we obtain that 

𝑥𝑖(𝑡) ≤
𝑥𝑖(0)

𝑥𝑖(0)+(1−𝑥𝑖(0))𝑒
−𝑎𝑖𝑡

, ∀𝑡 ≥ 0.       (3) 

If 𝑥𝑖(0) ∈ Ω𝑛 then 𝑥𝑖(𝑡) ≤ 1, ∀𝑡 ≥ 0. 

Let 𝑤(𝑡) = 𝑦(𝑡) + ∑ 𝑥𝑗(𝑡),
𝑛
𝑗=1  and then 

𝑑𝑤

𝑑𝑡
≤∑(𝑎𝑗𝑥𝑗 + 𝑥𝑗)

𝑛

𝑗=1

− (𝑦 +∑𝑥𝑗

𝑛

𝑗=1

) ≤∑(𝑎𝑗 + 1)

𝑛

𝑗=1

− (𝑦 +∑𝑥𝑗

𝑛

𝑗=1

) = 𝑛 +∑𝑎𝑗

𝑛

𝑗=1

− 𝑤. 

By solving the above inequality, we obtain that 

𝑤(𝑡) ≤ (𝑤(0) − (𝑛 + ∑ 𝑎𝑗
𝑛
𝑗=1 )) 𝑒𝑥𝑝(−(𝑛 + ∑ 𝑎𝑗

𝑛
𝑗=1 )𝑡) + (𝑛 + ∑ 𝑎𝑗

𝑛
𝑗=1 ).  (4) 

If 𝑦(0) ∈ Ω𝑛 since 𝑥𝑖(0) ∈ Ω𝑛, 𝑤(0) ≤ 𝑛 + ∑ 𝑎𝑗
𝑛
𝑗=1 , and hence 𝑤(𝑡) ≤ 𝑛 + ∑ 𝑎𝑗

𝑛
𝑗=1 , ∀𝑡 ≥ 0. 

Therefore, Ω𝑛 is positively invariant. 

From (3) and (4), it is concluded that lim
𝑡→∞

𝑆𝑢𝑝 𝑥𝑖 ≤ 1 and lim
𝑡→∞

𝑆𝑢𝑝 𝑤 ≤∑ (𝑎𝑗 + 𝑛)
𝑛
𝑗=1 . 

Thus Ω𝑛 is an attractor. 

4. Permanence 

In ecology, determining the criteria which make the model permanent is important, because they 

imply that the population continues to exist. Therefore, in this section, we prove that system (2) is 

permanent under the conditions. 
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Definition. [2] System (2) is said to be permanent if there exist positive constants 𝑑1 and 𝑑2 such 

that 

𝑑2 ≥ max {lim
𝑡→∞

 𝑆𝑢𝑝 𝑥𝑖(𝑡), lim
𝑡→∞

 𝑆𝑢𝑝 𝑦(𝑡))}  ≥  min { lim
𝑡→∞

 inf 𝑥𝑖(𝑡), lim
𝑡→∞

 inf 𝑦(𝑡), } ≥ 𝑑1, 𝑖

= 1,2, … , 𝑛. 

Theorem 2. For any initial values 𝑥𝑖(0) < 1 and 𝑦(0) > 0, if the following conditions hold, then 

system (2) is permanent. 

𝑝𝑖

𝑎𝑖
<

1

𝑛+∑ 𝑎𝑗
𝑛
𝑗=1

,          (5) 

∑ 𝑐𝑗𝑅𝑗 > 1 + ∑ 𝑏𝑗
𝑛
𝑗=1

𝑛
𝑗=1 ,         (6) 

where 𝑅𝑖 are given in the proof. 

Proof. From Theorem 1 we have that 

lim
𝑡→∞

𝑆𝑢𝑝 𝑥𝑖 ≤1 and lim
𝑡→∞

𝑠𝑢𝑝 (𝑦 + ∑ 𝑥𝑗
𝑛
𝑗=1 ) ≤ 𝑛 + ∑ 𝑎𝑗

𝑛
𝑗=1 . 

Thus, max{lim
𝑡→∞

 𝑆𝑢𝑝 𝑥𝑖(𝑡), lim
𝑡→∞

 𝑆𝑢𝑝 𝑦(𝑡)} ≤ 𝑛 + ∑ 𝑎𝑗
𝑛
𝑗=1 . 

