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1. Introduction

Throughout this paper, all considered groups are finite. Denote the set of all complex irreducible
characters of a group G by Irr(G), denote the linear characters of G by Lin(G), and write cd(G) for the
set of all complex irreducible character degrees of G, i.e.,

cd(G) = {χ(1) : χ ∈ Irr(G)}.

We use usually the degrees of G instead of the more precise irreducible character degrees.
Huppert determined the structure of finite groups with consecutive character degrees; see Section 32

of [14]. In order to argue in short, we give a conception.

Definition 1.1. Let G be a finite group. If the degrees from cd(G)−{1} are consecutive, then we call G a
CCD-group (or a non-CCD-group otherwise). We also assume that an abelian group is a CCD-group.

Qian in [26] improved the result of Huppert [14] and considered CCD-groups.
Let di(G) or di without confusion be the smallest i-th degree in cd(G) − {1}. Tiep and Zalesskii

in [32] determined the first three smallest character degrees of classical groups. Recently, Liu, Lei and
Li in [21] considered non-solvable CCD-groups by using the result of [32].
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On the other hand, some authors considered the influence of subgroups with certain properties on
the structure of finite groups. In particular, the structures of finite groups are determined if the proper
subgroups are all abelian [1] or solvable [27, 31] or supersolvable [6] or nilpotent [18] or minimal
non-nilpotent [2].

Recently some scholars combined the representation theory of finite groups with subgroup
properties. In particular, the structures of finite groups are determined if all their subgroups have
prime power degrees or degrees divisible by two primes; see [20, 22].

In this paper, we consider the influence of proper (maximal) subgroups whose degrees are
consecutive on the structure of finite groups. Let A ∗ B be the central product of two groups A and B.
To argue in short, we begin with the following definition.

Definition 1.2. Let
∑

(G) be the set of all proper subgroups of a group G. If for each M ∈
∑

(G), M is
a CCD-group, then we call G an SCCD-group (or a non-SCCD-group otherwise). We always assume
that an abelian group is an SCCD-group.

Theorem 1.3. Let G be a non-solvable SCCD-group. Then, G is isomorphic to one of the following
groups:

(1) PSL2(q) where q ≥ 4 is even or q ≥ 5 is an odd prime or q ∈ {3p, 5p} with p a prime.
(2) S × H where S ∈ {A5, S 5} and H is abelian.
(3) SL2(q) where q ≥ 7 is an odd prime or q ∈ {3p, 5p} with p a prime.
(4) SL2(5) ∗ H with H/C2 abelian.

We call a group G a CC-group if cd(G) = {1, 2, 3, · · · , k}. Huppert investigated the structure of
finite CC-groups G; see Sec. 32 of [14]. Let m be a positive integer. Then, what can we see if for each
H ∈
∑

G, cd(H) = {1, 2, 3, · · · ,m}? We also call a group G an SCC-group if for each H ∈
∑

G, H is a
CC-group. As an application of Theorem 1.3, we have the following result.

Theorem 1.4. Let G be an SCC-group. Then, G is solvable. In particular, one of the following
statements holds:

(i) cd(G) ⊆ {1, 2}.
(ii) G is nilpotent, and G is isomorphic to a metabelian p-group or a direct product of a 2-group P

and 2′-group H where cd(P) = {1, 2} and cd(H) = {1}.
(iii) G is a Frobenius group with kernel F and complement H, respectively, such that
(iii.a) cd(F) = {1, 2} and H is of a prime order such that for each non-identity W ∈

∑
G, |W | . 1

(mod |H|).
(iii.b) H is of prime order or 4; F is abelian. Furthermore, if H is of order 4, then F is isomorphic

to Cp × Cq with q ≡ p ≡ −1 (mod 4) or Cp with p ≡ 1 (mod 4); if H is of prime order > 2, then
|H|∥(|F| − 1).

(iv) G is a direct product of two groups H1 and H2 where H1 and H2 are metabelian with cd(Hi) =
{1, 2}, i = 1, 2; or only one of H1 and H2 is metabelian, say, H with cd(H) = {1, 2}.

The rest of the paper is organized as follows. In Section 2, we assemble some basic results which
will be used throughout this paper. In Section 3, we determine the structure of the simple CCD-groups.
In Section 4, we classify the non-solvable SCCD-groups. In Section 5, we give an application of
Theorem 1.3 and also determine the structure of an SCC-group.
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Let A : B or A.B be an extension of a group A by a group B. Let GLn(q) be the general linear
group of dimension n over a finite field of order q. Let m, n be positive integers, denote by m∥(n − 1)
if m|(n − 1) but m ∤ ( n

p − 1) for all nontrivial divisors p of n. The other notation is standard; please
see [7, 15], for instance.

2. Basic results

In this section, some needed results are shown. First, some information about Frobenius groups is
given.

Lemma 2.1 (Theorems 13.3 and 13.8 of [9]). Let G = K : H be a Frobenius group with kernel K and
complement H. Then,

(i) |H|
∣∣∣(|K| − 1).

(ii) Any subgroup of H of order p2 or pq is cyclic where p and q are primes.
(iii) If |H| is even, K is abelian.
(iv) In any case, K is nilpotent.
(v) Assume that K has h(K) conjugacy classes, H has h(H) conjugacy classes, and G has characters

with the following forms:
(a) h(H) irreducible characters χ1, · · · , χh(H) with K in their kernel. If µ1, · · · , µh(H) are the

irreducible characters of H, then these satisfy

χi(hk) = µi(h) for all h ∈ H, k ∈ K.

(b) Whenever τ , 1K is an irreducible character of K, then τG is an irreducible character of
G. This gives [h(K) − 1]/|H| irreducible characters of G with K not in their kernel. Such τG satisfies

τG|H = τ(1)ρH

where ρH is the regular character of H.

Related to Frobenius groups, we need some character degrees for special cases to determine the
group structure. From [19, Table 1] and [24, Theorem] and using the notation of [3], we get that 2B2(q)
with q = 22m+1 and 2G2(q) with q = 32m+1 have maximal subgroups of the form K : Cq−1, where K is a
Sylow 2 or 3-subgroup of 2B2(q) or 2G2(q), respectively. Now, we have the following result by using
the above Lemma.

Lemma 2.2. Let G ∈ {2B2(q) with q = 22m+1 ≥ 23, 2G2(q) with q = 32m+1 ≥ 33} and let K be a Sylow
π(q)-subgroup of G. Then, G has a maximal subgroup of the form K : Cq−1 that is a non-CCD-group.

Proof. The first claim follows from above arguments.
Now, we prove that K : Cq−1 is a non-CCD-group. Let H := Cq−1. Now, K : H is a Frobenius

group. So, we need to prove that K : H is not a CCD-group. Assume the contrary, and then K : H is a
CCD-group.

