http://www.aimspress.com/journal/Math

Research article

Finite groups for which all proper subgroups have consecutive character degrees

Shitian Liu ${ }^{*}$

School of Mathematics, Lianhu Campus, Sichuan University of Arts and Science, Dazhou, Sichuan 635000, China

* Correspondence: Email: s.t.liu@yandex.com; Tel: +8615983178716.

Abstract

Huppert and Qian et al. classified finite groups for which all irreducible character degrees are consecutive. The aim of this paper is to determine the structure of finite groups whose irreducible character degrees of their proper subgroups are all consecutive.

Keywords: simple group; proper subgroup; character degree; solvable group
Mathematics Subject Classification: 20C15, 20C33

1. Introduction

Throughout this paper, all considered groups are finite. Denote the set of all complex irreducible characters of a group G by $\operatorname{Irr}(G)$, denote the linear characters of G by $\operatorname{Lin}(G)$, and write $\operatorname{cd}(G)$ for the set of all complex irreducible character degrees of G, i.e.,

$$
\operatorname{cd}(G)=\{\chi(1): \chi \in \operatorname{Irr}(G)\}
$$

We use usually the degrees of G instead of the more precise irreducible character degrees.
Huppert determined the structure of finite groups with consecutive character degrees; see Section 32 of [14]. In order to argue in short, we give a conception.

Definition 1.1. Let G be a finite group. If the degrees from $\operatorname{cd}(G)-\{1\}$ are consecutive, then we call $G a$ CCD-group (or a non-CCD-group otherwise). We also assume that an abelian group is a CCD-group.

Qian in [26] improved the result of Huppert [14] and considered CCD-groups.
Let $d_{i}(G)$ or d_{i} without confusion be the smallest i-th degree in $\operatorname{cd}(G)-\{1\}$. Tiep and Zalesskii in [32] determined the first three smallest character degrees of classical groups. Recently, Liu, Lei and Li in [21] considered non-solvable CCD-groups by using the result of [32].

On the other hand, some authors considered the influence of subgroups with certain properties on the structure of finite groups. In particular, the structures of finite groups are determined if the proper subgroups are all abelian [1] or solvable [27, 31] or supersolvable [6] or nilpotent [18] or minimal non-nilpotent [2].

Recently some scholars combined the representation theory of finite groups with subgroup properties. In particular, the structures of finite groups are determined if all their subgroups have prime power degrees or degrees divisible by two primes; see [20, 22].

In this paper, we consider the influence of proper (maximal) subgroups whose degrees are consecutive on the structure of finite groups. Let $A * B$ be the central product of two groups A and B. To argue in short, we begin with the following definition.

Definition 1.2. Let $\sum(G)$ be the set of all proper subgroups of a group G. If for each $M \in \sum(G), M$ is a CCD-group, then we call G an SCCD-group (or a non-SCCD-group otherwise). We always assume that an abelian group is an SCCD-group.

Theorem 1.3. Let G be a non-solvable SCCD-group. Then, G is isomorphic to one of the following groups:
(1) $\operatorname{PSL}_{2}(q)$ where $q \geq 4$ is even or $q \geq 5$ is an odd prime or $q \in\left\{3^{p}, 5^{p}\right\}$ with p a prime.
(2) $S \times H$ where $S \in\left\{A_{5}, S_{5}\right\}$ and H is abelian.
(3) $\mathrm{SL}_{2}(q)$ where $q \geq 7$ is an odd prime or $q \in\left\{3^{p}, 5^{p}\right\}$ with p a prime.
(4) $\mathrm{SL}_{2}(5) * H$ with H / C_{2} abelian.

We call a group G a CC-group if $\operatorname{cd}(G)=\{1,2,3, \cdots, k\}$. Huppert investigated the structure of finite CC-groups G; see Sec. 32 of [14]. Let m be a positive integer. Then, what can we see if for each $H \in \sum G, \operatorname{cd}(H)=\{1,2,3, \cdots, m\}$? We also call a group G an SCC-group if for each $H \in \sum G, H$ is a CC-group. As an application of Theorem 1.3, we have the following result.

Theorem 1.4. Let G be an SCC-group. Then, G is solvable. In particular, one of the following statements holds:
(i) $\operatorname{cd}(G) \subseteq\{1,2\}$.
(ii) G is nilpotent, and G is isomorphic to a metabelian p-group or a direct product of a 2-group P and 2^{\prime}-group H where $\operatorname{cd}(P)=\{1,2\}$ and $\operatorname{cd}(H)=\{1\}$.
(iii) G is a Frobenius group with kernel F and complement H, respectively, such that
(iii.a) $\operatorname{cd}(F)=\{1,2\}$ and H is of a prime order such that for each non-identity $W \in \sum G,|W| \not \equiv 1$ $(\bmod |H|)$.
(iii.b) H is of prime order or 4; F is abelian. Furthermore, if H is of order 4, then F is isomorphic to $C_{p} \times C_{q}$ with $q \equiv p \equiv-1(\bmod 4)$ or C_{p} with $p \equiv 1(\bmod 4)$; if H is of prime order >2, then $|H||\mid(|F|-1)$.
(iv) G is a direct product of two groups H_{1} and H_{2} where H_{1} and H_{2} are metabelian with $\operatorname{cd}\left(H_{i}\right)=$ $\{1,2\}, i=1,2$; or only one of H_{1} and H_{2} is metabelian, say, H with $\operatorname{cd}(H)=\{1,2\}$.

The rest of the paper is organized as follows. In Section 2, we assemble some basic results which will be used throughout this paper. In Section 3, we determine the structure of the simple CCD-groups. In Section 4, we classify the non-solvable SCCD-groups. In Section 5, we give an application of Theorem 1.3 and also determine the structure of an SCC-group.

Let $A: B$ or $A . B$ be an extension of a group A by a group B. Let $\mathrm{GL}_{n}(q)$ be the general linear group of dimension n over a finite field of order q. Let m, n be positive integers, denote by $m \|(n-1)$ if $m \mid(n-1)$ but $m \nmid\left(\frac{n}{p}-1\right)$ for all nontrivial divisors p of n. The other notation is standard; please see [7, 15], for instance.

2. Basic results

In this section, some needed results are shown. First, some information about Frobenius groups is given.

Lemma 2.1 (Theorems 13.3 and 13.8 of [9]). Let $G=K: H$ be a Frobenius group with kernel K and complement H. Then,
(i) $|H| \mid(|K|-1)$.
(ii) Any subgroup of H of order p^{2} or $p q$ is cyclic where p and q are primes.
(iii) If $|H|$ is even, K is abelian.
(iv) In any case, K is nilpotent.
(v) Assume that K has $h(K)$ conjugacy classes, H has $h(H)$ conjugacy classes, and G has characters with the following forms:
(a) $h(H)$ irreducible characters $\chi_{1}, \cdots, \chi_{h(H)}$ with K in their kernel. If $\mu_{1}, \cdots, \mu_{h(H)}$ are the irreducible characters of H, then these satisfy

$$
\chi_{i}(h k)=\mu_{i}(h) \text { for all } h \in H, k \in K .
$$

(b) Whenever $\tau \neq 1_{K}$ is an irreducible character of K, then τ^{G} is an irreducible character of G. This gives $[h(K)-1] /|H|$ irreducible characters of G with K not in their kernel. Such τ^{G} satisfies

$$
\left.\tau^{G}\right|_{H}=\tau(1) \rho_{H}
$$

where ρ_{H} is the regular character of H.
Related to Frobenius groups, we need some character degrees for special cases to determine the group structure. From [19, Table 1] and [24, Theorem] and using the notation of [3], we get that ${ }^{2} B_{2}(q)$ with $q=2^{2 m+1}$ and ${ }^{2} G_{2}(q)$ with $q=3^{2 m+1}$ have maximal subgroups of the form $K: C_{q-1}$, where K is a Sylow 2 or 3 -subgroup of ${ }^{2} B_{2}(q)$ or ${ }^{2} G_{2}(q)$, respectively. Now, we have the following result by using the above Lemma.

Lemma 2.2. Let $G \in\left\{{ }^{2} B_{2}(q)\right.$ with $q=2^{2 m+1} \geq 2^{3},{ }^{2} G_{2}(q)$ with $\left.q=3^{2 m+1} \geq 3^{3}\right\}$ and let K be a Sylow $\pi(q)$-subgroup of G. Then, G has a maximal subgroup of the form $K: C_{q-1}$ that is a non-CCD-group.

Proof. The first claim follows from above arguments.
Now, we prove that $K: C_{q-1}$ is a non-CCD-group. Let $H:=C_{q-1}$. Now, $K: H$ is a Frobenius group. So, we need to prove that $K: H$ is not a CCD-group. Assume the contrary, and then $K: H$ is a CCD-group.

To get the desired result, we consider two cases in what follows.
Case 1: $G={ }^{2} B_{2}(q)$.
Let $\tau \in \operatorname{Irr}(K)-\operatorname{Lin}(K)$. Note that K is a Sylow 2-subgroup of ${ }^{2} B_{2}(q)$ since $|K|=\left|{ }^{2} B_{2}(q)\right|_{2}=q^{2}$. We see that $Z(K)$ is of order q, so $K / Z(K)$ of order q is abelian.

For any $1 \neq d \in \operatorname{cd}(K)$, we have that $d \mid 2^{m}$. In fact, $|K / Z(K)|=q$, so for each $d \in \operatorname{cd}(K)$, one has $d \left\lvert\, \sqrt{q}=2^{\frac{2 m+1}{2}}\right.$, i.e., $d \mid 2^{m}$.

On the other hand, $G / K \cong H$ is cyclic, so $(q-1) \in \operatorname{cd}(G)$, as the cyclic group H acts faithfully on the nilpotent group K.

Lemma 2.1(v)(b) implies that $\operatorname{cd}(K: H)=\{1, d, q-1, d(q-1)\}$ with $d \neq 1$. Hypothesis and $d \mid 2^{m}$ show that $d+2=d(q-1)$, i.e., $d=\frac{2}{q-2}$, so $1 \leq q-2 \leq 2$ implies $q=4 \not \equiv 8$, a contradiction to the hypothesis.