If 𝑡 → ∞, then 

𝑑𝑥𝑖

𝑑𝑡
≥ 𝑎𝑖𝑥𝑖 (1 −

𝛼𝑖

𝑎𝑖
(𝑛 + ∑ 𝑎𝑗

𝑛
𝑗=1 ) − 𝑥𝑖)  𝑖 = 1,2,3, … , 𝑛.     (7) 

Let us define 𝑀𝑖 = 1 −
𝑝𝑖

𝑎𝑖
(𝑛 + ∑ 𝑎𝑗

𝑛
𝑗=1 ). We let inequality (5) is satisfied, 𝑀𝑖 > 0, and ∈𝑖> 0. 

By solving differential inequality (7), we obtain that 

lim
𝑡→∞

inf 𝑥𝑖(𝑡) ≥ 𝑀𝑖. 

Therefore, there is 𝑁𝑖 > 0 such that 

𝑥𝑖(𝑡) >
𝑀𝑖

2
 ∀𝑡 > 𝑁𝑖.          (8) 

Let 𝐻𝑖 = 𝑚𝑖𝑛{𝑥𝑖(𝑡); 𝑡 ∈ [0, 𝑁𝑖]}, and then 𝐻𝑖 = 0 if and only if there exist 𝑠 ∈ [0, 𝑁𝑖] such that 

𝑥𝑖(𝑠) = 0. 

However, at 𝑥𝑖 = 0, 
𝑑𝑥𝑖

𝑑𝑡
= 0, and 𝑥𝑖(𝑡) = 0, ∀𝑡 > 𝑁𝑖 . This is contrary to (8), and hence 𝐻𝑖 

≠ 0. 

Let 𝑅𝑖 = 𝑚𝑖𝑛 {
𝑀𝑖

2
, 𝐻𝑖}, and then 

𝑥𝑖(𝑡) ≥ 𝑅𝑖 ∀𝑡 ≥ 0.         (9) 

In Theorem 1 we proved that if 𝑥𝑖(0) < 0, then 

𝑥𝑖(𝑡) ≤ 1 ∀𝑡 ≥ 0.         (10) 



5784 

AIMS Mathematics  Volume 8, Issue 3, 5779–5788. 

Hence, 
𝑑𝑦

𝑑𝑡
≥ (

∑ 𝑐𝑗𝑅𝑗
𝑛
𝑗=1

1+∑ 𝑏𝑗
𝑛
𝑗=1

− 1)𝑦 ∀𝑡 ≥ 0, and 
∑ 𝑐𝑗𝑅𝑗
𝑛
𝑗=1

1+∑ 𝑏𝑗
𝑛
𝑗=1

− 1 > 0 due to condition (6). 

Therefore, if (0) > 0 , then 𝑦(𝑡) > 𝑦(0), ∀𝑡 > 0. 

Hence lim
𝑡→∞

 inf 𝑦(𝑡) > 𝑦(0). The proof is completed. 

5. Predator free equilibrium points and Ecological threshold parameter 

In this section we discuss a threshold parameter 𝑅0 which is known as the ecological basic 

reproduction number, and it may be thought about as the number of predators one predator gives rise 

to during its life [10]. Note that the system (2) has 2𝑛 equilibrium points which do not contain a 

predator compartment. The points are 𝐸𝑓
𝑛 = (1,1,1,… ,1,0)  or 𝐸𝑝

𝑛 = (𝑥𝑝1, 𝑥𝑝2, 𝑥𝑝3, . . , 𝑥𝑝𝑛, 0), 

where 𝑥𝑝𝑖 = 1 or 𝑥𝑝𝑖 = 0. At least one of 𝑥𝑓𝑖 is zero where each of the above equilibrium points 

is locally asymptotically stable. 

Theorem 3. The equilibrium point 𝐸𝑝
𝑛 = (𝑥𝑝1, 𝑥𝑝2, 𝑥𝑝3, . . , 𝑥𝑝𝑛, 0)  is a saddle point, and the 

predator free equilibrium point 𝐸𝑓
𝑛 = (1,1,1, … ,1,0)  is locally asymptotically stable if 𝑅0 =

 
∑ 𝑐𝑗
𝑛
𝑗=1

1+∑ 𝑏𝑗
𝑛
𝑗=1

< 1. 

