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Abstract: The present paper is the result of a contemplative study of a multi-time control problem
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penalty method. Further study reveals that the solution set of the considered problem and the auxiliary
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paper.
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1. Introduction

The formulation of several methods for solving nonlinear programming problems with the help
of transformation into equivalent auxiliary problem techniques has always grabbed the attention of
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various mathematicians. The class of exact penalty methods has proved to be of great interest as
it enables the transformation of a constrained problem into a single unconstrained problem via the
penalty parameter that penalizes any violation of the constraints. Zangwill [21], and Erimen [5] laid the
foundation for finding solutions for nonlinear constrained problems via the penalty method. Antczak
extensively worked on the exact penalty method for different types of mathematical programming
problems under various suitable assumptions [2–4]. Further, the penalty approach was applied to
multi-dimensional control problems in the presence of convexity by Jayswal and Preeti [7, 8].

On the other hand, the notion of convexity paved the way for establishing a number of concepts to
facilitate real applications with the help of optimization problems. The concept of invexity is one such
concept that proved to be a trailblazer since the moment it was introduced by Hanson [6]. Invexity
theory has come a long way since its inception for scalar-constrained optimization problems. Due
to its varied range of applications in optimization theory, a plethora of mathematicians have worked
extensively in this direction, and they have come up with a variety of generalizations of this concept. To
name, the concept of pre-invexity was introduced by Weir, and Mond [20]. Strong and weak convexity
was introduced by Jeyakumar [9]. Nahak and Nanda [14] extended the duality results of variational
problems to pseudo-invex functions. Noor and Noor [15] introduced strongly α-pre-invex functions.
Also, they laid the foundation of the relationship among strongly α-preinvex, strongly α-invex and
αη-monotonicities under appropriate conditions.

Further, the concept of KT-invexity emerged from that of invexity when Martin maintained the
sufficiency of Kuhn-Tucker (KT) conditions. This also led to the result that KT-invexity is a necessary
and sufficient condition for a KT-point to be a global minimizer. Then, the notion of KT-pseudoinvexity
was established by Treanţă and Arana-Jiménez [17] and it was shown that KT-pseudoinvex multi-
dimensional control problem is formulated in such a way that KT-point serves as an optimal solution.
After that, Treanţă efficiently generalized KT-pseudoinvexity and derived interesting results under
various hypotheses for control problem [18, 19]. For other but connected points of view, the reader
can consult Jiang et al. [10], Lin [11] and Lin et al. [12].

The present work is organized as follows: Section 2 includes some definitions, preliminaries, and
notations, which will help to understand the developed results in this paper. Section 3 addresses the
unconstrained problem corresponding to (MCP) and demonstrates that the solution set of considered
constrained problem and its corresponding unconstrained problem coincide under KT-pseudoinvexity.
Further, we furnish the developed results via a non-trivial example in Section 4. Finally, the conclusion
of the paper is summarized in Section 5.

2. Fundamental concepts

Let Rl,Ru and Rv be three Euclidean spaces of dimensions l, u and v, respectively. Let ϕs0,s1 ⊂ R
l

be a hyper-parallelepiped joint by s0 =
(
s%0
)

and s1 =
(
s%1

)
, % = 1, l, where s0 =

(
s%0
)

and s1 =
(
s%1
)

are points situated diagonally opposite to each other. The point s =
(
(s%) , % = 1, l

)
∈ ϕs0,s1 ⊂ Rl is

known as multi-time. Let A be the space of state functions (piecewise smooth) a : ϕs0,s1 ⊂ R
l → Ru,

a = (aκ) ∈ Ru. Let B be the space of control functions (piecewise continuous) b : ϕs0,s1 ⊂ R
l → Rv,

b = (b j) ∈ Rv. ds = ds1 ∧ · · · ∧ dsl is the volume element on Rl ⊃ ϕs0,s1 .
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Mathematically, the multi-time control problem is modulated as follows:

(MCP) min
(a(·),b(·))

