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Abstract: Currently, designing path-planning concepts for autonomous robot systems remains a topic 

of high interest. This work applies computational analysis through a numerical approach to deal with 

the path-planning problem with obstacle avoidance over a robot simulation. Based on the potential 

field produced by Laplace's equation, the formation of a potential function throughout the simulation 

configuration regions is obtained. This potential field is typically employed as a guide in the global 

approach of robot path-planning. An extended variant of the over-relaxation technique, namely the 

skewed block two-parameter over relaxation (SBTOR), otherwise known as the explicit decoupled 

group two-parameter over relaxation method, is presented to obtain the potential field that will be used 

for solving the path-planning problem. Experimental results with a robot simulator are presented to 

demonstrate the performance of the proposed approach on computing the harmonic potential for 

solving the path-planning problem. In addition to successfully validating pathways generated from 

various locations, it is also demonstrated that SBTOR outperforms existing over-relaxation algorithms 

in terms of the number of iterations, as well as the execution time. 
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1. Introduction 

Path planning is a computational problem to find a sequence of valid configurations that move 

the object of interest from an arbitrary source to a specific destination. The term path planning has 

been used widely, mostly in the robotics area. Good path planning for a mobile robot means it should 

be executed while avoiding walls and dodging any obstacles in between. Autonomous robot path 

planning is very impactful, as it is extremely beneficial not only for transportation, but also for 

households, pharmaceuticals, industries, manufacturing, aerospace and others. In general, the ability 

of a robot to navigate autonomously is a prerequisite and foundation for the development of intelligent 

robots. To ensure the successful completion of the many tasks that mobile robots are designed to 

accomplish, path-planning algorithms must be both effective and practical. 

On the whole, navigation problems are divided into four main categories, i.e., localization, path 

planning, motion control and cognitive mapping [1]. In essence, the localization of a robot is telling 

where the robot is currently located, whereas path planning reveals in which direction the robot is 

meant to travel and what is the best route to arrive at the destination. Robot motion control gives 

instructions on the manner in which the robot is able to move. Cognitive mapping concerns the 

previous, current and next positions of the robot, as well as to what extent the robot should remember. 

Hence, from all of these category’s functions, it is not wrong to say that path planning is a crucial issue 

to be solved in achieving intelligent robots. With the aid of a path-planning algorithm, the robot should 

be able to select and recognize the ideal route inside the given configuration region. 

It is common knowledge that there are two types of navigation, i.e., global and local approaches. 

This work considers global navigation, where prior knowledge of the configuration region is given, 

which is also known as an off-line mode for path planning. The robot’s ability to represents the real 

world and to execute the algorithm are the two key elements of global path planning. These two 

elements are interconnected and significantly influence one another while determining the optimal 

route and minimum duration for the robot to travel across the known environment [2]. The main 

objective of this study is to utilize the harmonic potential in simulating point-robot path-planning in 

the identified environment following the resemblance of heat transfer. The model of the 

aforementioned heat transfer problem was designed by using Laplace’s equation [3]. Harmonic 

functions are literally the solutions to Laplace’s equation, which are also called Laplacian potentials. 

These Laplacian potentials portray the analogy of temperature values from heat transfer in the 

configuration region that will be used to simulate the path generation. Heat transfer's capacity to 

surpass the local minima enigma is one of its most crucial characteristics, making it very encouraging 

for robot navigation control. The following sections provide further explanations. Numerous 

approaches can be used to achieve harmonic functions, but the most prevalent approaches rely on 

numerical techniques due to the availability of rapid processing machines, as well as on their elegance 

and competence in solving the problem [4–6]. 

Furthermore, the iterative approach could be implemented to produce the Laplacian potential by 

computationally solving Laplace’s equation and discretizing the environment through the use of mesh 

grid points [7–10].  The cost of computation for iterative techniques is substantially higher than 

analytical techniques since the discretization process produces a sparse linear system. However, the 

discretization resolution determines the computational complexity. Using a finite difference 

approximation, the Laplace equation can be translated to a linear system. When this linear system is 

documented in matrix notation, the majority of the elements are zero, and the matrix size of the end 
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product is usually large and sparse. Therefore, the iterative technique is employed to solve the linear 

system to prevent the higher requirement for memory storage of those large and sparse matrices. 