Proof. For any point in 𝑅+
𝑛+1 the variational matrix of the system (2) is 

𝑉(𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛, 𝑦) = (𝐽𝑖𝑗)(𝑛+1)×(𝑛+1), 

where 

𝐽𝑖𝑘 =

{
 
 

 
 𝑎𝑖 − 2𝑎𝑖𝑥𝑖 −

𝛼𝑖𝑦(1+∑ 𝑏𝑗𝑥𝑗
𝑛
𝑗=1,𝑗≠𝑖 )

(1+∑ 𝑏𝑗𝑥𝑗
𝑛
𝑗=1 )

2    𝑖𝑓 𝑖 = 𝑘

𝛼𝑖𝑏𝑘𝑥𝑖𝑦

(1+∑ 𝑏𝑗𝑥𝑗
𝑛
𝑗=1 )

2                                      𝑖𝑓 𝑖 ≠ 𝑘
, 𝑖, 𝑘 = 1,2,… , 𝑛, 

𝐽𝑖(𝑛+1) = −
𝛼𝑖𝑥𝑖

1+∑ 𝑏𝑗𝑥𝑗
𝑛
𝑗=1

𝐽(𝑛+1)𝑖 =
𝑐𝑖𝑦+𝑦∑ (𝑐𝑖𝑏𝑗−𝑏𝑖𝑐𝑗)𝑥𝑗

𝑛
𝑗=1,𝑗≠𝑖

(1+∑ 𝑏𝑗𝑥𝑗
𝑛
𝑗=1 )

2  and 𝐽(𝑛+1)(𝑛+1) =
−1+∑ (𝑐𝑗−𝑏𝑗)𝑥𝑗

𝑛
𝑗=1

1+∑ 𝑏𝑗𝑥𝑗
𝑛
𝑗=1

. 

Eigenvalues of 𝑉(𝐸𝑝
𝑛) for 𝑝 = 2,3,4, … , 2𝑛 in the direction of compartment whose value in 

𝐸𝑝
𝑛 is positive and the eigenvalues in the directions of compartment 𝑓 the system whose value is in 

𝐸𝑝
𝑛, is negative. Therefore  𝐸𝑝

𝑛 = (𝑥𝑓1, 𝑥𝑓2, 𝑥𝑓3, . . , 𝑥𝑓𝑛, 0) is a saddle point. 

However, the eigenvalues of 𝐽(𝐸𝑝𝑓
𝑛 )   are 𝜆𝑖 =  −𝑎𝑖  for 𝑖 = 1,2,3, … , 𝑛  and 𝜆𝑛+1 =

∑ 𝑐𝑗
𝑛
𝑗=1

1+∑ 𝑏𝑗
𝑛
𝑗=1

− 1. 

Consequently, the predator free equilibrium point 𝐸𝑓
𝑛 = (1,1,1,… ,1,0)  is locally 

asymptotically stable if and only if 𝑅𝑛 < 1. 

Note that the corresponding equilibrium point of 𝐸1
𝑛 = (1,1,1, … ,1,0) in the original system (1) 

is 𝐸𝑘
𝑛 = (𝐾1, 𝐾2, 𝐾3, … , 𝐾𝑛, 0), and 𝑅𝑛 =

∑ 𝜃𝑗
𝑛
𝑗=1 𝐾𝑗

𝑑(1+∑ 𝛼𝑗𝑇𝑗𝐾𝑗
𝑛
𝑗=1 )

, where 
∑ 𝜃𝑗
𝑛
𝑗=1 𝐾𝑗

(1+∑ 𝛼𝑗𝑇𝑗𝐾𝑗
𝑛
𝑗=1 )

 is the growth rate 

of the new predator at 𝐸𝑘
𝑛 = (𝐾1, 𝐾2, 𝐾3, … , 𝐾𝑛, 0),  and 

1

𝑑
 is the life span of the predator. 
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Subsequently, their product gives the mean number of new born of the predator. Therefore, 𝑅𝑛 can 

be interpreted as the ecological basic reproduction number [14]. 

In the following theorem, global stability analysis of the predator prey free equilibrium point is 

given. 

Theorem 4. 𝐸𝑓
𝑛 = (1,1,1, … ,1,0) is globally asymptotically stable if the following conditions hold: 

𝑐𝑖 < 𝑏𝑖 , 𝑖 = 1,2,3… , 𝑛,         (11) 

𝑝𝑖
2 < 4𝑎𝑖 , 𝑖 = 1,2,3, … , 𝑛.        (12) 

Proof. Consider the function 

𝐿𝑛(𝑥1, 𝑥2, 𝑥3, … 𝑥𝑛, 𝑦) =
𝑛

2
𝑦2 − 𝑛 +∑(𝑥𝑗 − 𝑙𝑛(𝑥𝑗)) .

𝑛

𝑗=1

 

It is easy to show that 𝐿𝑛(𝑥1, 𝑥2, 𝑥3, … 𝑥𝑛, 𝑦) ∈ 𝐶
1(𝑅+

𝑛+1, 𝑅) with 𝐿𝑛 (𝐸𝑓
𝑛 = (1,1,1,… ,1,0)) = 0 

and 𝐿𝑛(𝑥1, 𝑥2, 𝑥3, … 𝑥𝑛, 𝑦) > 0, ∀(𝑥1, 𝑥2, 𝑥3, … 𝑥𝑛, 𝑦) ∈ 𝑅+
𝑛+1. 