∫
ϕs0 ,s1

ψ(s, a(s), b(s)) ds

subject to ζm(s, a(s), b(s)) ≤ 0, m = 1, r,
∂aκ

∂s%
= ηκ%(s, a(s), b(s)), κ ∈ 1, u, % = 1, l,

a(s0) = a0, a(s1) = a1,

where s ∈ ϕs0,s1 , ψ : ϕs0,s1×A×B → R, ζm : ϕs0,s1×A×B → R, m = 1, r, η% =
(
ηκ%

)
: ϕs0,s1×A×B → Ru

and % = 1, l represent C∞-class functionals. The function η% fulfils complete integrability conditions
(closeness conditions)

Dβη% = D%ηβ, %, β = 1, l, % , β,

where Dβ is the total derivative.
Let

ϑ =
{
(a, b) ∈ A × B : ζm(s, a(s), b(s)) ≤ 0,

∂aκ

∂s%
= ηκ%(s, a(s), b(s)), a(s0) = a0,

a(s1) = a1, s ∈ ϕs0,s1 ,m = 1, r, κ ∈ 1, u, % = 1, l
}

be the feasible set for (MCP).
To simplify the representation of the paper, we signify some notations as:

a = a(s), ā = ā(s), â = â(s), b = b(s), b̄ = b̄(s), b̂ = b̂(s), π = (s, a(s), b(s)), π̄ = (s, ā(s), b̄(s)), π̂ =

(s, â(s), b̂(s)), ς = ς(s), ς̄ = ς̄(s) and ϕ = ϕs0,s1 .

Definition 2.1. A solution (ā, b̄) ∈ ϑ is said to be an optimal solution to (MCP), if∫
ϕ

ψ(π̄)ds ≤
∫
ϕ

ψ(π)ds, ∀(a, b) ∈ ϑ.

Definition 2.2. [17] The multi-time control problem (MCP) is said to be KT-pseudoinvex at (ā, b̄) ∈ ϑ
if for all Lagrange multipliers (piecewise smooth) ν̄m = (ν̄m(s)) ∈ R+,m = 1, r, γ̄κ% = (γ̄κ%(s)) ∈ R, κ =

1, u, % = 1, l, there exist θ : ϕ×A×B×Rr×Rul → Ru of C1-class with θ|∂φ and ξ : ϕ×A×B×Rr×Rul →

Rv of C0-class with ξ|∂φ such that for all (a, b) ∈ A × B∫
ϕ

ψ(π)ds −
∫
ϕ

ψ(π̄)ds < 0.

Then, we obtain ∫
ϕ

[
ψa(π̄) + ν̄m(ζm)a(π̄) + γ̄κ%(η

κ
%)a(π̄)

]
θds −

∫
ϕ

γ̄κ%D%θds

+

∫
ϕ

[
ψb(π̄) + ν̄m(ζm)b(π̄) + γ̄κ%(η

κ
%)b(π̄)

]
ξds < 0,
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or equivalently ∫
ϕ

[
ψa(π̄) + ν̄m(ζm)a(π̄) + γ̄κ%(η

κ
%)a(π̄)

]
θds −

∫
ϕ

γ̄κ%D%θds

+

∫
ϕ

[
ψb(π̄) + ν̄m(ζm)b(π̄) + γ̄κ%(η

κ
%)b(π̄)

]
ξds ≥ 0.

Therefore, we have ∫
ϕ

ψ(π)ds −
∫
ϕ

ψ(π̄)ds ≥ 0.

Definition 2.3. [17] [Necessary Optimality Conditions] A solution (ā, b̄) ∈ ϑ is said to be a KT-point
to (MCP) if there exist Lagrange multipliers (piecewise smooth) ν̄m = (ν̄m(s)) ∈ R+,m = 1, r, γ̄κ% =

(γ̄κ%(s)) ∈ R, κ = 1, u and % = 1, l such that

∂ψ

∂aκ
(π̄) + ν̄m

∂ζm

∂aκ
(π̄) + γ̄κ%

∂ηκ%

∂aκ
(π̄) +

∂γ̄κ%

∂s%
= 0, κ = 1, u, (2.1)

∂ψ

∂b j (π̄) + ν̄m
∂ζm

∂b j (π̄) + γ̄κ%
∂ηκ%

∂b j (π̄) = 0, j = 1, v, (2.2)

ν̄mζm(π̄) = 0, ν̄m ≥ 0 (2.3)

for all s ∈ ϕ, except at discontinuities.