To get the desired result, we consider two cases in what follows.
Case 1: G =2 B2(q).
Let τ ∈ Irr(K) − Lin(K). Note that K is a Sylow 2-subgroup of 2B2(q) since |K| = |2B2(q)|2 = q2.

We see that Z(K) is of order q, so K/Z(K) of order q is abelian.
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For any 1 , d ∈ cd(K), we have that d | 2m. In fact, |K/Z(K)| = q, so for each d ∈ cd(K), one has
d
∣∣∣√q = 2

2m+1
2 , i.e., d

∣∣∣2m.
On the other hand, G/K � H is cyclic, so (q − 1) ∈ cd(G), as the cyclic group H acts faithfully on

the nilpotent group K.
Lemma 2.1(v)(b) implies that cd(K : H) = {1, d, q − 1, d(q − 1)} with d , 1. Hypothesis and d

∣∣∣2m

show that d + 2 = d(q − 1), i.e., d = 2
q−2 , so 1 ≤ q − 2 ≤ 2 implies q = 4 ≧̸ 8, a contradiction to the

hypothesis.
From now on, we have proved that K : H is a non-CCD-group when G =2 B2(q).
Case 2: G =2 G2(q).
Similarly, we can get that K is a Sylow 3-subgroup of 2G2(q)) since |K| = |2G2(q)|3 = q3. By a

Theorem of [34], one has that the center Z(K) of K is of order q.
Let d ∈ cd(K) − Lin(K). Then, d

∣∣∣q, and in particular, d ≤ q. Note that (K : H)/K � H is a
cyclic group, so (q − 1) ∈ cd(G), as the cyclic group H acts faithfully on the nilpotent group K. Now,
Lemma 2.1(v)(b) implies that cd(K : H) = {1, q−1, d, d(q−1)}. Hypothesis forces that q(q−1)−1 = q
for d = q or d + 2 = d(q − 1) for d

∣∣∣q, so q = 3 ≧̸ 33, a contradiction. Therefore, K : H is a
non-CCD-group when G =2 G2(q).

Now, the lemma is proved. □

Let max G or max(G) be the set of all proper maximal subgroups with respect to their subgroup-
order divisibility. Then, max G ⊆

∑
G.

Lemma 2.3. (1) G is an SCCD-group if and only if every proper subgroup H of G is a CCD-group.
(2) Let N be a non-trivial normal subgroup of an SCCD-group G. Then, G/N is a CCD-group.

Let Φ(G) be the Frattini subgroup of a group G.

Proof. (1) By Definition of an SCCD-group, we can get this.
(2) Since N is non-trivial and normal in G, we assume that N is minimal. Assume that G/N is a

non-CCD-group. If N ≰ Φ(G), then choose a maximal subgroup M ∈ max G with N ≰ M, so G = MN.
Note that M ∩ N = N or M ∩ N = 1. If the former, then N ≤ M, a contradiction to the choice of M.
Thus, G/N is isomorphic to M, which is a CCD-group, a contradiction also. If N ≤ Φ(G), then for
M ∈ max G, N ≤ M. Since G/N is a non-CCD-group, we have that G/N is a non-SCCD-group, and so
in G/N there is a non-CCD-subgroup, say, M/N. It follows that M is a non-CCD-group, a contradiction
to M ∈ max G (note that for each M ∈ max G, M is a CCD-group). □

In general, the product of two CCD-groups is not a an CCD-group.

Example 2.4. Let A1 be any maximal proper subgroup of a non-abelian p-group A of order p4 with
cd(A1) = {1, p}, and let B be a q-group with cd(B) = {1, q}, where q, p are different primes. Let
G = A × B. Then, G is not an SCCD-group. We will show this by contradiction. Assume that G is an
SCCD-group. Then, A1×B is a maximal subgroup of G, and cd(A1×B) = {1, p, q, pq} by Theorem 4.21
of [15]. Say p < q. Then, p+1 = q by assumption, so p = 2, and q = 3. Thus, cd(A1 × B) = {1, 2, 3, 6},
and A1 × B is not a CCD-group, a contradiction.

There is a CCD-group that is not an SCCD-group.

Example 2.5. Let G = PGL2(q) with q > 5 odd. Then, cd(G) = {1, q − 1, q, q + 1} by [30], so G is a
CCD-group. Obviously, PSL2(q) is a normal subgroup of PGL2(q) with index gcd(2, q − 1), and
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cd(PSL2(q)) = {1, q+(−1)(q−1)/2

2 , q − 1, q, q + 1}.

If G is an SCCD-group, then PSL2(q) is a CCD-group. On the other hand, hypothesis forces q+(−1)(q−1)/2

2 +

1 = q − 1 or 1 + 1 = q+(−1)(q−1)/2

2 , so the two equations have solutions q = 3, 5, a contradiction to the
hypothesis. It follows that PSL2(q) is not a CCD-group, so G is not an SCCD-group.

An extension of an SCCD-group by an SCCD-group is not an SCCD-group usually.

Example 2.6. Let S 5 be the symmetric group of degree 5. Then, S 5 is an SCCD-group (we can check
it by [7]). Also, 24, an elementary group of order 24, is an SCCD-group. Now, let G = 24 : S 5. It
is easy to see that 24 : A5, say, H, is a proper subgroup of G. If G is an SCCD-group, then H is a
CCD-group by Lemma 2.3. On the other hand, by [4] cd(H) = {1, 3, 4, 5, 15}, which means that H is
not a CCD-group. It follows that G is not an SCCD-group.

Let PSL+n (q) = PSLn(q) and PSL−n (q) = PSUn(q). Let SL+n (q) = SLn(q) and SL−n (q) = SUn(q). In
order to prove our main result, we need some information about the structure of some special subgroup
of a non-abelian simple group due to Liu [20].

Lemma 2.7 (Lemma 2 of [20]). Let q be a prime power, and let ϵ = ±.
(1) Let n ≥ 8. Then, An has a subgroup An−1.
(2) Let n ≥ 4. Then, PSLϵn(q) has a subgroup isomorphic to SL±n−1(q) or PSL±n−1(q), and SLϵn(q) has

a subgroup of the form SLϵn−1(q).
(3) Let n ≥ 2. Then, PSp2n(q) has a subgroup PSp2(n−1)(q).
(4) Let n ≥ 3, with q odd. Then, Ω2n+1(q) contains a subgroup Ω2n−1(q).
(5) Let n ≥ 4. Then, PΩϵ2n(q) has a subgroup PΩϵ2n−2(q) with q odd or PSp2n−2(q) with q even.