From now on, we have proved that $K: H$ is a non-CCD-group when $G={ }^{2} B_{2}(q)$.
Case 2: $G={ }^{2} G_{2}(q)$.
Similarly, we can get that K is a Sylow 3 -subgroup of $\left.{ }^{2} G_{2}(q)\right)$ since $|K|=\left|{ }^{2} G_{2}(q)\right|_{3}=q^{3}$. By a Theorem of [34], one has that the center $Z(K)$ of K is of order q.

Let $d \in \operatorname{cd}(K)-\operatorname{Lin}(K)$. Then, $d \mid q$, and in particular, $d \leq q$. Note that $(K: H) / K \cong H$ is a cyclic group, so $(q-1) \in \operatorname{cd}(G)$, as the cyclic group H acts faithfully on the nilpotent group K. Now, Lemma 2.1(v)(b) implies that $\mathrm{cd}(K: H)=\{1, q-1, d, d(q-1)\}$. Hypothesis forces that $q(q-1)-1=q$ for $d=q$ or $d+2=d(q-1)$ for $d \mid q$, so $q=3 \nsupseteq 3^{3}$, a contradiction. Therefore, $K: H$ is a non-CCD-group when $G={ }^{2} G_{2}(q)$.

Now, the lemma is proved.
Let $\max G$ or $\max (G)$ be the set of all proper maximal subgroups with respect to their subgrouporder divisibility. Then, $\max G \subseteq \sum G$.
Lemma 2.3. (1) G is an SCCD-group if and only if every proper subgroup H of G is a CCD-group.
(2) Let N be a non-trivial normal subgroup of an SCCD-group G. Then, G / N is a CCD-group.

Let $\Phi(G)$ be the Frattini subgroup of a group G.
Proof. (1) By Definition of an SCCD-group, we can get this.
(2) Since N is non-trivial and normal in G, we assume that N is minimal. Assume that G / N is a non-CCD-group. If $N \nsubseteq \Phi(G)$, then choose a maximal subgroup $M \in \max G$ with $N \not \leq M$, so $G=M N$. Note that $M \cap N=N$ or $M \cap N=1$. If the former, then $N \leq M$, a contradiction to the choice of M. Thus, G / N is isomorphic to M, which is a CCD-group, a contradiction also. If $N \leq \Phi(G)$, then for $M \in \max G, N \leq M$. Since G / N is a non-CCD-group, we have that G / N is a non-SCCD-group, and so in G / N there is a non-CCD-subgroup, say, M / N. It follows that M is a non-CCD-group, a contradiction to $M \in \max G$ (note that for each $M \in \max G, M$ is a CCD-group).

In general, the product of two CCD-groups is not a an CCD-group.
Example 2.4. Let A_{1} be any maximal proper subgroup of a non-abelian p-group A of order p^{4} with $\operatorname{cd}\left(A_{1}\right)=\{1, p\}$, and let B be a q-group with $\operatorname{cd}(B)=\{1, q\}$, where q, p are different primes. Let $G=A \times B$. Then, G is not an SCCD-group. We will show this by contradiction. Assume that G is an SCCD-group. Then, $A_{1} \times B$ is a maximal subgroup of G, and $\operatorname{cd}\left(A_{1} \times B\right)=\{1, p, q, p q\}$ by Theorem 4.21 of [15]. Say $p<q$. Then, $p+1=q$ by assumption, so $p=2$, and $q=3$. Thus, $\operatorname{cd}\left(A_{1} \times B\right)=\{1,2,3,6\}$, and $A_{1} \times B$ is not a CCD-group, a contradiction.

There is a CCD-group that is not an SCCD-group.
Example 2.5. Let $G=\operatorname{PGL}_{2}(q)$ with $q>5$ odd. Then, $\operatorname{cd}(G)=\{1, q-1, q, q+1\}$ by [30], so G is a CCD-group. Obviously, $\mathrm{PSL}_{2}(q)$ is a normal subgroup of $\mathrm{PGL}_{2}(q)$ with index $\operatorname{gcd}(2, q-1)$, and

$$
\operatorname{cd}\left(\operatorname{PSL}_{2}(q)\right)=\left\{1, \frac{q+(-1)^{(q-1) / 2}}{2}, q-1, q, q+1\right\} .
$$

If G is an SCCD-group, then $\mathrm{PSL}_{2}(q)$ is a CCD-group. On the other hand, hypothesis forces $\frac{q+(-1)^{(q-1) / 2}}{2}+$ $1=q-1$ or $1+1=\frac{q+(-1)^{(q-1) / 2}}{2}$, so the two equations have solutions $q=3,5$, a contradiction to the hypothesis. It follows that $\mathrm{PSL}_{2}(q)$ is not a CCD-group, so G is not an SCCD-group.

An extension of an SCCD-group by an SCCD-group is not an SCCD-group usually.
Example 2.6. Let S_{5} be the symmetric group of degree 5. Then, S_{5} is an SCCD-group (we can check it by [7]). Also, 2^{4}, an elementary group of order 2^{4}, is an SCCD-group. Now, let $G=2^{4}: S_{5}$. It is easy to see that $2^{4}: A_{5}$, say, H, is a proper subgroup of G. If G is an SCCD-group, then H is a CCD-group by Lemma 2.3. On the other hand, by [4] $\operatorname{cd}(H)=\{1,3,4,5,15\}$, which means that H is not a CCD-group. It follows that G is not an SCCD-group.

Let $\operatorname{PSL}_{n}^{+}(q)=\operatorname{PSL}_{n}(q)$ and $\operatorname{PSL}_{n}^{-}(q)=\operatorname{PSU}_{n}(q)$. Let $\mathrm{SL}_{n}^{+}(q)=\operatorname{SL}_{n}(q)$ and $\mathrm{SL}_{n}^{-}(q)=\mathrm{SU}_{n}(q)$. In order to prove our main result, we need some information about the structure of some special subgroup of a non-abelian simple group due to Liu [20].

Lemma 2.7 (Lemma 2 of [20]). Let q be a prime power, and let $\epsilon= \pm$.
(1) Let $n \geq 8$. Then, A_{n} has a subgroup A_{n-1}.
(2) Let $n \geq 4$. Then, $\operatorname{PSL}_{n}^{\epsilon}(q)$ has a subgroup isomorphic to $\mathrm{SL}_{n-1}^{ \pm}(q)$ or $\mathrm{PSL}_{n-1}^{ \pm}(q)$, and $\mathrm{SL}_{n}^{\epsilon}(q)$ has a subgroup of the form $\mathrm{SL}_{n-1}^{\epsilon}(q)$.
(3) Let $n \geq 2$. Then, $\mathrm{PSp}_{2 n}(q)$ has a subgroup $\mathrm{PSp}_{2(n-1)}(q)$.
(4) Let $n \geq 3$, with q odd. Then, $\Omega_{2 n+1}(q)$ contains a subgroup $\Omega_{2 n-1}(q)$.
(5) Let $n \geq$ 4. Then, $\mathrm{P} \Omega_{2 n}^{\epsilon}(q)$ has a subgroup $\mathrm{P} \Omega_{2 n-2}^{\epsilon}(q)$ with q odd or $\mathrm{PSp}_{2 n-2}(q)$ with q even.

3. Simple SCCD-groups

By the classification theorem of finite simple groups, a non-abelian simple group is isomorphic to an alternating group A_{n}, a Sporadic simple group or Tits group, an exceptional group of Lie type or a classical group of Lie type. Now, we will determine the structure of the simple SCCD-groups by the following Lemmas.

Lemma 3.1. Let G be an alternating A_{n} of degree $n \geq 5$. Assume that G is an SCCD-group, and then G is isomorphic to A_{5} or A_{6}.

Proof. We assume that G is an SCCD-group, so we need to check whether its subgroups are CCDgroups or not.

Let $n=5$. Then, by [7, pp. 2], $\max A_{5}=\left\{A_{4}, D_{10}, S_{3}\right\}$. Note that $\operatorname{cd}\left(A_{4}\right)=\{1,3\}, \operatorname{cd}\left(D_{10}\right)=$ $\operatorname{cd}\left(S_{3}\right)=\{1,2\}$. It follows that all the subgroups of A_{5} are CCD-groups and A_{5} is an SCCD-group, so $G \cong A_{5}$.

Let $n=6$, and then by [7, pp. 4], $\max A_{6}=\left\{A_{5}, 3^{2}: 4, S_{4}\right\}$. As $\operatorname{cd}\left(A_{5}\right)=\{1,3,4,5\}, \operatorname{cd}\left(3^{2}: 4\right)=$ $\{1,4\}$ and $\operatorname{cd}\left(S_{4}\right)=\{1,2,3\}$, one has that the subgroups $A_{5}, 3^{2}: 4, S_{4}$ of A_{6} are CCD-groups, and so A_{6} is an SCCD-group. Thus, $G \cong A_{6}$.

Let $n=7$, and then by [7, pp. 10], A_{7} contains a subgroup A_{6}, but by [7, pp. 4] $\operatorname{cd}\left(A_{6}\right)=$ $\{1,5,8,9,10\}$. Now, A_{6} is not a CCD-group. It follows that A_{7} is a non-SCCD-group.

If $n \geq 8$, then we get that A_{n} has a subgroup A_{n-1} by Lemma 2.7, so one has the subgroup series

$$
A_{7}<A_{8}<\cdots A_{n-1}<A_{n} .
$$

It follows that A_{n} with $n \geq 8$ is not an SCCD-group since A_{7} is a non-CCD-group.
Lemma 3.2. There does not exist an SCCD-group for a Sporadic simple group.
Proof. By [7], there is a subgroup $H \in \max G$ which is a non-CCD-group.
Lemma 3.3. There does not exist a simple exceptional SCCD-group of Lie type.
Proof. It is well-known in this case that, for a simple group G of exceptional Lie type, G is isomorphic to ${ }^{2} B_{2}(q)$ with $q=2^{2 m+1} \geq 8,{ }^{2} G_{2}(q)$ with $q=3^{2 m+1}, m \geq 1, G_{2}(q),{ }^{3} D_{4}(q), F_{4}(q),{ }^{2} F_{4}\left(q^{2}\right), E_{6}^{\epsilon}(q)$, $E_{7}(q)$, or $E_{8}(q)$. We deal with these case by case.