The theorem mentioned below states that the KT point indeed serves as a necessary optimality
condition for being an optimal solution for (MCP).

Theorem 2.1. If (ā, b̄) is a normal optimal solution for (MCP), then (ā, b̄) is a KT-point.

Proof. The proof of this theorem follows in the same manner as in Theorem 1 of [17]. Hence, it is
omitted. �

3. The exact l1 penalty method

Now, we modulate an equivalent unconstrained multi-time control problem associated with (MCP)
via an exact l1 penalty method as:

(MCP)ς min
(a(·),b(·))

∫
ϕ

χ(s, a(s), b(s), ς(s))ds =

∫
ϕ

{
ψ(s, a(s), b(s))

+ ς(s)

 r∑
m=1

ζ+
m(s, a(s), b(s)) +

u∑
κ=1

l∑
%=1

∣∣∣∣∣ηκ%(s, a(s), b(s)) −
∂aκ

∂s%

∣∣∣∣∣
 }ds,

where the penalty parameter ς(s) > 0 and the penalty function ζ+
m(s, a(s), b(s)) is defined as:

ζ+
m(s, a(s), b(s)) =

0, if ζm(s, a(s), b(s)) ≤ 0;
ζm(s, a(s), b(s)), if ζm(s, a(s), b(s)) > 0.

(3.1)
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Definition 3.1. A solution (ā, b̄) ∈ A × B is called a minimizer to (MCP)ς, if∫
ϕ

χ(π̄, ς)ds ≤
∫
ϕ

χ(π, ς)ds, ∀(a, b) ∈ A × B.

Now, we shall prove the relationship between the solution set of constrained problems and its
associated unconstrained problem under KT-pseudoinvexity.

Theorem 3.1. Let
(
ā, b̄

)
be an optimal solution to (MCP) and assume that the considered problem

(MCP) is KT-pseudoinvex at
(
ā, b̄

)
on A × B. If ς ≥ max

{
ν̄m,m = 1, r, |γ̄κ%|, κ = 1, u, % = 1, l

}
, then(

ā, b̄
)

is also a minimizer of (MCP)ς.

Proof. Let
(
ā, b̄

)
be not a minimizer of (MCP)ς. Then, there exists a solution

(
â, b̂

)
∈ A × B such that∫

ϕ

χ (π̂, ς) ds <
∫
ϕ

χ (π̄, ς) ds,

or ∫
ϕ

ψ(π̂) + ς

 r∑
m=1

ζ+
m(π̂) +

u∑
κ=1

l∑
%=1

∣∣∣∣∣ηκ%(π̂) −
∂aκ

∂s%

∣∣∣∣∣

 ds

<

∫
ϕ

ψ(π̄) + ς

 r∑
m=1

ζ+
m(π̄) +

u∑
κ=1

l∑
%=1

∣∣∣∣∣ηκ%(π̄) −
∂aκ

∂s%

∣∣∣∣∣

 ds.

The feasibility of
(
ā, b̄

)
along with the above inequality and relation (3.1) produces∫

ϕ

ψ(π̂) + ς

 r∑
m=1

ζ+
m(π̂) +

u∑
κ=1

l∑
%=1

∣∣∣∣∣ηκ%(π̂) −
∂aκ

∂s%

∣∣∣∣∣

 ds <

∫
ϕ

ψ(π̄)ds.