Several experiments were executed in this work to measure the competency of the skewed block 

accelerated iterative approach in terms of the computation of the Laplacian potential when generating 

robot-point paths. Fundamentally, a complete process of the path-planning construction phase in this 

study consists of the following steps: 

Begin  

Step 1: Mapping of the robot’s configuration region. 

Step 2: Formulation and modeling of the finite-difference approximation of the proposed 

iterative schemes. 

Step 3: Algorithms of the proposed iterative schemes. 

Step 4: Numerical simulations. 

Step 5: Evaluation and analysis. 

End.  

2. Materials and methods 

2.1. Harmonic function 

Consider Laplace’s partial differential equation in two dimensions: 

2 2
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,                                                               (1) 

where ( ),U x y  is some unknown function of two variables. A harmonic function in the region 

n  should be able to satisfy the generalization of Eq (1), as below. 

2
2

2
1

0
n

i i

U
U

x=


 = =


 ,                                                          (2) 

in which 
2  is the n-dimensional Laplace operator (or Laplacian as it is often called), the ix  is the i-

th coordinate in a Cartesian system and n  is the dimension of the region. This work only focuses on 

two-dimensional problems with x y−  notation represented as i j− . The region boundary of   

comprises internal and external walls, boundaries of obstaclesand the goal position. According to [7], 

the existence of the spontaneous formation of local minima in the solution region cannot arise because 

harmonic functions obey the min-max principle. Thus, the only critical points that can happen are 

saddle points. The escape from such a critical point would then be found by searching the neighborhood. 

Any path deviation or disturbance from the critical point will eventually cause a smooth path 

throughout the region. For this reason, harmonic potential provides a highly beneficial option in 

navigation, as it offers a complete path-planning algorithm. The equation of Laplace can be solved 

with a range of numerical techniques, i.e., Jacobi, Gauss-Seidel and successive over-relaxation (SOR) 

are the standard approaches [11,12]. The development of the SOR iterative method has sparked interest 

in examining and resolving several issues. Since its establishment, the generalization of over-relaxation 
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iterative approaches has been the subject of extensive research, and it has had promising outcomes. 

Therefore, this work will solve Eq (2) by exploiting the combination of skewed block accelerated 

iterative approach with the accelerated over-relaxation (AOR) and two-parameter over-relaxation 

(TOR) methods, for rapid computation. 

In the configuration region for this model, the robot is described as a node point and the designated 

area is defined in the mesh grid pattern. As stated before, the off-line mode approach is used to compute 

the Laplacian operator of the point-robot designated area by utilizing the analogy of heat transfer. All 

wall boundaries and obstacles (with the highest potential value) stand for heat sources, while the goal 

position (with the lowest potential value) represents the heat sink. This heat transfer activity is modeled 

from Laplace’s equation and then numerically solved to gain the heat distribution, which represents 

the harmonic potential for each nodal point in the mesh grid. By making use of the heat distribution 

property which flows from higher to lower temperatures, a gradient search can be used to generate the 

path from any starting position with a high potential value to the goal which has the lowest potential 

value. The path-planning algorithm utilizes the gradient descent search (GDS) to determine a feasible 

route for the robot to travel around the environment safely from the start point to reach the goal position. 

From the current point, the GDS method examines the potential values of its eight neighboring points 

on the finite-difference grid and simply picks the node with the lowest Laplacian potential value. This 

procedure is repeated until it reaches the target point [7,13–15]. 

This work aims to imitate the aforesaid paradigm for path planning, describing the solution of 

Laplace’s Eq (2) over the analogy of temperature (for the potential) and heat flow (for the pathway). 

The experiment was carried out in a two-dimensional domain with walls and various forms of obstacles. 

A new technique called the skewed block two-parameter over-relaxation (SBTOR) iterative approach 

is proposed to solve Eq (2) and obtain the potential values for each node. For the purpose of 

performance comparison, the existing block successive over-relaxation (BSOR), block accelerated 

over-relaxation (BAOR), block two-parameter over-relaxation (BTOR), skewed block successive 

over-relaxation (SBSOR), and skewed block accelerated over-relaxation (SBAOR) techniques are also 

investigated. 

2.2. Skewed block technique 

The pioneering work of the skewed block technique (originally known as explicit decoupled 

group, EDG) arose from Abdullah’s [16] focus on solving two-dimensional Poisson equations. The 

EDG iterative scheme essentially engaged the half-sweep technique in a block frame on the rotated 

mesh grid. By virtue of the proficiency of this technique, it has been widely used to solve numerous 

differential equations [17–25]. In the robotics literature, the standard Gauss-Seidel [18,19] and 

SOR [3,20] schemes have been employed to solve Eq (2). This work, however, generalizes a reliable 

numerical solver, when addressing the solutions of Laplace’s equation, by utilizing a skewed block 

technique. 