3. Simple SCCD-groups

By the classification theorem of finite simple groups, a non-abelian simple group is isomorphic to
an alternating group An, a Sporadic simple group or Tits group, an exceptional group of Lie type or a
classical group of Lie type. Now, we will determine the structure of the simple SCCD-groups by the
following Lemmas.

Lemma 3.1. Let G be an alternating An of degree n ≥ 5. Assume that G is an SCCD-group, and then
G is isomorphic to A5 or A6.

Proof. We assume that G is an SCCD-group, so we need to check whether its subgroups are CCD-
groups or not.

Let n = 5. Then, by [7, pp. 2], max A5 = {A4,D10, S 3}. Note that cd(A4) = {1, 3}, cd(D10) =
cd(S 3) = {1, 2}. It follows that all the subgroups of A5 are CCD-groups and A5 is an SCCD-group, so
G � A5.

Let n = 6, and then by [7, pp. 4], max A6 = {A5, 32 : 4, S 4}. As cd(A5) = {1, 3, 4, 5}, cd(32 : 4) =
{1, 4} and cd(S 4) = {1, 2, 3}, one has that the subgroups A5, 32 : 4, S 4 of A6 are CCD-groups, and so A6

is an SCCD-group. Thus, G � A6.
Let n = 7, and then by [7, pp. 10], A7 contains a subgroup A6, but by [7, pp. 4] cd(A6) =

{1, 5, 8, 9, 10}. Now, A6 is not a CCD-group. It follows that A7 is a non-SCCD-group.
If n ≥ 8, then we get that An has a subgroup An−1 by Lemma 2.7, so one has the subgroup series
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A7 < A8 < · · · An−1 < An.

It follows that An with n ≥ 8 is not an SCCD-group since A7 is a non-CCD-group. □

Lemma 3.2. There does not exist an SCCD-group for a Sporadic simple group.

Proof. By [7], there is a subgroup H ∈ max G which is a non-CCD-group. □

Lemma 3.3. There does not exist a simple exceptional SCCD-group of Lie type.

Proof. It is well-known in this case that, for a simple group G of exceptional Lie type, G is isomorphic
to 2B2(q) with q = 22m+1 ≥ 8, 2G2(q) with q = 32m+1, m ≥ 1, G2(q), 3D4(q), F4(q), 2F4(q2), Eϵ6(q),
E7(q), or E8(q). We deal with these case by case.

The following two subgroup series are from Table 1:

G2(q) > SU3(q2).2 > SU3(q2)

and
2F4(q2) > SU3(q2).2 > SU3(q2).

However, by [23], one hasd2(SU3(q2)) = q2 − q + 1, d3(SU3(q2)) = (q − 1)(q2 − q + 1), for q ≡ 0, 1 (mod 3)
d2(SU3(q2)) = q2 − q + 1, d3(SU3(q3)) = 1

3 (q − 1)(q2 − q + 1), for q ≡ 2 (mod 3),

and hypothesis d2 + 1 = d3 implies q = 2 or 4, a contradiction. It follows that G2(q) and 2F2(q2) are
non-SCCD-groups. Note that 2F4(2)′ is a non-SCCD-group by [7]. Also, we can show from Table 1
that 3D4(q), F4(q), and Eϵ6(q) are non-SCCD-groups. Now, if PΩ+12(q) is a non-CCD-group, then E7(q)
and E8(q) are non-SCCD-groups. In fact,

PΩ+12(q) > · · · > PΩ+4 (q) � PSL2(q) × PSL2(q).

Now, by Theorem 4.21 of [15], PSL2(q)×PSL2(q) is not a CCD-group, so PΩ+12(q) is a non-CCD-group.
Thus, E7(q) and E8(q) are non-SCCD-groups.

Table 1. Exceptional groups of Lie type.

G H ∈ max G Reference

G2(q) SL3(q).2, SU3(q2).2 [19]
3D4(q) G2(q) [19]
F4(q) 3D4(q3) [19]
Eϵ6(q) F4(q) [19]
E7(q) PΩ+12(q) [19]
E8(q) E7(q)) [19]

2F4(q2) SU3(q2).2 [24]

Now, by Lemma 2.2, 2B2(q) with q = 22m+1 ≥ 8 and 2G2(q) with q = 32m+1, m ≥ 1, are non-SCCD-
groups. □

Proposition 3.4. Let G be a simple classical SCCD-group of Lie type. Then, G is isomorphic to
PSL2(q) where q is even, or q is an odd prime, or q ∈ {3p, 5p} with p a prime.
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Proof. The Classification Theorem of Finite Simple Groups shows that G may be isomorphic to one of
the following groups: PSLl+1(q), PSUl+1(q), Ω2l+1(q), PSp2l(q), PΩ+2l(q) or PΩ−2l(q), where q is a power
of a prime. Now, we need to show whether these groups are SCCD-groups or not.

Case 1: PSLl+1(q) with l ≥ 1.
Subcase 1: l = 1.
Note from Table 2 that cd(Eq : C(q−1)/k) = {1,

q−1
k }, cd(D2(q±1)/k) = {1, 2}, cd(S 4) = {1, 2, 3}, cd(A4) =

{1, 3}, and cd(A5) = {1, 3, 4, 5}. Note that Eq : C(q−1)/k, D2(q±1)/k, S 4, A4 and A5 are CCD-groups, so in
the following, we only need to consider maximal subgroup H := PSL2(q0). gcd(gcd(2, q − 1), b) with
q = qb

0, q0 , 2 and b a prime.

Table 2. PSL2(q), q ≥ 5 (Chap II Theo. 8.27 [12]).

max PSL2(q) Condition

Eq : C(q−1)/k k = gcd(q − 1, 2)
D2(q−1)/k q < {5, 7, 9, 11}
D2(q+1)/k q < {7, 9}

PSL2(q0).(k, b) q = qb
0, b a prime, q0 , 2

S 4 q = p ≡ ±1 (mod 8)
A4 q = p ≡ 3, 5, 13, 27, 37 (mod 40)
A5 q ≡ ±1 (mod 10), Fq = Fp[

√
5]

If q = 2n, then gcd(gcd(2, q − 1), p) = 1, H is isomorphic PSL2(q0), and PSL2(q0) is a CCD-group
because cd(PSL2(q0)) = {1, q0 − 1, q0, q0 + 1}. Thus, PSL2(q) is an SCCD-group for q even.

Let q = rn be odd, where r is a prime. If n = 1, then G � PSL2(q) with q a prime, as in this case,
and PSL2(q) possibly contains Eq : C(q−1)/k, D2(q−1)/k, D2(q+1)/k, S 4, A4, A5 as its maximal subgroups.
Note that all these possible maximal subgroups are CCD-groups. If n > 1, then gcd(2, q− 1) = 2, so G
has a maximal subgroup PSL2(q0).(2, b) with b

∣∣∣n.