Since the penalty parameter ς ≥ max
{
ν̄m,m = 1, r, |γ̄κ%|, κ = 1, u, % = 1, l

}
> 0 and the penalty function

is also positive, therefore, it follows that∫
ϕ

ψ(π̂)ds <
∫
ϕ

ψ(π̄)ds. (3.2)

On the other hand, by hypothesis, (MCP) is KT-pseudoinvex at
(
ā, b̄

)
onA×B. Therefore, there exist

θ : ϕ×A×B×Rr ×Rul → Ru of C1-class with θ|∂ϕ = 0 and ξ : ϕ×A×B×Rr ×Rul → Rv of C0-class
with ξ|∂ϕ = 0 such that∫

ϕ

[
ψa(π̄) + ν̄m(ζm)a(π̄) + γ̄κ%(η

κ
%)a(π̄)

]
θds −

∫
ϕ

γ̄κ%D%θds

+

∫
ϕ

[
ψb(π̄) + ν̄m(ζm)b(π̄) + γ̄κ%(η

κ
%)b(π̄)

]
ξds < 0, ∀(a, b) ∈ A × B. (3.3)

By well-established results, we get

D%

[
θγ%

]
= γ%D%θ + θD%γ%,
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ϕ

θD%γ%ds =

∫
ϕ

D%

[
θγ%

]
ds −

∫
ϕ

γ%D%θds.

Using θ|∂ϕ = 0 along with flow-divergence formula, we obtain∫
ϕ

D%

[
θγ%

]
ds =

∫
∂ϕ

[
θγ%

]
−→n ds = 0,

where −→n = (−→n %), % = 1, u, is the normal unit vector to the hypersurface ∂ϕ, hence∫
ϕ

θD%γ%ds = −

∫
ϕ

γ%D%θds. (3.4)

By using the condition (3.4), (3.3) is reduced as∫
ϕ

[
ψa(π̄) + ν̄m(ζm)a(π̄) + γ̄κ%(η

κ
%)a(π̄)

]
θds +

∫
ϕ

[
D%γ̄

κ
%

]
θds

+

∫
ϕ

[
ψb(π̄) + ν̄m(ζm)b(π̄) + γ̄κ%(η

κ
%)b(π̄)

]
ξds < 0.

Since, the conditions (2.1)–(2.3) are fulfilled at
(
ā, b̄

)
, therefore, the above inequality can be written as∫

ϕ

[
ψa(π̄) + ν̄m(ζm)a(π̄) + γ̄κ%(η

κ
%)a(π̄)

]
θds +

∫
ϕ

[
D%γ̄

κ
%

]
θds

+

∫
ϕ

[
ψb(π̄) + ν̄m(ζm)b(π̄) + γ̄κ%(η

κ
%)b(π̄)

]
ξds = 0 < 0,

which is a contradiction and the proof is completed. �

Now, we authenticate Theorem 3.1 with the help of following example.

Example 3.1. Let l = 2, u = 1 and v = 1. ϕs0,s1 is a rectangle joint by the diagonally opposite points
s0 =

(
s1

0, s
2
0

)
and s1 =

(
s1

1, s
2
1

)
in R2 (in particular cases, ϕs0,s1 is a square).

Let us formulate a multi-time control problem (MCP) as below:

(MCP1) min
(a(·),b(·))

∫
ϕ0,4

(b2 − 5b + 16) ds1ds2

subject to 25 − a2 ≤ 0,
∂a
∂s1 = 2 − b,

∂a
∂s2 = 2 − b,

a(0, 0) = 0, a(4, 4) = 10,

where s =
(
s1, s2

)
∈ ϕ0,4 and the multi-time objective functional represents the mass of ϕ0,4 with

the density
(
b2 − 5b + 16

)
that depends on the current point, and the controlled dynamical system
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∂a
∂s1 = ∂a

∂s2 = 2 − b is a neuron activation system which describes the controlled behavior of an artificial
neural system from the initial point a(0, 0) = 0 to the endpoint a(4, 4) = 10.