Fundamentally, merely half of the node points in the mesh region were computed while using a 

skewed block approach. In contrast, the explicit group (EG) scheme is basically a full-sweep (FS) 

technique in a block frame, evaluated every node point in the mesh region. Figure 1 provides an 

example of each EG and EDG scheme in a 10 10  mesh region. To obtain the Laplacian potentials in 

the configuration region, only the black node points (see Figure 1) will be computed throughout the 

iteration process, at least until the convergence condition is satisfied. The convergence criteria in this 
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work are denoted as  , and the stopping condition is subject to ( 1) ( )k ku u + −  . The rest of the residual 

nodes, or the white node points (see Figure 1(b)), will be calculated independently using a direct 

technique [16,26,27]. Moreover, the block iterative techniques involve four Laplacian potentials 

simultaneously per calculation, thus indirectly speeding up the computation. As shown in Figure 1, a 

set of one-node point and two-node points can be earmarked to measure groups of nodal points that 

are adjacent to the boundary. 

 

Figure 1. Interior mesh nodes for the (a) block (EG) and (b) skewed block (EDG) techniques. 

From Figure 1(a), each and every formulation that practices the EG iterative approaches shall 

compute a set of four nodes in a group all at once throughout the iteration process (excluding the unique 

set adjacent to the boundary). Meanwhile, the EDG is essentially derived from a skewed 5-point finite-

difference approximation (5-FDA) [16]. As illustrated in Figure 1(b), the configuration domain for the 

EDG technique is distributed with two different types of nodal points, i.e., the black node (• ) and the 

white node ( ). By pairing the identical node, the solutions of each group could be executed 

independently for each pair. On account of this independency, roughly half of the iterations across the 

solution domain are to be executed using either type of node, reducing performance time as well as 

computation complexity. Additionally, to compute the unique sets adjacent to the boundary, the direct 

method [27] is computed by Eq (1). One of EDG’s main advantages is that these approaches diminish 

the computational complexity by measuring only half of all node points. The FS and half-sweep (HS) 

iterative approaches' computational stencils are shown in Figure 2, where h  is the distance between 

node points for each direction. These molecules can be displayed in matrix form for FS and HS cases, 

respectively, as 
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Figure 2. 5-point stencil for (a) FS/standard and (b) HS/skewed FDA. 

2.3. 5-point finite-difference approximation 

Laplace’s equation is a special case of Poisson’s equation 2U f = , in which the function f  is 

equal to zero. Hence, a two-dimensional Laplace equation (2D-Le) could be written using Eqs (1) 

and (2) altogether. 

The system must be discretized using the finite-difference approach in order to solve the 2D-Le 

before it can be computed effectively using the numerical technique. The simplest second derivative 

of 5-FDA (also known as an FS iteration) is 

( ) ( ) ( ) ( ) ( ) ( )2

2

1
, , , , , 4 ,U x y u x h y u x h y u x y h u x y h u x y

h
  + + − + + + − −   , 

in which U  is a function to satisfy Laplace’s equation, while u  is the potential node at the point ( ),x y . 

In addition, the x y−  plane of the configuration region is rotated by 45  clockwise to provide the 

approximation that is based on the cross-orientation operator [28,29]. As a result, a skewed 5-point 

approximation, commonly referred to as the HS iteration, is produced and denoted by 

( )
( ) ( ) ( )

( ) ( )
2

2

, , ,1
,

2 , 4 ,

u x h y h u x h y h u x h y h
U x y

h u x h y h u x y

− − + + − + − + 
   

+ + + −  
. 