• If b = 2, then by Theorem A of [35], we can assume that PGL2(q0) � PSL2(q0).2 or PGL2(q0) ⩽̸
PSL2(q0).2. Observe that PSL2(q0) is a normal subgroup of PGL2(q0) or PSL2(q0).2. Then, we
have by [8] that cd(PSL2(q0)) = {1, q0+ε

2 , q0 − 1, q0, q0 + 1} with ε = (−1)(q−1)/2 . It follows from
hypothesis that 1 = q0+ε

2 , or q0+ε

2 + 1 = q0 − 1, and so q0 = 3 or 5.
• If b ≥ 3 is a prime, then gcd(2, b) = 1, and PSL2(q) contains a maximal subgroup PSL2(q0) by

Table 2. As cd(PSL2(q0)) = {1, q0+ε

2 , q0 − 1, q0, q0 + 1} with q = qb
0 and ε = (−1)(q−1)/2, one gets

from hypothesis that q0 = 3 or 5, since the possible maximal subgroups Eq : Z(q−1)/k, D(q−1)/k,
D2(q+1)/k, S 4, A4, A5 for PSL2(q) are CCD-groups.

It follows that PSL2(rb) is an SCCD-group where r ∈ {3, 5} and b ≥ 2 is a prime.
Subcase 2: l = 2.
If q = qb

0 with b a prime, then by Table 3, G contains a maximal subgroup PSL3(q0). Note from [29]
that cd(PSL3(q0)) = {1, q0(q0+1), q2

0+q0+1, (q0+1)(q0−1)2, q3
0−1, q3

0, q0(q2
0+q0+1), (q0+1)(q2

0+q0+1)}.
It is easy to see that the degrees of PSL3(q0) are not consecutive. Thus, q is a prime.
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Table 3. PSL3(q) and PSU3(q) ([17]).

max PSL3(q) Condition max PSU3(q) Condition

C1 Eq2 : 1
k GL2(q) E1+2

q : Z q2−1
l

1
l GU2(q)

C2 Z (q−1)2
k
.S 3 q ≥ 5 Z (q+1)2

l
.S 3 q , 5

C3 Z q2+q+1
k
.3 q , 4 Z(q2−q+1)/l.3 q < {3, 5}

C5 PSL3(q0).(k, b) q = qb
0, b prime PSU3(q0).(b, l) q = qb

0, b ≥ 3 prime
SO3(q) q ≥ 7 odd

C6 32.SL2(3) q = p ≡ 1(9) 32.SL2(3) q = p ≡ 8(9)
32.Q8 q = p ≡ 4, 7(9) 32.Q8 11 ≤ q = p ≡ 2, 5(9)

C8 SO3(q) q odd
PSU3(q0) q = q2

0

S A6 p ≡ 1, 2, 4, 7, 8, 13(15) A6 p = q ≡ 11, 14(15)
Fq = Fp[

√
5,
√
−3]

PSL2(7) 2 < q = p ≡ 1, 2, 4(7) M10 q = 5
PSL2(7) 5 , q = p ≡ 3, 5, 6(7)

A7 q = 5

k = gcd(3, q − 1), and l = gcd(3, q + 1). Here, m ≡ r(n) denotes m ≡ r (mod n).
Since q is an odd prime, we can get by Table 3 that G contains a maximal subgroup SO3(q) � SL2(q).

We know from [16] that cd(SL2(q)) = {1, q−1
2 ,

q+1
2 , q−1, q, q+1}, so by hypothesis, q = 5. By [7, pp. 38],

PSL3(5) contains a maximal subgroup 42 : S 3, and by [4], cd(42 : S 3) = {1, 2, 3, 6}, a contradiction to
hypothesis. It follows that q = 2, and so G � PSL3(2) � PSL2(7) is considered above.

Subcase 3: l = 3.
By Lemma 2.7, PSL4(q) contains a subgroup isomorphic to either PSL3(q) or SL3(q). By [29], we

obtain that either

d2(PSL3(q)) = q2 + q + 1 and d3(PSL3(q)) = (q − 1)2(q + 1)

or

d2(SL3(q)) = q2 + q + 1 and d3(SL3(q)) ∈ {(q − 1)2(q + 1), (q − 1)2(q + 1)/3},

so hypothesis forces d2 + 1 = d3, but the equation has no solution in N, the nonnegative integer set.
Now, PSL3(q) is not a CCD-group, and so PSL4(q) is not an SCCD-group.

Subcase 4: l ≥ 4.
Applying Lemma 2.7 repeatedly, we have that

either PSL3(q) < PSLl+1(q) or SL3(q) < PSLl+1(q).

Note that PSL3(q) and SL3(q) are not CCD-groups by Subcase 3 of Case 1. Thus, PSLl+1(q) is not an
SCCD-group.

Case 2: PSUl+1(q) with l ≥ 2.
Note that PSU2(q) � PSL2(q). We deal with this by two cases: l = 2 and l ≥ 3.
• Let l = 2.
We know that PSU3(2) � 32.Q8 is solvable, so q ≥ 3. PSU3(q) has a subgroup of the form:

E1+2
q : Cq2−1. By the Main theorem of [28], cd(E1+2

q ) = {1, q}. By Lemma 2.1, we get that either
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cd(E1+2
q : Cq2−1) = {1, q, q2 − 1, q(q2 − 1)} for (3, q + 1) = 1

or

cd(E1+2
q : C(q2−1)/3) = {1, q, (q2 − 1)/3, q(q2 − 1)/3} for (3, q + 1) = 3,

so hypothesis shows that q + 1 = q2 − 1 or q + 1 = q2−1
3 . We have q = 2 ≯ 3 or q = 4. Thus, by

ATLAS [7], PSU3(4) contains a maximal subgroup 52 : S 3, and by [4], cd(52 : S 3) = {1, 2, 3, 6}, a
contradiction to hypothesis.

Now, we have that, for q ≥ 3, PSU3(q) is not an SCCD-group; in particular, PSU3(q) is not a
CCD-group.
• Let l ≥ 3.
Applying Lemma 2.7 repeatedly, we get that

either PSU3(q) < PSUl+1(q) or SU3(q) < PSUl+1(q),

and so PSUl+1(q) is not an SCCD-group.
Case 3: PSp2l(q) with l ≥ 2.
Let l = 2. Since PSp4(2) � S 6, where S n is a symmetric group of degree n, is not simple, we

assume that q ≥ 3. By [17, pp. 209], PSp4(q) has a maximal subgroup (PSp2(q) × PSp2(q)).2 >
PSp2(q) × PSp2(q). Note that PSp2(q) � PSL2(q) and that S 6 is a non-CCD-group.