By computation, we find
(
ā, b̄

)
=

(
5
4

(
s1 + s2

)
, 3

4

)
is an optimal solution to (MCP1) at which (2.1)–

(2.3) are also fulfilled with Lagrange multiplier ν̄ = 0, γ̄1
1 = −35

2 and γ̄1
2 = −35

2 .
Now, we formulate (MCP1)ς associated to (MCP1) via an exact l1 penalty method as follows:

(MCP1)ς min
(a(·),b(·))

∫
ϕ0,1

{(
b2 − 5b + 16

)
+ ς

[
max

{
0, 25 − a2

}
+

∣∣∣∣∣ ∂a
∂s1 − 2 + b

∣∣∣∣∣ +

∣∣∣∣∣ ∂a
∂s2 − 2 + b

∣∣∣∣∣]} ds1ds2.

The following inequality∫
ϕ0,1

{(
b2 − 5b + 16

)
+ ς

[
max

{
0, 25 − a2

}
+

∣∣∣∣∣ ∂a
∂s1 − 2 + b

∣∣∣∣∣ +

∣∣∣∣∣ ∂a
∂s2 − 2 + b

∣∣∣∣∣]} ds1ds2

−

∫
ϕ0,1

{(
b̄2 − 5b̄ + 16

)
+ ς

[
max

{
0, 25 − ā2

}
+

∣∣∣∣∣ ∂a
∂s1 − 2 + b̄

∣∣∣∣∣ +

∣∣∣∣∣ ∂a
∂s2 − 2 + b̄

∣∣∣∣∣]} ds1ds2 ≥ 0

holds at
(
ā, b̄

)
=

(
5
4

(
s1 + s2

)
, 3

4

)
with ς ≥ 35

2 and for all (a, b) ∈ A×B. Further, the fact that the problem
(MCP1) is a KT- pseudoinvex problem is quite evident at (ā, b̄) on A × B. Thus, all the assumptions
of Theorem 3.1 are fulfilled. Hence, we conclude that (ā, b̄) =

(
5
4

(
s1 + s2

)
, 3

4

)
is also a minimizer of

(MCP1)ς.

Proposition 3.1. Let
(
ā, b̄

)
be a minimizer to (MCP)ς̄. Then∫

ϕ

ψ(π̄)ds ≤
∫
ϕ

ψ(π)ds, ∀(a, b) ∈ ϑ.

Proof. Let
(
ā, b̄

)
be a minimizer to (MCP)ς̄. Therefore, by Definition 3.1, for all (a, b) ∈ A × B, we

have ∫
ϕ

χ(π̄, ς̄)ds ≤
∫
ϕ

χ(π, ς̄)ds,

or ∫
ϕ

ψ(π̄) + ς̄

 r∑
m=1

ζ+
m(π̄) +

u∑
κ=1

l∑
%=1

∣∣∣∣∣ηκ%(π̄) −
∂aκ

∂s%

∣∣∣∣∣

 ds

≤

∫
ϕ

ψ(π) + ς̄

 r∑
m=1

ζ+
m(π) +

u∑
κ=1

l∑
%=1

∣∣∣∣∣ηκ%(π) −
∂aκ

∂s%

∣∣∣∣∣

 ds.

Since ϑ ⊆ A × B, then, by the relation (3.1), we get the following inequality for all (a, b) ∈ ϑ∫
ϕ

ψ(π̄) + ς̄

 r∑
m=1

ζ+
m(π̄) +

u∑
κ=1

l∑
%=1

∣∣∣∣∣ηκ%(π̄) −
∂aκ

∂s%

∣∣∣∣∣

 ds ≤

∫
ϕ

ψ(π)ds.

Again, using the relation (3.1), we have∫
ϕ

ψ(π̄)ds ≤
∫
ϕ

ψ(π)ds, ∀(a, b) ∈ ϑ.

�
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Theorem 3.2. Let
(
ā, b̄

)
be a minimizer to (MCP)ς̄. Considering the fact that the inequality∫

ϕ

χ(π, ς)ds ≥
∫
ϕ

χ(π̄, ς)ds

holds for any ς ≥ ς̄ and for all (a, b) ∈ ϑ. Further, assume that the considered problem (MCP) is KT-
pseudoinvex on A × B. If ς ≥ max

{
ν̄m,m = 1, r, |γ̄κ%|, κ = 1, u, % = 1, l

}
, then (ā, b̄) is also an optimal

solution to (MCP).