Using the notation 
ijU  to represent the solution of the potential node for 2D-Le through the mesh 

grid point ( ),i jx y , the Laplace equation for the FS case is discretized using a standard 5-point stencil, 

as follows: 

1, 1, , 1 , 1 ,4 0i j i j i j i j i jU U U U U− + − ++ + + − = ,                                           (3) 

whereas the discretization of a rotated case via the 5-point stencil is 

1, 1 1, 1 1, 1 1, 1 ,4 0i j i j i j i j i jU U U U U− − − + + − + ++ + + − = .                                       (4) 

A linear system is then generated by applying Eqs (3) and (4) to the Laplace’s problem subject to 

the 2D-Le. Matrix notation can be used to build this linear system, which results in large and sparse 

matrices, and is represented as 
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Au b= ,                                                                      (5) 

in which A  represents known coefficients that are expressed in matrix form and b  is a known vector, 

while u  is the unknown vector. The expansion of each coefficient for both the FS and HS cases is 

discussed in depth in [25]. Since the linear system of Eq (5) creates large and sparse matrices, iterative 

approaches can be used to solve this problem using conventional point or block techniques [16]. In 

order to elucidate the block technique, the fundamental concept behind the point technique must first 

be described. Thus, from the second-order central finite difference of Eqs (3) and (4), the point Gauss-

Seidel iterative schemes for FS and HS can be reformulated and designated respectively as below. 

( ) ( ) ( ) ( ) ( )1 1 1
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,                                           (6) 
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.                                      (7) 

By integrating a weighted parameter [30], the point SOR iterative technique for FS and HS cases 

is given respectively as 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1
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Normally, the optimal weighted parameter   is determined in the range of 1 2   [31]. If the 

parameter value is equal to 1, the approach is essentially simplified to the conventional Gauss-Seidel 

method. The SOR and Gauss-Seidel methods are actually rather comparable, with the exception that 

SOR uses a scaling factor to reduce the approximation error. 

The AOR contributes a supplementary relaxation parameter that, in this work is denoted as r , 

along with the weighted parameter   from the SOR technique. Both parameters are used to generate 

iterative schemes that are able to accelerate the convergence rates. AOR is a simple yet powerful 

scheme, due to the fact that two parameters are involved, for the larger linear system first introduced 

by Hadjidimos [32] . The point AOR schemes for standard and skewed approaches are shown 

respectively as 
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According to Hadjidimos, the r  value is typically selected to be close to the corresponding   

value. Additionally, he claimed that the uncertain optimal values of these two parameters did not 

impose any limitations on the ability in to obtain the minimum iterations number. 

The TOR iterative method is basically a generalization of the AOR method with another 
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additional parameter, r . The TOR scheme reduces to the AOR iterative scheme provided the value of 

r  is equal to r  [33]. As stated in [33], the additional parameter r  could provide faster convergence 

if an appropriate value is chosen. The point TOR iterative schemes for FS and HS are stated 

respectively as 

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )1 1 1
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4 4 4 4 4
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                       (13) 

Similar to the AOR approach, all of the parameters are in the range of [1,2)  and they are chosen 

to be near to the value of the corresponding SOR parameters [32,34]. In accordance with the 2D-Le, 

all of the proposed iterative schemes simply substitute each node's value with the average of its four 

neighbors’ values. In this work, the node values that represent the walls, obstacles and target position 

remain constant. 

2.4. Explicit group two-parameter over-relaxation scheme 

As discussed earlier, the block iterative technique obtains four Laplacian potentials per 

computation. As illustrated in Figure 1(a), all formulations using EG iterative methods compute a 

group of four nodes at once during the iteration process. Basically, the EG iteration is based on a group 

of a small number of points, and it is derived using the standard 5- FDA. By analyzing Eq (3) and the 

point SOR iterative scheme in Eq (8), the block SOR scheme [16,28,31] can be written as 
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For this scheme, it is also possible to generate a linear system of the same form as Eq (5). The scheme 

can later be translated to the coefficient A  after determining the inverse of its matrix, as represented 

below. 
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Based on the point SOR concept using 5-FDA, the block SOR (BSOR) iterative scheme for Eq (15) is 

now denoted as 
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Besides, by examining Eq (3) and the point AOR approximation in Eq (10), the formulation of the 

block AOR method is stated as [35] 
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Again, Eq (17) may also be transformed into a linear system in the form of Eq (5) and translated as in 

Eq (15). Hence, the block AOR (BAOR) iterative scheme can also be expressed as Eq (16). 