The following two subgroup series are from Table 1:

$$
G_{2}(q)>\mathrm{SU}_{3}\left(q^{2}\right) \cdot 2>\mathrm{SU}_{3}\left(q^{2}\right)
$$

and

$$
{ }^{2} F_{4}\left(q^{2}\right)>\mathrm{SU}_{3}\left(q^{2}\right) .2>\mathrm{SU}_{3}\left(q^{2}\right)
$$

However, by [23], one has

$$
\begin{cases}d_{2}\left(\mathrm{SU}_{3}\left(q^{2}\right)\right)=q^{2}-q+1, d_{3}\left(\mathrm{SU}_{3}\left(q^{2}\right)\right)=(q-1)\left(q^{2}-q+1\right), & \text { for } q \equiv 0,1(\bmod 3) \\ d_{2}\left(\mathrm{SU}_{3}\left(q^{2}\right)\right)=q^{2}-q+1, d_{3}\left(\mathrm{SU}_{3}\left(q^{3}\right)\right)=\frac{1}{3}(q-1)\left(q^{2}-q+1\right), & \text { for } q \equiv 2(\bmod 3),\end{cases}
$$

and hypothesis $d_{2}+1=d_{3}$ implies $q=2$ or 4 , a contradiction. It follows that $G_{2}(q)$ and ${ }^{2} F_{2}\left(q^{2}\right)$ are non-SCCD-groups. Note that ${ }^{2} F_{4}(2)^{\prime}$ is a non-SCCD-group by [7]. Also, we can show from Table 1 that ${ }^{3} D_{4}(q), F_{4}(q)$, and $E_{6}^{\epsilon}(q)$ are non-SCCD-groups. Now, if $\mathrm{P} \Omega_{12}^{+}(q)$ is a non-CCD-group, then $E_{7}(q)$ and $E_{8}(q)$ are non-SCCD-groups. In fact,

$$
\mathrm{P} \Omega_{12}^{+}(q)>\cdots>\mathrm{P}_{4}^{+}(q) \cong \operatorname{PSL}_{2}(q) \times \operatorname{PSL}_{2}(q)
$$

Now, by Theorem 4.21 of [15], $\operatorname{PSL}_{2}(q) \times \operatorname{PSL}_{2}(q)$ is not a CCD-group, so $\mathrm{P}_{12}^{+}(q)$ is a non-CCD-group. Thus, $E_{7}(q)$ and $E_{8}(q)$ are non-SCCD-groups.

Table 1. Exceptional groups of Lie type.

G	$H \in \max G$	Reference
$G_{2}(q)$	$\mathrm{SL}_{3}(q) \cdot 2, \mathrm{SU}_{3}\left(q^{2}\right) .2$	$[19]$
${ }^{3} D_{4}(q)$	$G_{2}(q)$	$[19]$
$F_{4}(q)$	${ }^{3} D_{4}\left(q^{3}\right)$	$[19]$
$E_{6}^{\epsilon}(q)$	$F_{4}(q)$	$[19]$
$E_{7}(q)$	$\mathrm{P}_{12}^{+}(q)$	$[19]$
$E_{8}(q)$	$\left.E_{7}(q)\right)$	$[19]$
${ }^{2} F_{4}\left(q^{2}\right)$	$\mathrm{SU}_{3}\left(q^{2}\right) .2$	$[24]$

Now, by Lemma 2.2, ${ }^{2} B_{2}(q)$ with $q=2^{2 m+1} \geq 8$ and ${ }^{2} G_{2}(q)$ with $q=3^{2 m+1}, m \geq 1$, are non-SCCDgroups.

Proposition 3.4. Let G be a simple classical SCCD-group of Lie type. Then, G is isomorphic to $\operatorname{PSL}_{2}(q)$ where q is even, or q is an odd prime, or $q \in\left\{3^{p}, 5^{p}\right\}$ with p a prime.

Proof. The Classification Theorem of Finite Simple Groups shows that G may be isomorphic to one of the following groups: $\mathrm{PSL}_{l+1}(q), \mathrm{PSU}_{l+1}(q), \Omega_{2 l+1}(q), \mathrm{PSp}_{2 l}(q), \mathrm{P}_{2 l}^{+}(q)$ or $\mathrm{P}_{2 l}^{-}(q)$, where q is a power of a prime. Now, we need to show whether these groups are SCCD-groups or not.

Case 1: $\mathrm{PSL}_{l+1}(q)$ with $l \geq 1$.
Subcase 1: $l=1$.
Note from Table 2 that $\operatorname{cd}\left(E_{q}: C_{(q-1) / k}\right)=\left\{1, \frac{q-1}{k}\right\}, \operatorname{cd}\left(D_{2(q \pm 1) / k}\right)=\{1,2\}, \operatorname{cd}\left(S_{4}\right)=\{1,2,3\}, \operatorname{cd}\left(A_{4}\right)=$ $\{1,3\}$, and $\operatorname{cd}\left(A_{5}\right)=\{1,3,4,5\}$. Note that $E_{q}: C_{(q-1) / k}, D_{2(q \pm 1) / k}, S_{4}, A_{4}$ and A_{5} are CCD-groups, so in the following, we only need to consider maximal subgroup $H:=\operatorname{PSL}_{2}\left(q_{0}\right) \cdot \operatorname{gcd}(\operatorname{gcd}(2, q-1), b)$ with $q=q_{0}^{b}, q_{0} \neq 2$ and b a prime.

Table 2. $\operatorname{PSL}_{2}(q), q \geq 5$ (Chap II Theo. 8.27 [12]).

$\max \mathrm{PSL}_{2}(q)$	Condition
$E_{q}: C_{(q-1) / k}$	$k=\operatorname{gcd}(q-1,2)$
$D_{2(q-1) / k}$	$q \notin\{5,7,9,11\}$
$D_{2(q+1) / k}$	$q \notin\{7,9\}$
$\operatorname{PSL}_{2}\left(q_{0}\right) .(k, b)$	$q=q_{0}^{b}, b \operatorname{a~prime}, q_{0} \neq 2$
S_{4}	$q=p \equiv \pm 1(\bmod 8)$
A_{4}	$q=p \equiv 3,5,13,27,37(\bmod 40)$
A_{5}	$q \equiv \pm 1(\bmod 10), F_{q}=F_{p}[\sqrt{5}]$

If $q=2^{n}$, then $\operatorname{gcd}(\operatorname{gcd}(2, q-1), p)=1, H$ is isomorphic $\operatorname{PSL}_{2}\left(q_{0}\right)$, and $\operatorname{PSL}_{2}\left(q_{0}\right)$ is a CCD-group because $\operatorname{cd}\left(\operatorname{PSL}_{2}\left(q_{0}\right)\right)=\left\{1, q_{0}-1, q_{0}, q_{0}+1\right\}$. Thus, $\mathrm{PSL}_{2}(q)$ is an SCCD-group for q even.

Let $q=r^{n}$ be odd, where r is a prime. If $n=1$, then $G \cong \operatorname{PSL}_{2}(q)$ with q a prime, as in this case, and $\mathrm{PSL}_{2}(q)$ possibly contains $E_{q}: C_{(q-1) / k}, D_{2(q-1) / k}, D_{2(q+1) / k}, S_{4}, A_{4}, A_{5}$ as its maximal subgroups. Note that all these possible maximal subgroups are CCD-groups. If $n>1$, then $\operatorname{gcd}(2, q-1)=2$, so G has a maximal subgroup $\mathrm{PSL}_{2}\left(q_{0}\right) \cdot(2, b)$ with $b \mid n$.

- If $b=2$, then by Theorem A of [35], we can assume that $\operatorname{PGL}_{2}\left(q_{0}\right) \cong \operatorname{PSL}_{2}\left(q_{0}\right) .2$ or $\operatorname{PGL}_{2}\left(q_{0}\right) \nless$ $\operatorname{PSL}_{2}\left(q_{0}\right)$.2. Observe that $\operatorname{PSL}_{2}\left(q_{0}\right)$ is a normal subgroup of $\operatorname{PGL}_{2}\left(q_{0}\right)$ or $\operatorname{PSL}_{2}\left(q_{0}\right) \cdot 2$. Then, we have by [8] that $\operatorname{cd}\left(\operatorname{PSL}_{2}\left(q_{0}\right)\right)=\left\{1, \frac{q_{0}+\varepsilon}{2}, q_{0}-1, q_{0}, q_{0}+1\right\}$ with $\varepsilon=(-1)^{(q-1) / 2}$. It follows from hypothesis that $1=\frac{q_{0}+\varepsilon}{2}$, or $\frac{q_{0}+\varepsilon}{2}+1=q_{0}-1$, and so $q_{0}=3$ or 5 .
- If $b \geq 3$ is a prime, then $\operatorname{gcd}(2, b)=1$, and $\operatorname{PSL}_{2}(q)$ contains a maximal subgroup $\operatorname{PSL}_{2}\left(q_{0}\right)$ by Table 2. As $\operatorname{cd}\left(\operatorname{PSL}_{2}\left(q_{0}\right)\right)=\left\{1, \frac{q_{0}+\varepsilon}{2}, q_{0}-1, q_{0}, q_{0}+1\right\}$ with $q=q_{0}^{b}$ and $\varepsilon=(-1)^{(q-1) / 2}$, one gets from hypothesis that $q_{0}=3$ or 5 , since the possible maximal subgroups $E_{q}: Z_{(q-1) / k}, D_{(q-1) / k}$, $D_{2(q+1) / k}, S_{4}, A_{4}, A_{5}$ for $\mathrm{PSL}_{2}(q)$ are CCD-groups.

It follows that $\operatorname{PSL}_{2}\left(r^{b}\right)$ is an SCCD-group where $r \in\{3,5\}$ and $b \geq 2$ is a prime.
Subcase 2: $l=2$.
If $q=q_{0}^{b}$ with b a prime, then by Table 3, G contains a maximal subgroup $\operatorname{PSL}_{3}\left(q_{0}\right)$. Note from [29] that $\operatorname{cd}\left(\operatorname{PSL}_{3}\left(q_{0}\right)\right)=\left\{1, q_{0}\left(q_{0}+1\right), q_{0}^{2}+q_{0}+1,\left(q_{0}+1\right)\left(q_{0}-1\right)^{2}, q_{0}^{3}-1, q_{0}^{3}, q_{0}\left(q_{0}^{2}+q_{0}+1\right),\left(q_{0}+1\right)\left(q_{0}^{2}+q_{0}+1\right)\right\}$. It is easy to see that the degrees of $\operatorname{PSL}_{3}\left(q_{0}\right)$ are not consecutive. Thus, q is a prime.