Proof. Since
(
ā, b̄

)
is a minimizer to (MCP)ς̄, therefore, by Proposition 3.1, we get∫

ϕ

ψ(π̄)ds ≤
∫
ϕ

ψ(π)ds, ∀(a, b) ∈ ϑ. (3.5)

To prove that
(
ā, b̄

)
is an optimal solution to (MCP), first, we prove that

(
ā, b̄

)
∈ ϑ. By contradiction,

we assume that
(
ā, b̄

)
< ϑ. Therefore, by (3.1), we have∫

ϕ

 r∑
m=1

ζ+
m(π̄) +

u∑
κ=1

l∑
%=1

∣∣∣∣∣ηκ%(π̄) −
∂aκ

∂s%

∣∣∣∣∣
 ds > 0. (3.6)

Let (a, b) be any feasible solution to (MCP). By assumption, the following inequality∫
ϕ

χ(π, ς)ds ≥
∫
ϕ

χ(π̄, ς)ds

holds for any ς ≥ ς̄ and for all (a, b) ∈ ϑ, or∫
ϕ

ψ(π) + ς

 r∑
m=1

ζ+
m(π) +

u∑
κ=1

l∑
%=1

∣∣∣∣∣ηκ%(π) −
∂aκ

∂s%

∣∣∣∣∣

 ds

≥

∫
ϕ

ψ(π̄) + ς

 r∑
m=1

ζ+
m(π̄) +

u∑
κ=1

l∑
%=1

∣∣∣∣∣ηκ%(π̄) −
∂aκ

∂s%

∣∣∣∣∣

 ds. (3.7)

However, if we set

ς > max


∫
ϕ
{ψ(π) − ψ(π̄)}ds∫

ϕ

{∑r
m=1 ζ

+
m(π̄) +

∑u
κ=1

∑l
%=1

∣∣∣ηκ%(π̄) − ∂aκ
∂s%

∣∣∣} ds
, ς̄; (a, b) ∈ ϑ

 ,
the inequalities (3.5) and (3.6) conclude that ς is a positive real number. Therefore, we can write the
above inequality as:∫

ϕ

ψ(π̄) + ς

 r∑
m=1

ζ+
m(π̄) +

u∑
κ=1

l∑
%=1

∣∣∣∣∣ηκ%(π̄) −
∂aκ

∂s%

∣∣∣∣∣

 ds >

∫
ϕ

ψ(π)ds.

The above inequality together with the feasibility of (a, b) in (MCP) and the relation (3.1) yields∫
ϕ

ψ(π̄) + ς

 r∑
m=1

ζ+
m(π̄) +

u∑
κ=1

l∑
%=1

∣∣∣∣∣ηκ%(π̄) −
∂aκ

∂s%

∣∣∣∣∣

 ds
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>

∫
ϕ

ψ(π) + ς

 r∑
m=1

ζ+
m(π) +

u∑
κ=1

l∑
%=1

∣∣∣∣∣ηκ%(π) −
∂aκ

∂s%

∣∣∣∣∣

 ds,

which contradicts the inequality (3.7). Therefore,
(
ā, b̄

)
∈ ϑ and its optimality in (MCP) follows

directly from (3.5). �

4. Saddle point optimality criterion

In this section, the concept of the saddle point criterion is elaborately discussed with the motive of
establishing the relationship between the solution set of (MCP) along with the (MCP)ς.

To begin with, we mention here the definitions of Lagrange functional along with saddle point for
an (MCP).

Definition 4.1. The Lagrange functional L(a, b, ν, γ) defined for (MCP) is given as:

L(a, b, ν, γ) =

∫
ϕ

ψ(π) +

r∑
m=1

νmζm(π) +

u∑
κ=1

l∑
%=1

γκ%

(
∂aκ

∂s%
− ηκ%(π)

) ds,

where ν = (νm) ∈ Rr
+ and γ = (γκ%) ∈ R

ul
+ .