If q is odd or q ≥ 4 is even, then q − 1, q, q + 1 ∈ cd(PSL2(q)), so by Theorem 4.21 of [15], one has
that (q + 1)2, q(q + 1) ∈ cd(SL2(q) × SL2(q)). By hypothesis, (q + 1)q + 1 = (q + 1)2, and so q = 2, a
contradiction.

Now, we get that PSp4(q) is not an SCCD-group.
Let l ≥ 3. Then, by Lemma 2.7, we get a subgroup series

PSp4(q) < PSp6(q) < · · · < PSp2(l−1)(q) < PSp2l(q),

and PSp2l(q) is not an SCCD-group.
Case 4: Ω2l+1(q) with l ≥ 2.
If l = 2, then Ω5(q) � PSp4(q) is a non-SCCD-group by Case 3.
If l = 3, thenΩ5(q) < Ω7(q) by Lemma 2.7. We know from Case 3 thatΩ5(q) is a non-SCCD-group,

and so is Ω7(q).
Let l ≥ 4. Then, Lemma 2.7 shows that Ω2l+1(q) has a subgroup series

Ω5(q) < Ω7(q) < · · · < Ω2l−1(q) < Ω2l+1(q),

so Ω2l+1(q) is a non-SCCD-group.
Case 5: PΩε2l(q) with l ≥ 4, ε = ±.
We first consider PΩ+2l(q). If l = 4, then by [17, pp. 214], PΩ+8 (q) contains a subgroup PΩ7(q). It

follows from Case 4 that PΩ+8 (q) is a non-SCCD-group.
If l ≥ 5, then using Lemma 2.7, PΩ+2l(q) contains a subgroup isomorphic to

PΩ2(l−1)(q) for q odd or PSp2(l−1)(q) for q even,

so Cases 3 and 4 imply that PΩ+2l(q) is a non-SCCD-group.
Similarly we can see that PΩ−2l(q) with l ≥ 4 is a non-SCCD-group. □

Now, we can prove the following result.
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Theorem 3.5. Let G be a non-abelian simple SCCD-group. Then, G is isomorphic to PSL2(q) where
q ≥ 4 is even or q ≥ 5 is an odd prime or q ∈ {3p, 5p} with p a prime.

Note A5 � PSL2(5) � PSL2(4), and A6 � PSL2(32).

Proof. Lemmas 3.1– 3.3 and Proposition 3.4 imply the result. □

4. Non-solvable SCCD-groups

In this section, we first show the structure of almost simple SCCD-groups and then give that of
non-solvable SCCD-groups.

Note that PGL2(5) � S 5, and let Out(A) be the outer-automorphism group of a group A.

Theorem 4.1. Let G be an SCCD-group, and let S be a non-abelian simple group such that S ≤ G ≤
Aut(S ). Then, G is isomorphic to one of the following groups:

(1) PSL2(q) where q ≥ 4 is even or q ≥ 5 is an odd prime or q ∈ {3p, 5p} with p a prime,
(2) S 5.

Proof. Let G be an almost simple SCCD-group with socle S . Thus, S is also a simple SCCD-group,
and by Theorem 3.5, S � PSL2(q) where q ≥ 4 is even or q is an odd prime or q ∈ {3p, 5p} with p a
prime.

If q = 2 f for some f ≥ 2, then G is isomorphic to PSL2(2 f ).d with d
∣∣∣ f . If G is a simple group,

then G is isomorphic to PSL2(q) as PSL2(q) � PGL2(q) � SL2(q). If f = 2, then G � S 5 is an SCCD-
group. If f ≥ 3, then E2 f : C2 f−1 : C f is a subgroup of PSL2(2 f ). f (see [11]). By Lemma 2.1, one has
cd(E2 f : C2 f−1 : f ) = {1, f , 2 f − 1}. By hypothesis, we get f + 1 = 2 f − 1, so f = 2 ≧̸ 3, a contradiction.

Now, q is odd, and by Theorem 3.5, these cases will be considered: q ≥ 5 is an odd prime, or
q ∈ {3p, 5p} with p a prime.

Case 1: q ≥ 5 is an odd prime.
Note from [7, pp. xvi] that |Out(PSL2(q))| = 2 for q an odd prime. It follows that G is possibly

isomorphic to PGL2(q). Note that PSL2(q) ∈ max PGL2(q), and

cd(PSL2(q)) = {1, q+(−1)
q−1

2

2 , q − 1, q, q + 1}.

Lemma 2.3 gives that q+(−1)
q−1

2

2 + 1 = q − 2, so q = 5. As PSL2(5) � PSL2(4) � A5, PGL2(5) � S 5 is
considered above.

Case 2: q = 3p or 5p with p a prime.
Let S = {PGL2(q),PSL2(q).2,PSL2(q).p,PGL2(q).p,PSL2(q).(2p)}.
In this case, we obtain that |Out(PSL2(q))| = 2 · p, so G is possibly isomorphic to S ∈ S by

Corollary 6.2 of [35]. Observe that for each S ∈ S, S has a subgroup isomorphic to PSL2(q). Note that

cd(PSL2(q)) = {1, q+ε
2 , q − 1, q, q + 1} with ε = (−1)

q−1
2 ,

so PSL2(q) is not a CCD-group, as q > 5 is a power of an odd prime. It follows that for every S ∈ S,
S is a non-SCCD-group. □

Now, we will give the proof of Theorem 1.3.
Proof of Theorem 1.3.
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Proof. As G is non-solvable, we have a normal subgroup series 1 ≤ H ≤ K ≤ G such that K/H is
isomorphic to a direct product of isomorphic non-abelian simple groups and that |G/K| divides the
order of the outer-automorphism group Out(K/H); (see [36]).

Assume that

K/H � S × S × S · · · × S︸                ︷︷                ︸
m times

where S is isomorphic to one of the groups as listed in Theorem 3.5. If m ≥ 2, then by Theorem 4.21
of [15], L × S × S · · · × S is a non-CCD-group where L is a non-abelian subgroup of S . Now, m = 1,
and so K/H is a simple group isomorphic to S ∈ S, where S is a set which consists of the groups
PSL2(q) where q ≥ 4 is even or q ≥ 5 is an odd prime or q ∈ {3p, 5p} with p a prime.