Table 3. $\operatorname{PSL}_{3}(q)$ and $\mathrm{PSU}_{3}(q)$ ([17]).

	$\max \mathrm{PSL}_{3}(q)$	Condition	max $\mathrm{PSU}_{3}(q)$	Condition
C_{1}	$E_{q^{2}}: \frac{1}{k} \mathrm{GL}_{2}(q)$	$E_{q}^{1+2}: Z_{\frac{q^{2}-1}{l}}$		
		${ }_{l}^{1} \mathrm{GU}_{2}(q)$		
C_{2}	$Z_{\frac{(q-1)^{2}}{k}} \cdot S_{3}$	$q \geq 5$	$Z_{\frac{(q+1)}{l}} \cdot S_{3}$	$q \neq 5$
C_{3}	$Z_{\frac{q^{2}+q+1}{}}^{\text {ctic }}$. 3	$q \neq 4$	$Z_{\left(q^{2}-q+1\right) / l} \cdot 3$	$q \notin\{3,5\}$
C_{5}	$\mathrm{PSL}_{3}\left(q_{0}\right) .(k, b)$	$q=q_{0}^{b}, b$ prime	$\mathrm{PSU}_{3}\left(q_{0}\right) \cdot(b, l)$	$q=q_{0}^{b}, b \geq 3$ prime
			$\mathrm{SO}_{3}(q)$	$q \geq 7$ odd
C_{6}	$3^{2} . \mathrm{SL}_{2}(3)$	$q=p \equiv 1(9)$	$3^{2} . \mathrm{SL}_{2}(3)$	$q=p \equiv 8(9)$
	$3^{2} . Q_{8}$	$q=p \equiv 4,7(9)$	$3^{2} . Q_{8}$	$11 \leq q=p \equiv 2,5(9)$
C_{8}	$\mathrm{SO}_{3}(q)$	q odd		$p=q \equiv 11,14(15)$
	$\mathrm{PSU}_{3}\left(q_{0}\right)$	$q=q_{0}^{2}$	A_{6}	
\mathcal{S}	A_{6}	$\begin{gathered} p \equiv 1,2,4,7,8,13(15) \\ F_{q}=F_{p}[\sqrt{5}, \sqrt{-3}] \end{gathered}$		
	$\mathrm{PSL}_{2}(7)$	$2<q=p \equiv 1,2,4(7)$	M_{10}	$q=5$
			$\mathrm{PSL}_{2}(7)$	$5 \neq q=p \equiv 3,5,6$ (7)
			A_{7}	$q=5$

$k=\operatorname{gcd}(3, q-1)$, and $l=\operatorname{gcd}(3, q+1)$. Here, $m \equiv r(n)$ denotes $m \equiv r(\bmod n)$.
Since q is an odd prime, we can get by Table 3 that G contains a maximal subgroup $\mathrm{SO}_{3}(q) \cong \mathrm{SL}_{2}(q)$. We know from [16] that $\operatorname{cd}\left(\mathrm{SL}_{2}(q)\right)=\left\{1, \frac{q-1}{2}, \frac{q+1}{2}, q-1, q, q+1\right\}$, so by hypothesis, $q=5$. By [7, pp. 38], $\mathrm{PSL}_{3}(5)$ contains a maximal subgroup $4^{2}: S_{3}$, and by [4], $\operatorname{cd}\left(4^{2}: S_{3}\right)=\{1,2,3,6\}$, a contradiction to hypothesis. It follows that $q=2$, and so $G \cong \operatorname{PSL}_{3}(2) \cong \mathrm{PSL}_{2}(7)$ is considered above.

Subcase 3: $l=3$.
By Lemma 2.7, $\mathrm{PSL}_{4}(q)$ contains a subgroup isomorphic to either $\mathrm{PSL}_{3}(q)$ or $\mathrm{SL}_{3}(q)$. By [29], we obtain that either

$$
d_{2}\left(\operatorname{PSL}_{3}(q)\right)=q^{2}+q+1 \text { and } d_{3}\left(\operatorname{PSL}_{3}(q)\right)=(q-1)^{2}(q+1)
$$

or

$$
d_{2}\left(\mathrm{SL}_{3}(q)\right)=q^{2}+q+1 \text { and } d_{3}\left(\mathrm{SL}_{3}(q)\right) \in\left\{(q-1)^{2}(q+1),(q-1)^{2}(q+1) / 3\right\}
$$

so hypothesis forces $d_{2}+1=d_{3}$, but the equation has no solution in \mathbb{N}, the nonnegative integer set. Now, $\mathrm{PSL}_{3}(q)$ is not a CCD-group, and so $\mathrm{PSL}_{4}(q)$ is not an SCCD-group.

Subcase 4: $l \geq 4$.
Applying Lemma 2.7 repeatedly, we have that

$$
\text { either } \operatorname{PSL}_{3}(q)<\operatorname{PSL}_{l+1}(q) \text { or } \mathrm{SL}_{3}(q)<\mathrm{PSL}_{l+1}(q)
$$

Note that $\mathrm{PSL}_{3}(q)$ and $\mathrm{SL}_{3}(q)$ are not CCD-groups by Subcase 3 of Case 1. Thus, $\mathrm{PSL}_{l+1}(q)$ is not an SCCD-group.

Case 2: $\mathrm{PSU}_{l+1}(q)$ with $l \geq 2$.
Note that $\operatorname{PSU}_{2}(q) \cong \operatorname{PSL}_{2}(q)$. We deal with this by two cases: $l=2$ and $l \geq 3$.

- Let $l=2$.

We know that $\operatorname{PSU}_{3}(2) \cong 3^{2} . Q_{8}$ is solvable, so $q \geq 3$. $\operatorname{PSU}_{3}(q)$ has a subgroup of the form: $E_{q}^{1+2}: C_{q^{2}-1}$. By the Main theorem of $[28], \operatorname{cd}\left(E_{q}^{1+2}\right)=\{1, q\}$. By Lemma 2.1, we get that either

$$
\operatorname{cd}\left(E_{q}^{1+2}: C_{q^{2}-1}\right)=\left\{1, q, q^{2}-1, q\left(q^{2}-1\right)\right\} \text { for }(3, q+1)=1
$$

or

$$
\operatorname{cd}\left(E_{q}^{1+2}: C_{\left(q^{2}-1\right) / 3}\right)=\left\{1, q,\left(q^{2}-1\right) / 3, q\left(q^{2}-1\right) / 3\right\} \text { for }(3, q+1)=3,
$$

so hypothesis shows that $q+1=q^{2}-1$ or $q+1=\frac{q^{2}-1}{3}$. We have $q=2 \ngtr 3$ or $q=4$. Thus, by ATLAS [7], $\mathrm{PSU}_{3}(4)$ contains a maximal subgroup $5^{2}: S_{3}$, and by [4], $\operatorname{cd}\left(5^{2}: S_{3}\right)=\{1,2,3,6\}$, a contradiction to hypothesis.

Now, we have that, for $q \geq 3, \operatorname{PSU}_{3}(q)$ is not an SCCD-group; in particular, $\operatorname{PSU}_{3}(q)$ is not a CCD-group.

- Let $l \geq 3$.

Applying Lemma 2.7 repeatedly, we get that

$$
\text { either } \operatorname{PSU}_{3}(q)<\operatorname{PSU}_{l+1}(q) \text { or } \mathrm{SU}_{3}(q)<\operatorname{PSU}_{l+1}(q),
$$

and so $\mathrm{PSU}_{l+1}(q)$ is not an SCCD-group.
Case 3: $\mathrm{PSp}_{2 l}(q)$ with $l \geq 2$.
Let $l=2$. Since $\operatorname{PSp}_{4}(2) \cong S_{6}$, where S_{n} is a symmetric group of degree n, is not simple, we assume that $q \geq 3$. By [17, pp. 209], $\mathrm{PSp}_{4}(q)$ has a maximal subgroup $\left(\mathrm{PSp}_{2}(q) \times \mathrm{PSp}_{2}(q)\right) .2>$ $\mathrm{PSp}_{2}(q) \times \mathrm{PSp}_{2}(q)$. Note that $\mathrm{PSp}_{2}(q) \cong \mathrm{PSL}_{2}(q)$ and that S_{6} is a non-CCD-group.

If q is odd or $q \geq 4$ is even, then $q-1, q, q+1 \in \operatorname{cd}\left(\operatorname{PSL}_{2}(q)\right)$, so by Theorem 4.21 of [15], one has that $(q+1)^{2}, q(q+1) \in \operatorname{cd}\left(\mathrm{SL}_{2}(q) \times \mathrm{SL}_{2}(q)\right)$. By hypothesis, $(q+1) q+1=(q+1)^{2}$, and so $q=2$, a contradiction.

Now, we get that $\mathrm{PSp}_{4}(q)$ is not an SCCD-group.
Let $l \geq 3$. Then, by Lemma 2.7, we get a subgroup series

$$
\operatorname{PSp}_{4}(q)<\operatorname{PSp}_{6}(q)<\cdots<\operatorname{PSp}_{2(l-1)}(q)<\operatorname{PSp}_{2 l}(q)
$$

and $\mathrm{PSp}_{2 l}(q)$ is not an SCCD-group.
Case 4: $\Omega_{2 l+1}(q)$ with $l \geq 2$.
If $l=2$, then $\Omega_{5}(q) \cong \mathrm{PSp}_{4}(q)$ is a non-SCCD-group by Case 3 .
If $l=3$, then $\Omega_{5}(q)<\Omega_{7}(q)$ by Lemma 2.7. We know from Case 3 that $\Omega_{5}(q)$ is a non-SCCD-group, and so is $\Omega_{7}(q)$.

Let $l \geq 4$. Then, Lemma 2.7 shows that $\Omega_{2 l+1}(q)$ has a subgroup series

$$
\Omega_{5}(q)<\Omega_{7}(q)<\cdots<\Omega_{2 l-1}(q)<\Omega_{2 l+1}(q),
$$

so $\Omega_{2 l+1}(q)$ is a non-SCCD-group.
Case 5: $\mathrm{P} \Omega_{2 l}^{\varepsilon}(q)$ with $l \geq 4, \varepsilon= \pm$.
We first consider $\mathrm{P} \Omega_{2 l}^{+}(q)$. If $l=4$, then by [17, pp. 214], $\mathrm{P}_{8}^{+}(q)$ contains a subgroup $\mathrm{P} \Omega_{7}(q)$. It follows from Case 4 that $\mathrm{P} \Omega_{8}^{+}(q)$ is a non-SCCD-group.