Definition 4.2. A point
(
ā, b̄, ν̄, γ̄

)
∈ ϑ × Rr × Rul is called a saddle point of the Lagrange functional

defined for (MCP), if there exist Lagrange multipliers (piecewise smooth functions) ν̄ = (ν̄m) ∈ Rr
+ and

γ̄ = (γ̄κ%) ∈ R
ul
+ such that the following inequalities hold:

(i) L
(
ā, b̄, ν, γ

)
≤ L

(
ā, b̄, ν̄, γ̄

)
, ∀ν ∈ Rr

+,∀γ ∈ R
ul
+ ;

(ii) L (a, b, ν̄, γ̄) ≥ L
(
ā, b̄, ν̄, γ̄

)
, ∀(a, b) ∈ ϑ.

Next, with the help of the notion of the saddle point, we establish the fact that an equivalence lies
in the problems (MCP) and (MCP)ς under KT-psedoinvexity.

Theorem 4.1. Let
(
ā, b̄, ν̄, γ̄

)
be a saddle point of the Lagrange functional defined for (MCP). If we

consider the penalty parameter ς to be sufficiently large in the sense that

ς ≥ max
{
ν̄m,m = 1, r, |γ̄κ%|

∣∣∣∣ % = 1, l, κ = 1, u
}
,

then
(
ā, b̄

)
is a minimizer of (MCP)ς.

Proof. Let us prove the result with the help of contradiction and assume that
(
ā, b̄

)
is not a minimizer

of (MCP)ς. Then, there exists
(
â, b̂

)
∈ A × B such that∫
ϕ

χ
(
â, b̂, ς

)
ds <

∫
ϕ

χ
(
ā, b̄, ς

)
ds.

From the definition of the penalized problem (MCP)ς, we get∫
ϕ

ψ(π̂) + ς

 r∑
m=1

ζ+
m(π̂) +

u∑
κ=1

l∑
%=1

∣∣∣∣∣∂aκ

∂s%
− ηκ%(π̂)

∣∣∣∣∣

 ds
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<

∫
ϕ

ψ(π̄) + ς

 r∑
m=1

ζ+
m(π̄) +

u∑
κ=1

l∑
%=1

∣∣∣∣∣∂aκ

∂s%
− ηκ%(π̄)

∣∣∣∣∣

 ds.

The feasibility of
(
ā, b̄

)
in (MCP) and (3.1) imply that

∫
ϕ

ψ(π̂) + ς

 r∑
m=1

ζ+
m(π̂) +

u∑
κ=1

l∑
%=1

∣∣∣∣∣∂aκ

∂s%
− ηκ%(π̂)

∣∣∣∣∣

 ds <

∫
ϕ

ψ(π̄)ds.

As, the penalty parameter

ς ≥ max
{
ν̄m, |γ̄

κ
%|

∣∣∣∣ m = 1, r, % = 1, l, κ = 1, u
}
.

From the above inequality, we have∫
ϕ

ψ(π̂) +

r∑
m=1

ν̄mζ
+
m(π̂) +

u∑
κ=1

l∑
%=1

∣∣∣∣∣∣γ̄κ%
(
∂aκ

∂s%
− ηκ%(π̂)

)∣∣∣∣∣∣
 ds <

∫
ϕ

ψ(π̄)ds.

Since
(
â, b̂

)
is not a feasible solution in (MCP), by using (3.1), we get

∫
ϕ

ψ(π̂) +

r∑
m=1

ν̄mζm(π̂) +

u∑
κ=1

l∑
%=1

γ̄κ%

(
∂aκ

∂s%
− ηκ%(π̂)

) ds <
∫
ϕ

ψ(π̄)ds. (4.1)

On the other hand, by assumption,
(
ā, b̄, ν̄, γ̄

)
is a saddle point of the Lagrange functional defined for

(MCP). Then, by Definition 4.2(i), we have

L
(
ā, b̄, ν, γ

)
≤ L

(
ā, b̄, ν̄, γ̄

)
, ∀ν = (νm) ∈ Rr

+, γ = (γκ%) ∈ R
ul
+ .