Furthermore, 

𝑑𝐿𝑛

𝑑𝑡
= −∑ 𝑎𝑖(𝑥𝑖 − 1)

2 +𝑛
𝑖=1

𝛼𝑖(𝑥𝑖−1)𝑦

1+∑ 𝑏𝑗𝑥𝑗
𝑛
𝑗=1

+ (
1+∑ (𝑏𝑗−𝑐𝑗)𝑥𝑗

𝑛
𝑗=1

1+∑ 𝑏𝑗𝑥𝑗
𝑛
𝑗=1

) 𝑦2. 

Conditions (11) and (12) guarantee that 

𝑑𝐿𝑛

𝑑𝑡
≤ −∑ ((

𝑝𝑖

4𝑎𝑖(1+∑ 𝑏𝑗𝑥𝑗
𝑛
𝑗=1 )

)

2

− (
1+∑ (𝑏𝑗−𝑐𝑗)𝑥𝑗

𝑛
𝑗=1

1+∑ 𝑏𝑗𝑥𝑗
𝑛
𝑗=1

))𝑦2𝑛
𝑖=1 . 

Thus, using condition (12), it is obtained that 
𝑑𝐿𝑛

𝑑𝑡
 is negative. Hence, 𝐿𝑛 is a Lyapunov function 

with respect to 𝐸𝑓
𝑛 = (1,1,1, … ,1,0), so 𝐸𝑓

𝑛 is globally asymptotically stable. 

Note that the condition (11) guarantees that 𝑅𝑛 < 1. 

6. Numerical simulation 

In this section, we apply model (2) on the interactions between three prey species and one 

predator with the parameter values being 

𝑎1 = 5, 𝑎2 = 6, 𝑎3 = 7, 𝑝1 = 0.6, 𝑝2 = 0.7, 𝑝3 = 0.8, 

𝑏1 = 1, 𝑏2 = 1, 𝑏3 = 1, 𝑐1 = 0.5, 𝑐2 = 0.6, 𝑐3 = 0.7.      † 

The model is also solved numerically by using the Runge-Kutta method. 

Observe that free equilibrium point 𝐸𝑓
3 = (1,1,1,0) of the predator is globally asymptotically 

stable, as shown in Figure 1. 

It is observed that 𝑅0 = 0.45 < 1 for the parameters given in †, which confirms the analytical 

result in Theorem 3. If we exchange the values of 𝑐𝑖 and 𝑏𝑖 and solve the model numerically, we 

see that 𝐸𝑓
3 = (1,1,1,0) is unstable, as shown in Figure 2. 

After this exchanging the ecological basic reproduction number increased to 𝑅0 =1.0714> 1. 
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Additionally, this numerical solution confirms the analytical results in Theorem 3. 

 

Figure 1. Time series of the solution of system (2) for the parameters given in †. (a) 

Prey density in class (1), approaches one. (b) Prey density in class (2) approaches one. (c) 

Prey density in class (3) approaches one. (d) Predator density approaches zero. 

 

Figure 2. Time series of the solution of system (2) for the parameters given in †. (a) 

Prey density in class (1) approaches 0.8348. (b) Prey density in class (2) approaches 

0.8294. (c) Prey density in class (3) approaches 0.8228. (d) Predator density approaches 

3.4383. 
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7. Conclusions and discussion 

In this paper, interaction dynamics of a predator and all its prey species are modeled with 

extended Holling type II functional response for more than one prey species. We also have shown 

that the proposed model is uniformly bounded for any parameter values and the permanence 

condition is provided. We have studied the stability for positive equilibrium points numerically, 

whereas it is difficult to find enough conditions for the analytical part for the positive equilibrium 

points. The ecological basic reproduction of the model is established by using the criteria which 

make the predator free equilibrium point to locally asymptotically stable. Local and global 

asymptotic stability of the predator free equilibrium points is studied. We also conclude that if the 

ecological basic reproduction number 𝑅0 < 1, then the predator free equilibrium point is 

asymptotically stable, which leads to extinction of the predators. On the other hand, if 𝑅0 > 1, then 

the predator free equilibrium point is unstable, which implies the persistence of the predators. We 

solved system (2) in the case 𝑛 = 3 numerically by using the Runge-Kutta method. The analytical 

results are confirmed by the numerical simulations. 
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