If $l \geq 5$, then using Lemma 2.7, $\mathrm{P}_{2 l}^{+}(q)$ contains a subgroup isomorphic to

$$
\mathrm{P} \Omega_{2(l-1)}(q) \text { for } q \text { odd or } \mathrm{PSp}_{2(l-1)}(q) \text { for } q \text { even, }
$$

so Cases 3 and 4 imply that $\mathrm{P} \Omega_{2 l}^{+}(q)$ is a non-SCCD-group.
Similarly we can see that $\mathrm{P} \Omega_{2 l}^{-}(q)$ with $l \geq 4$ is a non-SCCD-group.
Now, we can prove the following result.

Theorem 3.5. Let G be a non-abelian simple SCCD-group. Then, G is isomorphic to $\operatorname{PSL}_{2}(q)$ where $q \geq 4$ is even or $q \geq 5$ is an odd prime or $q \in\left\{3^{p}, 5^{p}\right\}$ with p a prime.

Note $A_{5} \cong \operatorname{PSL}_{2}(5) \cong \operatorname{PSL}_{2}(4)$, and $A_{6} \cong \operatorname{PSL}_{2}\left(3^{2}\right)$.
Proof. Lemmas 3.1-3.3 and Proposition 3.4 imply the result.

4. Non-solvable SCCD-groups

In this section, we first show the structure of almost simple SCCD-groups and then give that of non-solvable SCCD-groups.

Note that $\operatorname{PGL}_{2}(5) \cong S_{5}$, and let $\operatorname{Out}(A)$ be the outer-automorphism group of a group A.
Theorem 4.1. Let G be an SCCD-group, and let S be a non-abelian simple group such that $S \leq G \leq$ $\operatorname{Aut}(S)$. Then, G is isomorphic to one of the following groups:
(1) $\mathrm{PSL}_{2}(q)$ where $q \geq 4$ is even or $q \geq 5$ is an odd prime or $q \in\left\{3^{p}, 5^{p}\right\}$ with p a prime, (2) S_{5}.

Proof. Let G be an almost simple SCCD-group with socle S. Thus, S is also a simple SCCD-group, and by Theorem 3.5, $S \cong \operatorname{PSL}_{2}(q)$ where $q \geq 4$ is even or q is an odd prime or $q \in\left\{3^{p}, 5^{p}\right\}$ with p a prime.

If $q=2^{f}$ for some $f \geq 2$, then G is isomorphic to $\operatorname{PSL}_{2}\left(2^{f}\right) . d$ with $d \mid f$. If G is a simple group, then G is isomorphic to $\operatorname{PSL}_{2}(q)$ as $\operatorname{PSL}_{2}(q) \cong \operatorname{PGL}_{2}(q) \cong \mathrm{SL}_{2}(q)$. If $f=2$, then $G \cong S_{5}$ is an SCCDgroup. If $f \geq 3$, then $E_{2^{f}}: C_{2^{f}-1}: C_{f}$ is a subgroup of $\operatorname{PSL}_{2}\left(2^{f}\right) . f$ (see [11]). By Lemma 2.1, one has $\operatorname{cd}\left(E_{2^{f}}: C_{2^{f}-1}: f\right)=\left\{1, f, 2^{f}-1\right\}$. By hypothesis, we get $f+1=2^{f}-1$, so $f=2 \nsupseteq 3$, a contradiction.

Now, q is odd, and by Theorem 3.5, these cases will be considered: $q \geq 5$ is an odd prime, or $q \in\left\{3^{p}, 5^{p}\right\}$ with p a prime.

Case 1: $q \geq 5$ is an odd prime.
Note from [7, pp. xvi] that $\left|\operatorname{Out}\left(\operatorname{PSL}_{2}(q)\right)\right|=2$ for q an odd prime. It follows that G is possibly isomorphic to $\mathrm{PGL}_{2}(q)$. Note that $\mathrm{PSL}_{2}(q) \in \max \mathrm{PGL}_{2}(q)$, and

$$
\operatorname{cd}\left(\operatorname{PSL}_{2}(q)\right)=\left\{1, \frac{q+(-1)^{\frac{q-1}{2}}}{2}, q-1, q, q+1\right\} .
$$

 considered above.

Case 2: $q=3^{p}$ or 5^{p} with p a prime.
Let $\mathbb{S}=\left\{\mathrm{PGL}_{2}(q), \mathrm{PSL}_{2}(q) \cdot 2, \mathrm{PSL}_{2}(q) \cdot p, \mathrm{PGL}_{2}(q) \cdot p, \mathrm{PSL}_{2}(q) \cdot(2 p)\right\}$.
In this case, we obtain that $\left|\operatorname{Out}\left(\mathrm{PSL}_{2}(q)\right)\right|=2 \cdot p$, so G is possibly isomorphic to $S \in \mathbb{S}$ by Corollary 6.2 of [35]. Observe that for each $S \in \mathbb{S}, S$ has a subgroup isomorphic to $\mathrm{PSL}_{2}(q)$. Note that

$$
\operatorname{cd}\left(\operatorname{PSL}_{2}(q)\right)=\left\{1, \frac{q+\varepsilon}{2}, q-1, q, q+1\right\} \text { with } \varepsilon=(-1)^{\frac{q-1}{2}}
$$

so $\mathrm{PSL}_{2}(q)$ is not a CCD-group, as $q>5$ is a power of an odd prime. It follows that for every $S \in \mathbb{S}$, S is a non-SCCD-group.

Now, we will give the proof of Theorem 1.3.
Proof of Theorem 1.3.

Proof. As G is non-solvable, we have a normal subgroup series $1 \leq H \leq K \leq G$ such that K / H is isomorphic to a direct product of isomorphic non-abelian simple groups and that $|G / K|$ divides the order of the outer-automorphism group $\operatorname{Out}(K / H)$; (see [36]).

Assume that

$$
K / H \cong \underbrace{S \times S \times S \cdots \times S}_{m \text { times }}
$$

where S is isomorphic to one of the groups as listed in Theorem 3.5. If $m \geq 2$, then by Theorem 4.21 of [15], $L \times S \times S \cdots \times S$ is a non-CCD-group where L is a non-abelian subgroup of S. Now, $m=1$, and so K / H is a simple group isomorphic to $S \in \mathbb{S}$, where \mathbb{S} is a set which consists of the groups $\operatorname{PSL}_{2}(q)$ where $q \geq 4$ is even or $q \geq 5$ is an odd prime or $q \in\left\{3^{p}, 5^{p}\right\}$ with p a prime.

Case 1: K / H is isomorphic to $\mathrm{PSL}_{2}(q)$ with $q=2^{f}, f \geq 2$.
We know that when q is even, $\operatorname{PGL}_{2}(q) \cong \operatorname{PSL}_{2}(q) \cong \operatorname{SL}_{2}(q)$. Thus, by Theorem 4.1, G / H is possibly isomorphic to $\mathrm{PSL}_{2}(q) \cdot f$. However, $E_{q}: C_{q-1}: C_{f}$ is a subgroup of $\mathrm{PSL}_{2}(q) \cdot f$, so $q=4$, and G / H is isomorphic to A_{5} or S_{5}, as the proof of Theorem 4.1. We see from Chap 2, Theorem 6.10 of [12] that $G^{\prime} / H \cong A_{5}$. We know that the order of the Schur multiplier of A_{5} is 2 , and $\left|\operatorname{Out}\left(A_{5}\right)\right|=2$.

If $\left[G^{\prime}, H\right]=1$, then $G \cong H \times A_{5}$ or $G \cong H \times S_{5}$. If H is non-abelian, then we can assume that $\operatorname{cd}(H)=\{1, m\}$. Now, by [7], $H \times A_{4}$ and $H \times S_{4}$ are subgroups of $H \times A_{5}$ and $H \times S_{5}$ respectively, so $\operatorname{cd}\left(H \times A_{4}\right)=\{1, m, 3,3 m\}$ and $\operatorname{cd}\left(H \times S_{4}\right)=\{1,2,3, m, 2 m, 3 m\}$. We see that $H \times A_{4}$ and $S_{4} \times H$ are CCD-subgroups, so $3+1=3 m$ or $m+1=3 m$, but the two equations have no solutions in N . So, H is abelian.

If $\left|\left[G^{\prime}, H\right]\right| \neq 1$, then $G \cong \mathrm{SL}_{2}(5) * H$, and $H \geq C_{2}$. We similarly get that H / C_{2} is abelian as the case $\left[G^{\prime}, H\right]=1$.

Case 2: K / H is isomorphic to $\operatorname{PSL}_{2}(q)$ where $q \geq 5$ is an odd prime or $q \in\left\{3^{p}, 5^{p}\right\}$ with p a prime.
Where N 1 maximal under $\langle\delta\rangle$ with $|\delta|=(q-1,2)$; N2 maximal under subgroups not contained in $\langle\varphi\rangle$ with $|\varphi|=e, q=p^{e}, p$ a prime.

From Case 1, we see that $q \geq 7$. By Theorem 4.1, G / H is isomorphic to $\operatorname{PSL}_{2}(q)$ where $q \geq 7$ is an odd prime or $q \in\left\{3^{p}, 5^{p}\right\}$ with p a prime. Now, by [12, Chap 2, Theorem 6.10], $G^{\prime} / H \cong \mathrm{PSL}_{2}(q)$.

If $\left[G^{\prime}, H\right]=1$, then $G \cong H \times \operatorname{PSL}_{2}(q)$. We can show similarly that H is abelian in this case. If $H \neq 1$, then $\operatorname{PSL}_{2}(q)$ is a proper subgroup of G, and so $\operatorname{PSL}_{2}(q)$ is a CCD-group. We see that $\operatorname{cd}\left(\operatorname{PSL}_{2}(q)\right)=\left\{1, \frac{q+(-1)^{(q-1) / 2}}{2}, q-1, q, q+1\right\}$, so $q-1=\frac{q+(-1)^{(q-1) / 2}}{2}+1$. Now, $q=5$, a contradiction. So, $G \cong \operatorname{PSL}_{2}(q)$, as desired.