Case 1: K/H is isomorphic to PSL2(q) with q = 2 f , f ≥ 2.
We know that when q is even, PGL2(q) � PSL2(q) � SL2(q). Thus, by Theorem 4.1, G/H is

possibly isomorphic to PSL2(q). f . However, Eq : Cq−1 : C f is a subgroup of PSL2(q). f , so q = 4,
and G/H is isomorphic to A5 or S 5, as the proof of Theorem 4.1. We see from Chap 2, Theorem 6.10
of [12] that G′/H � A5. We know that the order of the Schur multiplier of A5 is 2, and |Out(A5)| = 2.

If [G′,H] = 1, then G � H × A5 or G � H × S 5. If H is non-abelian, then we can assume that
cd(H) = {1,m}. Now, by [7], H × A4 and H × S 4 are subgroups of H × A5 and H × S 5 respectively, so
cd(H × A4) = {1,m, 3, 3m} and cd(H × S 4) = {1, 2, 3,m, 2m, 3m}. We see that H × A4 and S 4 × H are
CCD-subgroups, so 3 + 1 = 3m or m + 1 = 3m, but the two equations have no solutions in N. So, H is
abelian.

If |[G′,H]| , 1, then G � SL2(5) ∗H, and H ≥ C2. We similarly get that H/C2 is abelian as the case
[G′,H] = 1.

Case 2: K/H is isomorphic to PSL2(q) where q ≥ 5 is an odd prime or q ∈ {3p, 5p} with p a prime.
Where N1 maximal under < δ > with |δ| = (q − 1, 2); N2 maximal under subgroups not contained

in < φ > with |φ| = e, q = pe, p a prime.
From Case 1, we see that q ≥ 7. By Theorem 4.1, G/H is isomorphic to PSL2(q) where q ≥ 7 is an

odd prime or q ∈ {3p, 5p} with p a prime. Now, by [12, Chap 2, Theorem 6.10], G′/H � PSL2(q).
If [G′,H] = 1, then G � H × PSL2(q). We can show similarly that H is abelian in this case.

If H , 1, then PSL2(q) is a proper subgroup of G, and so PSL2(q) is a CCD-group. We see that
cd(PSL2(q)) = {1, q+(−1)(q−1)/2

2 , q− 1, q, q+ 1}, so q− 1 = q+(−1)(q−1)/2

2 + 1. Now, q = 5, a contradiction. So,
G � PSL2(q), as desired.

If [G′,H] , 1, then H ≥ C2(= Z(SL2(q))), and G is isomorphic to SL2(q) ∗ H. If H > C2, then
SL2(q) is a proper subgroup of G, so it is a CCD-subgroup. We see that

cd(SL2(q)) = {1, q−1
2 ,

q+1
2 , q − 1, q, q + 1},

so q = 5, a contradiction. Thus, H = C2, and SL2(q)C2 � SL2(q). Furthermore, if q is prime, then
by Table 4, SL2(q) possibly has subgroups Eq : Cq−1, D2(q±1), 2.S 4, 2.A4 and 2.A5, which are CCD-
groups. If q ∈ {3p, 5p} with p a prime, then Table 4 shows that SL2(q) possibly subgroups Eq : Cq−1,
D2(q±1), SL2(q0), PSL2(q0) and 2.A5, which are CCD-groups, too. Thus, G is isomorphic to SL2(q), as
wanted. □

AIMS Mathematics Volume 8, Issue 3, 5745–5762.



5756

Table 4. SL2(q), q ≥ 4([3, pp. 377]).

max SL2(q) Condition

Eq : Cq−1

Q2(q−1) q , 5, 7, 9, 11; q odd
N1 if q = 7, 11; N2 if q = 9

D2(q−1) q even
Q2(q+1) q , 7, 9; q odd

N1 if q = 7; N2 if q = 9
D2(q+1) q even

SL2(q0).2 q = q2
0, q odd

SL2(q0) q = qr
0, q odd, r odd prime

PSL2(q0) q = qr
0, q even, q0 , 2, r prime

2.S 4 q = p ≡ ±1 (mod 8)
2.A4 q = p ≡ ±3, 5,±13 (mod 40)

N1 if q = p ≡ ±11,±19 (mod 40)
2.A5 q = p ≡ ±1 (mod 10)

q = p2, p ≡ ±3 (mod 10)

5. Applications

In this section, we will prove that an SCC-group is solvable (see Theorem 5.1) and then determine
the structure of an SCC-group.

Theorem 5.1. Let G be a finite SCC-group. Then, G is solvable.

Proof. Assume that the result is not true, and then G is a non-solvable group. It is easy to get that a
CC-group must be a CCD-group, so by hypothesis, for each H ∈

∑
G, H is a CCD-group. Thus, we

have that G is an SCCD-group. Now, Theorem 1.3 shows that G has one of the following structure:

(1) PSL2(q) where q ≥ 4 is even or q ≥ 5 is an odd prime or q ∈ {3p, 5p} with p a prime.
(2) S × H where S ∈ {A5, S 5} and H is abelian.
(3) SL2(q) where q ≥ 7 is an odd prime or q ∈ {3p, 5p} with p a prime.
(4) SL2(5) ∗ H with H/C2 abelian.

So, four cases are dealt with in what follows.
Case 1: PSL2(q) where q ≥ 4 is even or q ≥ 5 is an odd prime or q ∈ {3p, 5p} with p a prime.
By Table 2, Eq : C(q−1)/k ∈ max PSL2(q), so cd(Eq : C(q−1)/k) = {1, (q − 1)/k} = {1, 2}. It follows that

q = 5. If q = 5, then by [7, pp. 2], A4 ∈ max A5. We know that cd(A4) = {1, 3}, a contradiction.
Case 2: S × H where S ∈ {A5, S 5} and H is abelian.
Obviously, A4 is a subgroup of S . The transitivity of subgroups shows that A4 is a subgroup of G,

so cd(A4) = {1, 3} gives a contradiction.
Case 3: SL2(q) where q ≥ 7 is an odd prime or q ∈ {3p, 5p} with p a prime.
Now, Table 4 means that Eq : Cq−1 ∈ max SL2(q), and hypothesis shows that cd(Eq : Cq−1) =

{1, q − 1} = {1, 2}, so q = 3 ⩾̸ 7, a contradiction.
Case 4: SL2(5) ∗ H with H/C2 abelian.
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We see that SL2(5) has a subgroup of the form E5 : C4, and cd(E5 : C4) = {1, 4}, a contradiction.
It follows from the four cases that G is solvable, as desired. □

Let ρ(G) be the set of prime divisors of degrees of the irreducible characters of a group G, that is,

ρ(G) = {p : p
∣∣∣d, d ∈ cd(G)}.

Lemma 5.2. Let G be a non-abelian SCC-group. Then, |ρ(G)| ≤ 2.