The general expression of the block TOR (BTOR) iterative scheme, considering Eq (3) and the 

point TOR iterative method in Eq (12), can be written as 
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( )

( )

( )1

, ,1

1, 1,2

, 1 , 13

1, 1 1, 14
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i j i ja
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

+

+ +

+ +

+ + + +

+    
    

+    = + −
    +
    

+       

,                                (18) 

where 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )
( ) ( )( )

( )
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1 1

1 1, 1, , 1 , 1 1, , 1

1

2 1, 1 1, 1 1, 1 2,

1

3 1, 1 1, 1 1, 1 , 2

4 2, 1 1, 2

2 3 1 4

1 4

,

,

,

,

2 ,

2

k k k k k k

i j i j i j i j i j i j

k k k k

i j i j i j i j

k k k k

i j i j i j i j
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i j i j

a

b

S r U U r U U U U

S r U U U U

S r U U U U

S U U

S S S S S

S S S









+ +

− − − − − −

+

+ − + − + − +

+

− + − + − + +

+ + + +

= − + − + +

= − + +

= − + +

= +

= + + +

= + + 2 3.S S+

 

2.5. Explicit decoupled group two-parameter over-relaxation scheme 

As noted in the previous section, the EDG is derived from skewed 5-FDA [16]. The solution 

domain for the EDG technique is shown in Figure 1(b). From the solution domain, the block EDGSOR 

formulation may be expressed in matrix form, as Eq (14), with 

1 1, 1 1, 1 1, 1

2 , 2 2, 2 2,

,

,

i j i j i j

i j i j i j

S U U U

S U U U

− − − + + −

+ + + +

= + +

= + +
                                                  (19) 

and 

3 , 1 2, 1 2, 1

4 1, 1, 2 1, 2

,

.

i j i j i j

i j i j i j

S U U U

S U U U

− + − + +

− − + + +

= + +

= + +
                                                  (20) 

Both Eqs (19) and (20) are deduced from the system of linear equations in Eq (14). These equations 

can be solved independently, as shown below. 

, 1

1, 1 2

4 11

1 415

i j

i j

U S

U S+ +

    
=    

    
,                                                     (21) 

1, 3

, 1 4

4 11

1 415

i j

i j

U S

U S

+

+

    
=    

    
;                                                      (22) 

hence, it can be defined as follows (respectively): 

( )

( )
( )1

, ,1 2

1, 1 1, 11 2

4
1

415

k k

i j i j

i j i j

U US S

U US S




+

+ + + +

+    
= + −    

+    
,                               (23) 
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( )

( )
( )1

1, 1,3 4

, 1 , 13 4

4
1

415

k k

i j i j

i j i j

U US S

U US S




+

+ +

+ +

+    
= + −    

+    
.                                 (24) 

The algorithm for SBSOR scheme can be enforced by using either Eq (23) or (24). Both equations 

lead to an equivalent solution. 

Similarly, adopting the skewed AOR formula from Eqs (7) and (11) in the block scheme yields a 

new formula known as SBAOR [36]. As a result, the SBAOR iteration scheme is described as 

( )

( )
( )1

, ,1 32

1, 1 1, 11 32

44
1

415 15

k k

i j i j

i j i j

U US SSr

U US SS




+

+ + + +

+     
= + + −     

+      
,                     (25) 

where 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 1, 1 1, 1 1, 1

1 1 1
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S U U U
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The same goes for the rotated block TOR, which applies the skewed TOR formula from Eq (7), 

as well as Eq (13), to the block scheme, and it provides the SBTOR iterative scheme as follows: 

( )

( )
( )1

, ,3 1 2 54

1, 1 1, 13 1 2 54

4 4 44
1

415 15 15
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+ +       
= + + + −       

+ +       
,      (26) 

in which 

( ) ( )

( )

( ) ( )

( )

( ) ( ) ( )

1 1, 1 1, 1

2 1, 1

1 1

3 1, 1 1, 1 1

1

4 1, 1 2

5 , 2 2, 2 2,

,

,

,

,

.

k k

i j i j

k

i j

k k

i j i j

k

i j

k k k

i j i j i j

S U U

S U

S U U S

S U S

S U U U
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As stated before, there is no generic formula for defining the optimal value for all weighted 

parameters, which results in a minimum number of iterations. Consistent with [32], the values of r  

and r  are commonly appointed as close to the corresponding   value. Note that not every parameter 

value leads to convergence. The optimal values for all three relaxation parameters for each FS and HS 

case are different. Due to each relaxation value being predetermined before execution, the complexity 

related to determining the relaxation values for the overall computation is unaffected. Table 1 provides 

a list of the optimal relaxation values used throughout the experiments. Sensitivity analysis has been 

used to specify each relaxation parameter’s value. The values are the same for every N-size grid, 

although they differ from other grid sizes and are not significant enough to be revealed; they vary by 

roughly 0.0001. 
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Table 1. Grid search of relaxation parameter values. 