If $\left[G^{\prime}, H\right] \neq 1$, then $H \geq C_{2}\left(=Z\left(\operatorname{SL}_{2}(q)\right)\right)$, and G is isomorphic to $\mathrm{SL}_{2}(q) * H$. If $H>C_{2}$, then $\mathrm{SL}_{2}(q)$ is a proper subgroup of G, so it is a CCD-subgroup. We see that

$$
\operatorname{cd}\left(\mathrm{SL}_{2}(q)\right)=\left\{1, \frac{q-1}{2}, \frac{q+1}{2}, q-1, q, q+1\right\}
$$

so $q=5$, a contradiction. Thus, $H=C_{2}$, and $\mathrm{SL}_{2}(q) C_{2} \cong \mathrm{SL}_{2}(q)$. Furthermore, if q is prime, then by Table $4, \mathrm{SL}_{2}(q)$ possibly has subgroups $E_{q}: C_{q-1}, D_{2(q \pm 1)}, 2 . S_{4}, 2 . A_{4}$ and $2 . A_{5}$, which are CCDgroups. If $q \in\left\{3^{p}, 5^{p}\right\}$ with p a prime, then Table 4 shows that $\mathrm{SL}_{2}(q)$ possibly subgroups $E_{q}: C_{q-1}$, $D_{2(q \pm 1)}, \mathrm{SL}_{2}\left(q_{0}\right), \mathrm{PSL}_{2}\left(q_{0}\right)$ and $2 . A_{5}$, which are CCD-groups, too. Thus, G is isomorphic to $\mathrm{SL}_{2}(q)$, as wanted.

Table 4. $\mathrm{SL}_{2}(q), q \geq 4([3, \mathrm{pp} .377])$.

$\operatorname{max~}_{2}(q)$	Condition
$E_{q}: C_{q-1}$	$q \neq 5,7,9,11 ; q$ odd
$Q_{2(q-1)}$	N 1 if $q=7,11 ; \mathrm{N} 2$ if $q=9$
$D_{2(q-1)}$	q even
$Q_{2(q+1)}$	$q \neq 7,9 ; q$ odd
$D_{2(q+1)}$	N 1 if $q=7 ; \mathrm{N} 2$ if $q=9$
$\mathrm{SL}_{2}\left(q_{0}\right) .2$	q even
$\mathrm{SL}_{2}\left(q_{0}\right)$	$q=q_{0}^{2}, q$ odd
$\mathrm{PSL}_{2}\left(q_{0}\right)$	$q=q_{0}^{r}, q$ odd, r odd prime
$2 . S_{4}$	$q=q_{0}^{r}, q$ even, $q_{0} \neq 2, r \operatorname{lime}$
$2 . A_{4}$	$q=p \equiv \pm 1(\bmod 8)$
	$q=p \equiv \pm 3,5, \pm 13(\bmod 40)$
$2 . A_{5}$	N 1 if $q=p \equiv \pm 11, \pm 19(\bmod 40)$
	$q=p \equiv \pm 1(\bmod 10)$
	$q=p^{2}, p \equiv \pm 3(\bmod 10)$

5. Applications

In this section, we will prove that an SCC-group is solvable (see Theorem 5.1) and then determine the structure of an SCC-group.

Theorem 5.1. Let G be a finite SCC-group. Then, G is solvable.
Proof. Assume that the result is not true, and then G is a non-solvable group. It is easy to get that a CC-group must be a CCD-group, so by hypothesis, for each $H \in \sum G, H$ is a CCD-group. Thus, we have that G is an SCCD-group. Now, Theorem 1.3 shows that G has one of the following structure:
(1) $\mathrm{PSL}_{2}(q)$ where $q \geq 4$ is even or $q \geq 5$ is an odd prime or $q \in\left\{3^{p}, 5^{p}\right\}$ with p a prime.
(2) $S \times H$ where $S \in\left\{A_{5}, S_{5}\right\}$ and H is abelian.
(3) $\mathrm{SL}_{2}(q)$ where $q \geq 7$ is an odd prime or $q \in\left\{3^{p}, 5^{p}\right\}$ with p a prime.
(4) $\mathrm{SL}_{2}(5) * H$ with H / C_{2} abelian.

So, four cases are dealt with in what follows.
Case 1: $\operatorname{PSL}_{2}(q)$ where $q \geq 4$ is even or $q \geq 5$ is an odd prime or $q \in\left\{3^{p}, 5^{p}\right\}$ with p a prime.
By Table 2, $E_{q}: C_{(q-1) / k} \in \max \operatorname{PSL}_{2}(q)$, so $\operatorname{cd}\left(E_{q}: C_{(q-1) / k}\right)=\{1,(q-1) / k\}=\{1,2\}$. It follows that $q=5$. If $q=5$, then by [7, pp. 2], $A_{4} \in \max A_{5}$. We know that $\operatorname{cd}\left(A_{4}\right)=\{1,3\}$, a contradiction.

Case 2: $S \times H$ where $S \in\left\{A_{5}, S_{5}\right\}$ and H is abelian.
Obviously, A_{4} is a subgroup of S. The transitivity of subgroups shows that A_{4} is a subgroup of G, so $\operatorname{cd}\left(A_{4}\right)=\{1,3\}$ gives a contradiction.

Case 3: $\mathrm{SL}_{2}(q)$ where $q \geq 7$ is an odd prime or $q \in\left\{3^{p}, 5^{p}\right\}$ with p a prime.
Now, Table 4 means that $E_{q}: C_{q-1} \in \max \mathrm{SL}_{2}(q)$, and hypothesis shows that $\operatorname{cd}\left(E_{q}: C_{q-1}\right)=$ $\{1, q-1\}=\{1,2\}$, so $q=3 \ngtr 7$, a contradiction.

Case 4: $\mathrm{SL}_{2}(5) * H$ with H / C_{2} abelian.

We see that $\mathrm{SL}_{2}(5)$ has a subgroup of the form $E_{5}: C_{4}$, and $\operatorname{cd}\left(E_{5}: C_{4}\right)=\{1,4\}$, a contradiction. It follows from the four cases that G is solvable, as desired.

Let $\rho(G)$ be the set of prime divisors of degrees of the irreducible characters of a group G, that is,

$$
\rho(G)=\{p: p \mid d, d \in \operatorname{cd}(G)\} .
$$

Lemma 5.2. Let G be a non-abelian SCC-group. Then, $|\rho(G)| \leq 2$.
Proof. We know that for each non-abelian $A \in \sum G, A$ is a CC-group, so $2 \in \operatorname{cd}(A)$. It follows that $2 \in \rho(G)$. We know from Theorem 5.1 that G is solvable, so the character degree graph $\mathrm{T}(G)$ of G has at most two connected components; see [25]. Let $\rho(G)=\left\{2, p_{1}, p_{2}, \cdots, p_{s}\right\}$ with $p_{1}<p_{2}<$ $\cdots<p_{s}$. Let $s \geq 2$, and let H be a Hall $\left\{p_{1}, p_{2}, \cdots, p_{s}\right\}$-subgroup of G. Then H is a CC-group, so $\operatorname{cd}(H) \subseteq\left\{1, p_{1}, p_{2}, p_{1} p_{2}, \cdots\right\}$. We get a contradiction as all $p_{i} \mathrm{~s}$ are ≥ 3. So, H is abelian and nonnormal in G by Theorem 7.1 of [10]. As $s \geq 2$, Hall $\left\{2, p_{2}\right\}$-subgroup $H_{2, p_{2}}$ of G is a CC-group, so $\operatorname{cd}\left(H_{2, p_{2}}\right)=\left\{1,2, p_{2}, \cdots\right\}$. It follows that $p_{2}=3$, a contradiction, as $p_{2}>p_{1} \geq 3$. It follows that the Sylow p_{2}-subgroup $H_{p_{2}}$ of $H_{2, p_{2}}$ is normal and abelian in $H_{2, p_{2}}$. We also can get that the Sylow p_{i}-subgroup $H_{p_{i}}$ of the Hall $\left\{2, p_{i}\right\}$-subgroup $H_{2, p_{i}}$ of G is abelian and normal in $H_{2, p_{i}}$. It follows that the Hall $\left\{p_{2}, \cdots, p_{s}\right\}$-subgroups $H_{p_{2}, p_{3}, \cdots, p_{s}}$ of $H_{2, p_{2}, \cdots, p_{s}}$ are abelian and normal in $H_{2, p_{2}, \cdots, p_{s}}$. We see that $G=H_{p_{1}, p_{2}, \cdots, p_{s}} H_{2, p_{2}, \cdots, p_{s}}$ and $H_{p_{1}, p_{2}, \cdots, p_{s}} \cap H_{2, p_{2}, \cdots, p_{s}}=H_{p_{2}, \cdots, p_{s}}$, so $H_{p_{2}, \cdots, p_{s}}$ is abelian and normal in G, a contradiction to Theorem 7.1 of [10]. It follows that $s=1$, the desired result.

Lemma 5.3. Let G be a nilpotent non-abelian SCC-group. Then, G is isomorphic to a metabelian p-group or a direct product of a 2-group P and 2^{\prime}-group H where $\operatorname{cd}(P)=\{1,2\}$ and $\operatorname{cd}(H)=\{1\}$.

Proof. Let P_{i} be Sylow p_{i}-subgroups of G with primes p_{i}, and $p_{1}<p_{2}<\cdots<p_{s}$. As G is nilpotent, write $G=P_{1} \times P_{2} \times \cdots \times P_{s}$. By Lemma 5.2, $\rho(G)=\{p\}$, or $\rho(G)=\{p, q\}$ with different primes p, q.

- $\rho(G)=\{p\}$.

If $s=1$ and $p=2$, then G is a 2-group. We know that for each $H \in \sum(G), H$ is a CC-group, so $\operatorname{cd}(H)=\{1\}$ or $\operatorname{cd}(H)=\{1,2\}$. Thus, G is a 2-group whose proper subgroups all have degrees 1 or 2 . If $s \geq 2$ and $p=2$, then G is a direct product of a non-abelian 2-subgroup P and a Hall 2^{\prime}-subgroup H. As $H \neq 1$, we have $\operatorname{cd}(P)=\{1,2\}$. If H is non-abelian, then $Z(P) \times H$ is a non-abelian CC-group, so $\operatorname{cd}(Z(P) \times H)=\left\{1, p^{\prime}, \cdots\right\}$. Hypothesis shows that $p^{\prime}=2$, a contradiction. Hence, H is abelian. We now draw a conclusion that $G=P \times H$ with $\operatorname{cd}(P)=\{1,2\}$, and H abelian.