Proof. We know that for each non-abelian A ∈
∑

G, A is a CC-group, so 2 ∈ cd(A). It follows that
2 ∈ ρ(G). We know from Theorem 5.1 that G is solvable, so the character degree graph T(G) of
G has at most two connected components; see [25]. Let ρ(G) = {2, p1, p2, · · · , ps} with p1 < p2 <

· · · < ps. Let s ≥ 2, and let H be a Hall {p1, p2, · · · , ps}-subgroup of G. Then H is a CC-group, so
cd(H) ⊆ {1, p1, p2, p1 p2, · · · }. We get a contradiction as all pis are ≥ 3. So, H is abelian and non-
normal in G by Theorem 7.1 of [10]. As s ≥ 2, Hall {2, p2}-subgroup H2,p2 of G is a CC-group, so
cd(H2,p2) = {1, 2, p2, · · · }. It follows that p2 = 3, a contradiction, as p2 > p1 ≥ 3. It follows that
the Sylow p2-subgroup Hp2 of H2,p2 is normal and abelian in H2,p2 . We also can get that the Sylow
pi-subgroup Hpi of the Hall {2, pi}-subgroup H2,pi of G is abelian and normal in H2,pi . It follows that
the Hall {p2, · · · , ps}-subgroups Hp2,p3,··· ,ps of H2,p2,··· ,ps are abelian and normal in H2,p2,··· ,ps . We see that
G = Hp1,p2,··· ,ps H2,p2,··· ,ps and Hp1,p2,··· ,ps ∩ H2,p2,··· ,ps = Hp2,··· ,ps , so Hp2,··· ,ps is abelian and normal in G, a
contradiction to Theorem 7.1 of [10]. It follows that s = 1, the desired result. □

Lemma 5.3. Let G be a nilpotent non-abelian SCC-group. Then, G is isomorphic to a metabelian
p-group or a direct product of a 2-group P and 2′-group H where cd(P) = {1, 2} and cd(H) = {1}.

Proof. Let Pi be Sylow pi-subgroups of G with primes pi, and p1 < p2 < · · · < ps. As G is nilpotent,
write G = P1 × P2 × · · · × Ps. By Lemma 5.2, ρ(G) = {p}, or ρ(G) = {p, q} with different primes p, q.
• ρ(G) = {p}.
If s = 1 and p = 2, then G is a 2-group. We know that for each H ∈

∑
(G), H is a CC-group, so

cd(H) = {1} or cd(H) = {1, 2}. Thus, G is a 2-group whose proper subgroups all have degrees 1 or 2.
If s ≥ 2 and p = 2, then G is a direct product of a non-abelian 2-subgroup P and a Hall 2′-subgroup
H. As H , 1, we have cd(P) = {1, 2}. If H is non-abelian, then Z(P) × H is a non-abelian CC-group,
so cd(Z(P)×H) = {1, p′, · · · }. Hypothesis shows that p′ = 2, a contradiction. Hence, H is abelian. We
now draw a conclusion that G = P × H with cd(P) = {1, 2}, and H abelian.

Now, we consider p > 2. If s = 1, then assumption gives that G is a metabelian p-group. If s ≥ 2,
then G = P × H where P is a p-subgroup and H is a p′-subgroup. If P is non-abelian, then P is a
CC-subgroup of G, and so cd(P) = {1, p, · · · }. Now, hypothesis gives that p = 2 ≧̸ 3, a contradiction.
Hence, P is abelian, and so is G. Otherwise, there is a subgroup which is not a CC-subgroup.
• ρ(G) = {p, q}.
In this case, G = P × H with ρ(P) = {p} and ρ(H) = {q}. By the above arguments, we can assume

that p = 2 and cd(P) = {1, 2}. Thus, C2 × H is a CC-subgroup of G, and cd(C2 × H) = {1, q, · · · }.
Hence, q = 2, too, a contradiction. So, this case can not occur. □

Lemma 5.4. Let G = F : H be a Frobenius group with kernel F and complement H, respectively. If G
is an SCC-group, then one of the following holds:

(i) cd(F) = {1, 2}, and H is a prime order such that for each non-identity W ∈
∑

F, |W | . 1
(mod |H|).
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(ii) F is abelian, and H is of order a prime or 4. Furthermore, if H is of order 4, then F is isomorphic
to Cp × Cq with q ≡ p ≡ −1 (mod 4) or Cp with p ≡ 1 (mod 4). If H is of prime order > 2, then
|H|∥(|F| − 1).

Proof. We divide the proofs into two cases: F is non-abelian, and F is abelian.
Case 1: F is non-abelian
Then, F is a CC-subgroup of G, and so 2 ∈ cd(F). We know that F is nilpotent, so by Lemma 5.3,

cd(F) = {1, 2}. Thus, F is nilpotent with cd(F) = {1, 2}.
If H is non-abelian, then Lemma 2.1 gives that H is of odd order, and so by Lemma 5.3 H is

metabelian. Let Hp with |Hp| = p be a proper subgroup of H with certain prime p. Then, F : Hp

is also a Frobenius subgroup of G. By assumption, F : Hp is a CC-group, and so by Lemma 2.1,
cd(F : Hp) = {1, 2, p, 2p}, a contradiction. Thus, H is abelian. We claim that H is of prime order. In
fact, if |H| = pq with primes p, q, then F : Hq and F : Hp are Frobenius subgroups of G, so they are
CC-groups. By Lemma 2.1, we have that cd(F : Hp) = {1, 2, p, 2p}, and cd(F : Hq) = {1, 2, q, 2q}, a
contradiction. This means that H is of prime order, say, q.

By Lemma 2.1, |F| ≡ 1 (mod q). Let Fpi , i = 1, 2, · · · , n, be the Sylow pi-subgroup of F. If
|F1F2 · · · Fs| ≡ 1 (mod q), then |Fs+1 · · · Fn| ≡ 1 (mod q), so W := Fs+1 · · · Fn : H is a Frobenius
group. Now, cd(W) = {1, q}, a contradiction, as W is a CC-subgroup of G. Thus, |K| . 1 (mod q) for
all K ∈

∑
F, but |F| ≡ 1 (mod q).

Case 2: F is abelian.
We claim that

H is abelian and of order prime p or order 2 or 4.

In fact, if H is non-abelian, and H has two subgroups Cp and Cq with primes p, q, then cd(F : Cp) =
{1, p}, and cd(F : Cq) = {1, q}. By hypothesis, F : Cp and F : Cq are CC-groups, so we have that
p = q = 2 is possible. It follows that either p = 2 and H is a 2-group of order ≤ 4 or H is of odd prime
order.

If H is of order 2, then F is of odd order, and for all W ∈
∑

G, W is a CC-group, since cd(W) = {1}
or {1, 2}.

If H is of order 4, then F is of odd order, too.