Methods   r  r  

BSOR 1.82 - - 

BAOR 1.83 1.82 - 

BTOR 1.83 1.86 1.89 

SBSOR 1.81 - - 

SBAOR 1.82 1.84 - 

SBTOR 1.82 1.87 1.88 

Algorithm 1 describes the implementation of the SBTOR scheme in accordance with Eq (26) to 

solve the two-dimensional Laplace problem. 

Algorithm 1: SBTOR scheme 

i. Setup the configuration region with start and goal positions. 

ii. Initialize the starting point 
15, 10 , 0U iteration −  . 

iii. Set the variables 
( ) ( )

( )

( ) ( )

( )

( ) ( ) ( )

1 1, 1 1, 1

2 1, 1

1 1

3 1, 1 1, 1 1

1

4 1, 1 2

5 , 2 2, 2 2,

,

,

,

,

.

k k

i j i j

k

i j

k k

i j i j

k

i j

k k k

i j i j i j

S U U

S U

S U U S

S U S

S U U U

− − + −

− +

+ +

− − + −

+

− +

+ + + +

 +



 + −

 −

 + +

 

iv. For each non-occupied black nodes (• ), calculate 

( )   ( ) ( )

( )   ( ) ( )

1

, 3 4 1 2 5 ,

1

1, 1 3 4 1 2 5 1, 1

4 4 4 4 1 ,
15 15 15

4 1 .
15 15 15

k k

i j i j

k k

i j i j

r r
U S S S S S U

r r
U S S S S S U







+

+

+ + + +


 + + + + + −


 + + + + + −

  

v. Compute the unique sets adjacent to the boundary via the direct method using Eq (13). 

Then, evaluate the remaining white nodes ( ) by using 

( ) ( ) ( ) ( ) ( )1 1 1

, 1, 1, , 1 , 1

1

4

k k k k k

i j i j i j i j i jU U U U U
+ + +

− + − +
  + + +
  . 

vi. Encounter the convergence test 
1510 − , go to (vii). Else, back to (iii). 

vii. Run GDS for path construction. 

3. Results and discussion 

Following the aim of this study, an experiment has been conducted by using a robot 2D 

simulator [37] built by the authors to analyze the competency of the proposed algorithm, i.e., SBTOR 

scheme, as a tool to solve the path-planning problem. In the block mesh grid domain (see Figure 1) 

with the execution of the skewed block iterative method, approximately half of the group of node 

points are computed throughout the iteration process. This will logically result in a substantial 

reduction of the computational complexity by nearly 50% of the entire operation. The simulations are 

carried out on four different configuration spaces with five different grid sizes in order to assess the 
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performance of the proposed algorithms. The aforementioned performances were analyzed with three 

criteria: (i) number of iterations, (ii) CPU time in seconds and (iii) success of path planning. The 

amount of CPU time and iteration count required by every algorithm is recorded once the tolerance 

rate for the iteration process is reached. The GDS approach then makes use of the computed Laplacian 

potentials to guarantee that a path from the starting point to the goal position is successfully constructed. 

In the designated areas, several obstacles with different sizes and shapes are positioned. The 

Dirichlet boundary condition was utilized in the initial configuration, in which the walls and obstacles 

are set at the high potential value (the highest temperature). The start position had no initial value 

specified, whereas the goal location was set at the low potential value (viewed as the lowest 

temperature). The remainder of mesh grid points were initialized to zero. A machine running a 2.50-

GHz processor with 8 GB of RAM has been used to carry out the simulation experiments. Numerical 

computation was performed iteratively until the stopping condition was met. Provided the Laplacian 

potential values give no further changes and the difference of current iterations (k) with the next 

iterations (k+1) is extremely small, e.g., 
151.0−

, the loop should be stopped. This accuracy level was 

necessary to prevent any point on the surface which has critical point slopes that result in an abrupt 

absence of descending gradient patterns. 