Now, we consider $p>2$. If $s=1$, then assumption gives that G is a metabelian p-group. If $s \geq 2$, then $G=P \times H$ where P is a p-subgroup and H is a p^{\prime}-subgroup. If P is non-abelian, then P is a CC-subgroup of G, and so $\operatorname{cd}(P)=\{1, p, \cdots\}$. Now, hypothesis gives that $p=2 \nexists 3$, a contradiction. Hence, P is abelian, and so is G. Otherwise, there is a subgroup which is not a CC-subgroup.

- $\rho(G)=\{p, q\}$.

In this case, $G=P \times H$ with $\rho(P)=\{p\}$ and $\rho(H)=\{q\}$. By the above arguments, we can assume that $p=2$ and $\operatorname{cd}(P)=\{1,2\}$. Thus, $C_{2} \times H$ is a CC-subgroup of G, and $\operatorname{cd}\left(C_{2} \times H\right)=\{1, q, \cdots\}$. Hence, $q=2$, too, a contradiction. So, this case can not occur.

Lemma 5.4. Let $G=F$: H be a Frobenius group with kernel F and complement H, respectively. If G is an SCC-group, then one of the following holds:
(i) $\operatorname{cd}(F)=\{1,2\}$, and H is a prime order such that for each non-identity $W \in \sum F,|W| \not \equiv 1$ $(\bmod |H|)$.
(ii) F is abelian, and H is of order a prime or 4 . Furthermore, if H is of order 4 , then F is isomorphic to $C_{p} \times C_{q}$ with $q \equiv p \equiv-1(\bmod 4)$ or C_{p} with $p \equiv 1(\bmod 4)$. If H is of prime order >2, then $|H||\mid(|F|-1)$.

Proof. We divide the proofs into two cases: F is non-abelian, and F is abelian.
Case 1: F is non-abelian
Then, F is a CC-subgroup of G, and so $2 \in \operatorname{cd}(F)$. We know that F is nilpotent, so by Lemma 5.3, $\operatorname{cd}(F)=\{1,2\}$. Thus, F is nilpotent with $\operatorname{cd}(F)=\{1,2\}$.

If H is non-abelian, then Lemma 2.1 gives that H is of odd order, and so by Lemma $5.3 H$ is metabelian. Let H_{p} with $\left|H_{p}\right|=p$ be a proper subgroup of H with certain prime p. Then, $F: H_{p}$ is also a Frobenius subgroup of G. By assumption, $F: H_{p}$ is a CC-group, and so by Lemma 2.1, $\operatorname{cd}\left(F: H_{p}\right)=\{1,2, p, 2 p\}$, a contradiction. Thus, H is abelian. We claim that H is of prime order. In fact, if $|H|=p q$ with primes p, q, then $F: H_{q}$ and $F: H_{p}$ are Frobenius subgroups of G, so they are CC-groups. By Lemma 2.1, we have that $\operatorname{cd}\left(F: H_{p}\right)=\{1,2, p, 2 p\}$, and $\operatorname{cd}\left(F: H_{q}\right)=\{1,2, q, 2 q\}$, a contradiction. This means that H is of prime order, say, q.

By Lemma 2.1, $|F| \equiv 1(\bmod q)$. Let $F_{p_{i}}, i=1,2, \cdots, n$, be the Sylow p_{i}-subgroup of F. If $\left|F_{1} F_{2} \cdots F_{s}\right| \equiv 1(\bmod q)$, then $\left|F_{s+1} \cdots F_{n}\right| \equiv 1(\bmod q)$, so $W:=F_{s+1} \cdots F_{n}: H$ is a Frobenius group. Now, $\operatorname{cd}(W)=\{1, q\}$, a contradiction, as W is a CC-subgroup of G. Thus, $|K| \not \equiv 1(\bmod q)$ for all $K \in \sum F$, but $|F| \equiv 1(\bmod q)$.

Case 2: F is abelian.
We claim that

H is abelian and of order prime p or order 2 or 4 .

In fact, if H is non-abelian, and H has two subgroups C_{p} and C_{q} with primes p, q, then $\operatorname{cd}\left(F: C_{p}\right)=$ $\{1, p\}$, and $\operatorname{cd}\left(F: C_{q}\right)=\{1, q\}$. By hypothesis, $F: C_{p}$ and $F: C_{q}$ are CC-groups, so we have that $p=q=2$ is possible. It follows that either $p=2$ and H is a 2-group of order ≤ 4 or H is of odd prime order.

If H is of order 2, then F is of odd order, and for all $W \in \sum G, W$ is a CC-group, since $\operatorname{cd}(W)=\{1\}$ or $\{1,2\}$.

If H is of order 4, then F is of odd order, too.

- If F is a p-group, and then say $|F|=p^{s}$. Let $s \geq 3$, then G has a subgroup $C_{p^{2}}: C_{4}$ which is a CC-group. We know that $\operatorname{cd}\left(C_{p^{2}}: C_{4}\right)=\{1,4\}$, a contradiction. Thus, $s \leq 2$: namely, $|F|=p$ or p^{2}. If $|F|=p$, then $p \equiv 1(\bmod 4)$; if $|F|=p^{2}$, then $p^{2} \equiv 1(\bmod 4)$. If $|F|=p^{2}$ and $p \equiv 1$ $(\bmod 4)$, then G has a Frobenius subgroup $C_{p}: C_{4}$ which is not a CC-group. Thus, $|F|=p^{2}$ with $p \equiv-1(\bmod 4)$, or $|F|=p$ with $p \equiv 1(\bmod 4)$.
- If F is a non- p-group, then F has two subgroups C_{p} and C_{q}. Note that p, q are odd, so $p \equiv \pm 1$ $(\bmod 4)$ and $q \equiv \pm 1(\bmod 4)$. If $p \equiv q \equiv 1(\bmod 4)$, then G has a subgroup of the form $C_{p}: C_{4}$ which is not a CC-group, a contradiction. If $q \equiv-1(\bmod 4)$ and $p \equiv 1(\bmod 4)$, or $q \equiv 1(\bmod 4)$ and $p \equiv-1(\bmod 4)$, then $q^{2} p \equiv 1(\bmod 4)$. However, $C_{p}: C_{4}$ is a Frobenius group, so it is a CC-group, a contradiction (note in this case that $p q \equiv 1(\bmod 2)$, but $p q \equiv-1$ $(\bmod 4))$. Now, we draw a conclusion that $p \equiv q \equiv-1(\bmod 4)$. If $|F|=(p q)^{2 s} q^{t}$ or $(p q)^{2 s} p^{t}$ with $s \geq 1, t \geq 0$, then a CC-subgroup $C_{p q}: C_{4}$ is a Frobenius group, a contradiction. Thus, $|F|=p q$, and F is isomorphic to $C_{p} \times C_{q}$, as F is nilpotent.

Let H be of prime order $r>2$. Note that the nilpotence of F gives that

$$
F=F_{p_{1}} \times F_{p_{2}} \times \cdots \times F_{p_{s}} .
$$

As with the above arguments, two cases are considered: $s=1$ and $s \geq 2$.

- $s=1$. Then, F is a p-group for certain prime p, so $r \equiv 1(\bmod |F|)$. If F has a subgroup K such that $K: H$ is a Frobenius group, then $K: H$ is not a CC-group. Thus, $r \|(|F|-1)$.
- $s \geq 2$. Then, similarly, we can show that $r \|(|F|-1)$.

Now, the lemma is complete.
Lemma 5.5. Let G be a non-abelian SCC-group. Assume that G is a direct product of at least two CC-groups. Then, G is isomorphic to $H_{1} \times H_{2}$ where at least one of H_{1} and H_{2} is metabelian with $\operatorname{cd}\left(H_{i}\right) \subseteq\{1,2\}$.

Proof. Let $G=H_{1} \times H_{2} \times \cdots H_{s}$ where all H_{i} are CC-groups. If H_{i} are all abelian, then G is abelian, so we assume that for some i, H_{i} is non-abelian, say, H_{1}. If the other H_{i} for $i=2, \cdots s$ are abelian, then G is an SCC-group when $\operatorname{cd}\left(H_{1}\right)=\{1,2\}$. If $\operatorname{cd}\left(H_{1}\right)=\{1, p\}$ for some prime $p>2$, then G is not an SCC-group when $H_{i} \neq 1, i=2,3, \cdots, s$. It follows that $G=H_{1}$, a contradiction. Thus, we assume that $G=H_{1} \times H_{2} \times \cdots \times H_{s}$ with $\operatorname{cd}\left(H_{1}\right)=\operatorname{cd}\left(H_{2}\right)=\{1,2\}$. If $s \geq 3$, then $H_{1} \times H_{2}$ is a CC-subgroup of G, but by Theorem 4.21 of [15], $\operatorname{cd}\left(H_{1} \times H_{2}\right)=\{1,2,4\}$, a contradiction. Thus, $s=2$, and $G=H_{1} \times H_{2}$, where $\operatorname{cd}\left(H_{1}\right)=\operatorname{cd}\left(H_{2}\right)=\{1,2\}$, and H_{1} and H_{2} are metabelian. We similarly can get that $G=H_{1} \times H_{2} \cdots H_{k} \times H_{k+1} \times \cdots H_{s}$ is not an SCC-group if $\operatorname{cd}\left(H_{i}\right)=\{1,2\}, i=1,2, \cdots, k$, and $k \geq 3$.

Proof of Theorem 1.4.