• If F is a p-group, and then say |F| = ps. Let s ≥ 3, then G has a subgroup Cp2 : C4 which is a
CC-group. We know that cd(Cp2 : C4) = {1, 4}, a contradiction. Thus, s ≤ 2: namely, |F| = p
or p2. If |F| = p, then p ≡ 1 (mod 4); if |F| = p2, then p2 ≡ 1 (mod 4). If |F| = p2 and p ≡ 1
(mod 4), then G has a Frobenius subgroup Cp : C4 which is not a CC-group. Thus, |F| = p2 with
p ≡ −1 (mod 4), or |F| = p with p ≡ 1 (mod 4).
• If F is a non-p-group, then F has two subgroups Cp and Cq. Note that p, q are odd, so p ≡ ±1

(mod 4) and q ≡ ±1 (mod 4). If p ≡ q ≡ 1 (mod 4), then G has a subgroup of the form
Cp : C4 which is not a CC-group, a contradiction. If q ≡ −1 (mod 4) and p ≡ 1 (mod 4), or
q ≡ 1 (mod 4) and p ≡ −1 (mod 4), then q2 p ≡ 1 (mod 4). However, Cp : C4 is a Frobenius
group, so it is a CC-group, a contradiction (note in this case that pq ≡ 1 (mod 2), but pq ≡ −1
(mod 4)). Now, we draw a conclusion that p ≡ q ≡ −1 (mod 4). If |F| = (pq)2sqt or (pq)2s pt with
s ≥ 1, t ≥ 0, then a CC-subgroup Cpq : C4 is a Frobenius group, a contradiction. Thus, |F| = pq,
and F is isomorphic to Cp ×Cq, as F is nilpotent.
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Let H be of prime order r > 2. Note that the nilpotence of F gives that

F = Fp1 × Fp2 × · · · × Fps .

As with the above arguments, two cases are considered: s = 1 and s ≥ 2.

• s = 1. Then, F is a p-group for certain prime p, so r ≡ 1 (mod |F|). If F has a subgroup K such
that K : H is a Frobenius group, then K : H is not a CC-group. Thus, r∥(|F| − 1).
• s ≥ 2. Then, similarly, we can show that r∥(|F| − 1).

Now, the lemma is complete. □

Lemma 5.5. Let G be a non-abelian SCC-group. Assume that G is a direct product of at least two
CC-groups. Then, G is isomorphic to H1 × H2 where at least one of H1 and H2 is metabelian with
cd(Hi) ⊆ {1, 2}.

Proof. Let G = H1 × H2 × · · ·Hs where all Hi are CC-groups. If Hi are all abelian, then G is abelian,
so we assume that for some i, Hi is non-abelian, say, H1. If the other Hi for i = 2, · · · s are abelian,
then G is an SCC-group when cd(H1) = {1, 2}. If cd(H1) = {1, p} for some prime p > 2, then G is
not an SCC-group when Hi , 1, i = 2, 3, · · · , s. It follows that G = H1, a contradiction. Thus, we
assume that G = H1 × H2 × · · · × Hs with cd(H1) = cd(H2) = {1, 2}. If s ≥ 3, then H1 × H2 is a
CC-subgroup of G, but by Theorem 4.21 of [15], cd(H1 × H2) = {1, 2, 4}, a contradiction. Thus, s = 2,
and G = H1 × H2, where cd(H1) = cd(H2) = {1, 2}, and H1 and H2 are metabelian. We similarly can
get that G = H1 × H2 · · ·Hk × Hk+1 × · · ·Hs is not an SCC-group if cd(Hi) = {1, 2}, i = 1, 2, · · · , k, and
k ≥ 3. □

Proof of Theorem 1.4.

Proof. If G is an SCC-group, then G is solvable by Theorem 5.1. If G is a nilpotent group or a
Frobenius group or a direct product of two CC-groups, then we can get (ii), (iii) and (iv) by
Lemmas 5.3, 5.4 and 5.5. Thus, in what follows, we assume that G is neither a nilpotent group, nor a
Frobenius group nor a direct product of two CC-groups. If G is abelian or cd(G) = {1, 2}, then for all
H ∈

∑
G, H is always a CC-group, so we get (i). Thus, we assume that cd(G) , {1} and

cd(G) , {1, 2}. Since G is a solvable SCC-group, we get that G has a factor; say that N/M is such a
factor. Note that N ∈

∑
G, so N is a CC-group. Now,

cd(N) = {1}, {1, 2}, {1, 2, 3, } or {1, 2, 3, 4};

see [13] or [14, Sec. 32]. By pp. 168 of [13],

N/M is isomorphic to S 3 or A4 or 32 : 22.

It is easy to see that M is abelian. (In fact, let θ ∈ Irr(M)\Lin(M). Then, I := IN(θ), the inertia subgroup
of θ in N, is equal to N or KM where K ∈

∑
N/M. If I = KM, then θN(1) = |N : I|θ(1), so θ(1),

θN(1) ∈ cd(N). Note that N is a CC-group, so cd(N) = {1, θ(1), 2, θN(1)} or cd(N) = {1, θ(1), 3, θN(1)}
or cd(N) = {1, θ(1), 4, θN(1)}, contradicting Theorem of [13].)

Let G = G/M and let N = N/M. Then,

N � NCG(N)/CG(N) ≤ G/CG(N) = NG(N)/CG(N) ≤ Aut(N).

AIMS Mathematics Volume 8, Issue 3, 5745–5762.
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Set L = {xM : xM ∈ CG(N}, and then G/L � G/CG(N). Notice that L is also abelian as the proof as M
is abelian. So, we have that Aut(N) = S 3, S 4 and 32 : D8 when N is isomorphic to S 3, A4 and 32 : 22,
respectively; see [33]. Observe that the Schur multipliers of N are trivial, so G is possibly isomorphic
to S 3 × L, A4 × L, S 4 × L, (32 : C4) × L or (32 : D8) × L. If G is isomorphic to S 3 × L, then it is
contained in (i); if G is isomorphic to S 4 × L or 32 : D8, then A4 ∈

∑
S 4 and 33 : 22 ∈

∑
(32 : D8) × L

are CC-groups, a contradiction. Thus, A4 and 32 : 22 are not proper subgroups of G, and so L = 1.
Now, G is isomorphic to A4 or 32 : C4, as desired. □

6. Conclusions

From Theorem 1.3, we know that a group whose non-linear character degrees are consecutive is
possibly non-solvable, but a group whose irreducible character degrees is consecutive are solvable.
Chen in [5] gave the information of groups whose irreducible character degrees are arithmetic numbers.
In comparison with Theorem 5.1, is the group solvable if proper subgroups all have this property?
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