Each iterative scheme compared in the experiments is shown in Table 2, along with the iteration 

counts (k) and the execution time (t). Both the block (EG) and skewed block (EDG) schemes evidently 

show that the TOR iterative approach surpassed its generalization techniques. The computational 

complexity of the skewed block iterative approach will decrease by approximately half of that relative 

to the HS process. Since only half of the total nodes in the mesh grid are examined, the skewed schemes 

surpass the standard block schemes that utilize the FS process. The size of the mesh grid and pattern 

of the region plays a significant role in producing the outputs of k and t. Obviously, the larger grid size 

will require more iterations and a longer time to be executed. The improvement ratio between each 

over-relaxation technique for the smallest grid size (300) to the largest (1500) varies. In terms of the 

iteration count, on average, the BTOR efficiently decreased by 3–6% compared to BAOR, and 12–20% 

next to BSOR, whereas SBTOR reduced it by more than 3–8% compared to SBAOR, and 

roughly 19–32% of SBSOR. However, in terms of execution time, BTOR is between 3–7% lower 

relative to BAOR, and 14–18% in comparison with BSOR, while SBTOR effectively depreciated 

approximately 1–4%  from SBAOR, and 15–23% in comparison with SBSOR. This study still 

contributes good results since previous studies [3,13,38] only did the experiments on extremely small 

grid meshes, i.e., 50 by 50 and 70 by 70 grid. Figures 3 and 4 show the results of Table 2 graphically 

for the number of iterations and CPU time, respectively. From the graphs, again, the skewed block 

TOR undoubtedly offers the optimum performance in contrast to its predecessor. 

Table 2. Number of iterations (k) and execution time (t) in seconds for the proposed 

iterative schemes. N   N is the size of the grid mesh, e.g., N = 300. 

 
Techni

q-ues 

N   N 

300 600 900 1200 1500 

 k t k t k t k t k t 

R
eg

io
n
 1

 

BSOR 1258 6.88 5899 163.72 12844 871.66 22227 2694.80 34055 6286.69 

BAOR 1042 6.05 4994 137.87 10928 751.78 19107 2442.66 29306 5551.02 

BTOR 997 5.05 4812 133.00 10581 720.29 18549 2394.62 28445 5404.33 

Continued on next page 
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Techniq-

ues 

N   N 

300 600 900 1200 1500 

 k t k t k t k t k t 

R
eg

io
n
 1

 

SBSOR 953 4.34 4495 110.88 9916 603.41 17653 1947.12 27037 3878.32 

SBAOR 766 3.67 3730 95.08 8200 498.19 14338 1599.91 22141 3336.68 

SBTOR 743 3.69 3649 91.03 8038 490.77 14077 1626.65 21676 3303.54 

R
eg

io
n
 2

 

BSOR 1729 7.67 6782 199.59 14874 1009.48 26007 2827.46 39968 6925.80 

BAOR 1610 8.25 6368 185.36 13953 926.49 24429 3003.98 32926 5909.85 

BTOR 1489 7.64 5957 169.39 13062 867.20 22905 2787.69 31552 5700.19 

SBSOR 1324 4.70 5599 142.64 13252 787.53 22898 2386.46 42248 6170.35 

SBAOR 1188 4.17 4767 122.85 10490 624.48 18371 1930.06 24644 3900.10 

SBTOR 1131 4.63 4561 119.23 10032 603.66 17542 1881.31 24001 3815.88 

R
eg

io
n
 3

 

BSOR 2666 13.24 11076 315.87 24519 1602.81 42897 5591.93 65977 12331.17 

BAOR 2480 13.83 10389 301.27 22995 1633.35 40322 5261.60 62423 11975.63 

BTOR 2371 11.66 9977 296.46 22111 1883.36 38917 5094.93 59912 10921.11 

SBSOR 2035 8.00 10243 261.74 24864 1529.74 45435 5017.92 70627 10771.29 

SBAOR 1835 7.67 7741 203.61 17131 1072.61 30027 3437.95 46055 7612.81 

SBTOR 1784 6.69 7557 202.95 16707 1251.76 29270 3398.37 45091 7337.51 

R
eg

io
n
 4

 

BSOR 1629 7.80 6487 187.33 14194 990.20 24913 2979.14 38195 6919.25 

BAOR 1392 7.56 5648 167.65 12367 891.51 21724 2609.11 33518 6139.29 

BTOR 1328 7.10 5428 163.21 11907 850.26 20963 2573.12 34842 6494.66 

SBSOR 1238 4.33 5958 152.73 13501 828.24 23920 2527.82 38175 5948.26 

SBAOR 1116 4.53 4223 109.96 9369 615.38 16313 1725.41 25023 3991.87 

SBTOR 1125 5.02 4106 107.90 9149 605.69 15908 1774.41 26360 4380.35 

 

Figure 3. Performance graph in relation to the number of iterations. 
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Figure 4. Performance graph in relation to the execution time. 