Proof. If G is an SCC-group, then G is solvable by Theorem 5.1. If G is a nilpotent group or a Frobenius group or a direct product of two CC-groups, then we can get (ii), (iii) and (iv) by Lemmas 5.3, 5.4 and 5.5. Thus, in what follows, we assume that G is neither a nilpotent group, nor a Frobenius group nor a direct product of two CC-groups. If G is abelian or $\operatorname{cd}(G)=\{1,2\}$, then for all $H \in \sum G, H$ is always a CC-group, so we get (i). Thus, we assume that $\operatorname{cd}(G) \neq\{1\}$ and $\operatorname{cd}(G) \neq\{1,2\}$. Since G is a solvable SCC-group, we get that G has a factor; say that N / M is such a factor. Note that $N \in \sum G$, so N is a CC-group. Now,

$$
\operatorname{cd}(N)=\{1\},\{1,2\},\{1,2,3,\} \text { or }\{1,2,3,4\} ;
$$

see [13] or [14, Sec. 32]. By pp. 168 of [13],

$$
N / M \text { is isomorphic to } S_{3} \text { or } A_{4} \text { or } 3^{2}: 2^{2} .
$$

It is easy to see that M is abelian. (In fact, let $\theta \in \operatorname{Irr}(M) \backslash \operatorname{Lin}(M)$. Then, $I:=\mathrm{I}_{N}(\theta)$, the inertia subgroup of θ in N, is equal to N or $K M$ where $K \in \sum N / M$. If $I=K M$, then $\theta^{N}(1)=|N: I| \theta(1)$, so $\theta(1)$, $\theta^{N}(1) \in \operatorname{cd}(N)$. Note that N is a CC-group, so $\operatorname{cd}(N)=\left\{1, \theta(1), 2, \theta^{N}(1)\right\}$ or $\operatorname{cd}(N)=\left\{1, \theta(1), 3, \theta^{N}(1)\right\}$ or $\operatorname{cd}(N)=\left\{1, \theta(1), 4, \theta^{N}(1)\right\}$, contradicting Theorem of [13].)

Let $\bar{G}=G / M$ and let $\bar{N}=N / M$. Then,

$$
\bar{N} \cong \bar{N} C_{\bar{G}}(\bar{N}) / C_{\bar{G}}(\bar{N}) \leq \bar{G} / C_{\bar{G}}(\bar{N})=N_{\bar{G}}(\bar{N}) / C_{\bar{G}}(\bar{N}) \leq \operatorname{Aut}(\bar{N}) .
$$

Set $L=\left\{x M: x M \in C_{\bar{G}}(\bar{N}\}\right.$, and then $G / L \cong \bar{G} / C_{\bar{G}}(\bar{N})$. Notice that L is also abelian as the proof as M is abelian. So, we have that $\operatorname{Aut}(\bar{N})=S_{3}, S_{4}$ and $3^{2}: D_{8}$ when \bar{N} is isomorphic to S_{3}, A_{4} and $3^{2}: 2^{2}$, respectively; see [33]. Observe that the Schur multipliers of \bar{N} are trivial, so G is possibly isomorphic to $S_{3} \times L, A_{4} \times L, S_{4} \times L,\left(3^{2}: C_{4}\right) \times L$ or $\left(3^{2}: D_{8}\right) \times L$. If G is isomorphic to $S_{3} \times L$, then it is contained in (i); if G is isomorphic to $S_{4} \times L$ or $3^{2}: D_{8}$, then $A_{4} \in \sum S_{4}$ and $3^{3}: 2^{2} \in \sum\left(3^{2}: D_{8}\right) \times L$ are CC-groups, a contradiction. Thus, A_{4} and $3^{2}: 2^{2}$ are not proper subgroups of G, and so $L=1$. Now, G is isomorphic to A_{4} or $3^{2}: C_{4}$, as desired.

6. Conclusions

From Theorem 1.3, we know that a group whose non-linear character degrees are consecutive is possibly non-solvable, but a group whose irreducible character degrees is consecutive are solvable. Chen in [5] gave the information of groups whose irreducible character degrees are arithmetic numbers. In comparison with Theorem 5.1, is the group solvable if proper subgroups all have this property?

Acknowledgments

The author was supported by the NSF of China (Grant No: 11871360), and also the first author was supported by the Opening Project of Sichuan Province University Key Laboratory of Bridge Nondestruction Detecting and Engineering Computing (Grant Nos: 2022QYJ04) and by the Project of High-Level Talent of Sichuan University of Arts and Science (Grant No: 2021RC001Z).

Conflict of interest

The authors declare that he has no conflict of interest.

References

1. H. R. Brahana, On the metabelian groups which contain a given group H as a maximal invariant abelian subgroup, Amer. J. Math., 56 (1934), 490-510. https://doi.org/10.2307/2370950
2. R. Brandl, Groups with few non-nilpotent subgroups, J. Algebra Appl., 16 (2017), 1750188. https://doi.org/10.1142/S0219498817501882
3. J. N. Bray, D. F. Holt, C. M. Roney-Dougal, The maximal subgroups of the low-dimensional finite classical groups, In: London mathematical society lecture note series, Cambridge: Cambridge University Press, 2013. https://doi.org/10.1017/CBO9781139192576
4. T. Breuer, The GAP character table library, 2012. http://www.math.rwthaachen.de/T̃homas.Breuer/ctbllib .
5. S. A. Chen, Finite solvable groups with irreducible character degrees of arithmetic number, Acta Math. Sinica Chin. Ser., 56 (2013), 31-40.
6. Z. M. Chen, Inner- and outer-supersolvable groups, and sufficient conditions for a group to be supersolvable, Acta Math. Sinica Chin. Ser., 27 (1984), 694-703.
7. J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of finite groups, Eynsham: Oxford University Press, 1985.
8. L. E. Dickson, Linear groups: with an exposition of the Galois field theory, New York: Dover Publications, 1958.
9. L. Dornhoff, Group representation theory. Part A: Ordinary representation theory, New York: Marcel Dekker, 1971.
10. M. Geck, G. Malle, The character theory of finite groups of Lie type, In: Cambridge studies in advanced mathematics, Cambridge: Cambridge University Press, 2020.
11. M. Giudici, Maximal subgroups of almost simple groups with socle $\operatorname{PSL}(2, q)$, arXiv: Group Theory, 2007, 0703685. https://doi.org/10.48550/arXiv.math/0703685
12. B. Huppert, Die grundlehren der mathematischen wissenschaften, band 134, In: Endliche gruppen. I, Berlin: Springer, 1967.
13. B. Huppert, A characterization of $\operatorname{GL}(2,3)$ and $\operatorname{SL}(2,5)$ by the degrees of their representations, Forum Math., 1 (1989), 167-183. https://doi.org/10.1515/form.1989.1.167
14. B. Huppert, Character theory of finite groups, In: De gruyter expositions in mathematics, Berlin: Walter de Gruyter \& Co., 1998. https://doi.org/10.1515/9783110809237
15. I. M. Isaacs, Character theory of finite groups, New York: Dover Publications, 1994.
16. H. E. Jordan, Group-characters of various types of linear groups, American J. Math., 29 (1907), 387-405. https://doi.org/10.2307/2370015
17. P. B. Kleidman, The subgroup structure of some finite simple groups, Ph.D Thesis, University of Cambridge, 1987.
18. Q. Li, X. Guo, On generalization of minimal non-nilpotent groups, Lobachevskii J. Math., 31 (2010), 239-243. https://doi.org/10.1134/S1995080210030078
19. M. W. Liebeck, J. Saxl, On the orders of maximal subgroups of the finite exceptional groups of Lie type, Proc. London Math. Soc., 55 (1987), 299-330.
20. S. Liu, On groups whose irreducible character degrees of all proper subgroups are all prime powers, J. Math., 2021 (2021), 6345386. https://doi.org/10.1155/2021/6345386
21. S. Liu, D. Lei, X. Li, On groups with consecutive three smallest character degrees, ScienceAsia, 45 (2019), 474-481.
22. S. Liu, X. Tang, Nonsolvable groups whose degrees of all proper subgroups are the direct products of at most two prime numbers, J. Math., 2022 (2022), 1455299. https://doi.org/10.1155/2022/1455299
23. Rwth-Aachen University, Character degrees and their multiplicities for some groups of lie type of rank <9, 2007. Available from: http://www.math.rwthaachen.de/ Frank.Luebeck/chev/DegMult/index.html?LANG=en .
24. G. Malle, The maximal subgroups of ${ }^{2} F_{4}\left(q^{2}\right)$, J. Algebra, 139 (1991), 52-69. https://doi.org/10.1016/0021-8693(91)90283-E
25. O. Manz, W. Willems, T. R. Wolf, The diameter of the character degree graph, J. Reine Angew. Math., 402 (1989), 181-198.
26. G. Qian, Finite groups with consecutive nonlinear character degrees, J. Algebra, 285 (2005), 372382. https://doi.org/10.1016/j.jalgebra.2004.11.021
27. J. W. Randolph, Finite groups with solvable maximal subgroups, Proc. Amer. Math. Soc., 23 (1969), 490-492. https://doi.org/10.2307/2036570
28. J. Sangroniz, Character degrees of the Sylow p-subgroups of classical groups, Cambridge: Cambridge University Press, 2003. https://doi.org/10.1017/CBO9780511542787.016
29. W. A. Simpson, J. S. Frame, The character tables for $\operatorname{SL}(3, q), \operatorname{SU}\left(3, q^{2}\right), \operatorname{PSL}(3, q), \operatorname{PSU}\left(3, q^{2}\right)$, Canad. J. Math., 25 (1973), 486-494. https://doi.org/10.4153/CJM-1973-049-7
30. R. Steinberg, The representations of $\operatorname{GL}(3, q)$, $\operatorname{GL}(4, q), \operatorname{PGL}(3, q)$, and $\operatorname{PGL}(4, q)$, Canad. J. Math., 3 (1951), 225-235. https://doi.org/10.4153/cjm-1951-027-x
31. J. G. Thompson, Nonsolvable finite groups all of whose local subgroups are solvable, Bull. Amer. Math. Soc., 74 (1968), 383-437. https://doi.org/10.1090/S0002-9904-1968-11953-6
32. P. H. Tiep, A. E. Zalesskii, Minimal characters of the finite classical groups, Comm. Algebra, 24 (1996), 2093-2167. https://doi.org/10.1080/00927879608825690
33. L. Wang, On the automorphism groups of Frobenius groups, Comm. Algebra, 48 (2020), 53305342. https://doi.org/10.1080/00927872.2020.1788045
34. H. N. Ward, On Ree's series of simple groups, Trans. Amer. Math. Soc., 121 (1966), 62-89. https://doi.org/10.2307/1994333
35. D. L. White, Character degrees of extensions of $\mathrm{PSL}_{2}(q)$ and $\mathrm{SL}_{2}(q)$, J. Group Theory, 16 (2013), 1-33. https://doi.org/10.1515/jgt-2012-0026
36. H. Xu, G. Chen, Y. Yan, A new characterization of simple K_{3}-groups by their orders and large degrees of their irreducible characters, Comm. Algebra, 42 (2014), 5374-5380. https://doi.org/10.1080/00927872.2013.842242
© 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