The ideology of path-planning flow within this experiment starts with establishing the initial start 

position and the target location. Next, we identify the optimal parameter according to the 

corresponding iterative schemes. Once the harmonic potential is generated from the selected algorithm, 

a complete smooth path is developed through the use of the GDS technique. This impression could 

describe the iterative scheme that tracks the descending gradient from its starting point to the next 

consecutive points with lower potentials from previous points, up to the target location (with the lowest 

potential value). These successful trails can be observed as demonstrated in Figure 5. In this simulation, 

the starting point is indicated by a green square point, while a red circle point is allocated for the target. 

As shown in Figure 5, each start location from every region has efficiently accomplished the route by 

arriving at the target position along while escaping any walls and obstacles in between (if any). The 

path trajectories can be really fast because they only involve the gradient evaluation of the precomputed 

Laplacian potential [13]. All four configuration regions in this experiment are relatively simple relative 

to those in [38]. 
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Figure 5. Path construction in an identified stationary environment. 

There are various techniques to solve navigation problems. According to Patle et al. [1], these 

techniques can be divided into two main groups, i.e., classical approaches and reactive approaches. 

Due to the lack of artificial intelligence tools at the time, the classical approach was initially quite 

common as a tool to address robot navigational issues. When a task is performed utilizing a classical 

approach, it can be noticed that either a result will be acquired, or it will be confirmed that there is no 

result. This method is less suitable for real-time implementation due to its significant disadvantages, 

including its high processing cost and inability to respond to the uncertainty existing in the 

environment. Reactive techniques have surpassed traditional ways in recent years as the preferred 

method for mobile robot navigation. They are extremely adept at managing the environment's 

uncertainty. Meanwhile, Sanchez-Ibanez et al. [39] classified path planning into four categories with 

two major subcategories (see Figure 6). There are characteristics shared by two adjacent subcategories 

from distinct categories. The schematic also shows how some subcategories lean more toward global 

planning or local planning than others. From the reviewed papers [1,39], it is safe to say the proposed 

algorithm in this study has its own edge and drawback. Algorithm 1 has clearly implemented the 

improved version of potential field approaches. In essence, the goal and obstacles operate as charged 

surfaces, and the overall potential creates the imaginary forces on the robot. The robot is drawn toward 

the goal and kept clear of the obstacles by this imaginary force [8]. Later, the robot will travel along 

the negative gradient to avoid obstacles and arrive at its destination point. To prevent a local minimum 

problem, this work utilizes the harmonic function [7]. Moreover, Algorithm 1 exhibits superior 

computing execution when the skewed accelerated relaxation technique is implemented, as it performs 
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much faster to obtain the solution of Laplace’s equation to solve the path-planning problem. 

 

Figure 6. Classification of existing path-planning techniques [39]. 

4. Conclusions 

The iterative approaches investigated in this work are from over-relaxation families including the 

implementation of the block and skewed block schemes to enhance the execution performance as well 

as reduce the execution time. The introduction of accelerated weighted parameters to respective 

skewed nodes further improves the overall performance of the newly proposed SBTOR iterative 

schemes, yielding promising results. The experiments evidently demonstrate that the solution to the 

robot path-planning problem is feasibly solved by using numerical approaches owing to advanced 

algorithms and the accessibility of fast machines these days. From the table of results, the SBTOR 

scheme was found to significantly outperform its predecessor’s techniques in terms of both the number 

of iterations and the time taken. The computational performance is unaffected by increasing the 

number of obstacles; in fact, it will complete more quickly because the calculation disregards the 

regions engaged by the obstacles. It can be said that the larger the area of obstacles taken, the less the 

required calculations and storage, or, in other words, the obstacles reduce computational complexity. 

Once again, the authors would like to highlight that the SBTOR outperformed the SBAOR 

(approximately by 3–8%) and SBSOR (by about 19–32%) in terms of the iteration count, while the 

SBTOR saved roughly 1–4% over SBAOR and 15–23% over SBSOR in terms of the processing time. 

The application of the skewed block TOR scheme families in robot pathfinding and in Algorithm 1 is 

another aspect of this study's originality or novelty. The authors intend to investigate the red and black 

strategy [23,24,40–42] by applying the proposed approaches in future work. It is believed that the 

aforementioned strategy will enhance and refine the overall computation. 
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