By Definition 4.1, we have∫
ϕ

ψ(π̄) +

r∑
m=1

νmζm(π̄) +

m∑
%=1

n∑
%=1

γκ%

(
∂aκ

∂s%
− ηκ%(π̄)

) ds

≤

∫
ϕ

ψ(π̄) +

r∑
m=1

ν̄mζm(π̄) +

m∑
%=1

n∑
%=1

γ̄κ%

(
∂aκ

∂s%
− ηκ%(π̄)

) ds.

Taking νm = 0,m = 1, r for the preceding inequality, we get∫
ϕ

r∑
m=1

ν̄mζm(π̄)ds ≥ 0. (4.2)

By the feasibility of (ā, b̄) in (MCP), we get∫
ϕ

r∑
m=1

ν̄mζm(π̄)ds ≤ 0. (4.3)
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Thus, the inequalities (4.2) and (4.3) together imply that∫
ϕ

r∑
m=1

ν̄mζm(π̄)ds = 0.

Further, from the feasibility of
(
ā, b̄

)
in (MCP), we also have∫

ϕ

(
ηκ%(π̄) −

∂aκ

∂s%

)
ds = 0.

Therefore, the inequality (4.1) can be rewritten as∫
ϕ

ψ(π̂) +

r∑
m=1

ν̄mζm(π̂) +

u∑
κ=1

l∑
%=1

γ̄κ%

(
∂aκ

∂s%
− ηκ%(π̂)

) ds

<

∫
ϕ

ψ(π̄) +

r∑
m=1

ν̄mζm(π̄) +

u∑
κ=1

l∑
%=1

γ̄κ%

(
∂aκ

∂s%
− ηκ%(π̄)

) ds.

By Definition 4.1, we get

L
(
â, b̂, ν̄, γ̄

)
< L

(
ā, b̄, ν̄, γ̄

)
, ∀(â, b̂) ∈ ϑ.

But, it is contrary to Definition 4.2(ii). This completes the proof. �

Next, we construct a non-convex optimization control problem to authenticate the Theorem 4.1
under KT-pseudoinvexity assumptions.

Example 4.1. Let l = 2A = [0, 2] and B = [0, 2]. ϕs0,s1 is a rectangle joint by the diagonally opposite
points s0 =

(
s1

0, s
2
0

)
and s1 =

(
s1

1, s
2
1

)
in R2 (in particular cases, ϕs0,s1 is a square). Let us formulate a

multi-time control problem (MCP) as below:

(MCP2) min
(a(·),b(·))

∫
ϕ0,2

(−2b − b3) ds1ds2

subject to 16 − a2 ≤ 0,
∂a
∂s1 = 2b,

∂a
∂s2 = 2b,

a(0, 0) = 0, a(2, 2) = 16,

where s =
(
s1, s2

)
∈ ϕ0,2 and the multi-time objective functional represents the mass of ϕ0,2 with the

density
(
−2b − b3

)
that depends on the current point, and the controlled dynamical system ∂a

∂s1 = ∂a
∂s2 =

2b is a neuron activation system which describes the controlled behavior of an artificial neural system
from the initial point a(0, 0) = 0 to the end point a(2, 2) = 16. Note that

ϑ =

{
(a, b) ∈ A × B : −4 ≤ a ≤ 4,

∂a
∂s1 − 2b,

∂a
∂s2 − 2b, a(0, 0) = 0, a(2, 2) = 16

}
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is the set of the all feasible solution to (MCP2). By computation, we find
(
ā, b̄

)
=

(
4
(
s1 + s2

)
, 2

)
is

an optimal solution to (MCP2) at which (2.1)–(2.3) are also fulfilled with Lagrange multiplier ν̄ =

0, γ̄1
1 + γ̄1

2 = 7.
Now, we frame the Lagrange functional for (MCP2) as follows:

L(a, b, µ, γ) =

∫
ϕ0,2

{(
−2b − b3

)
+ ς

(
16 − a2

)
+ γ1

[
∂a
∂s1 − 2b

]
+ γ2

[
∂a
∂s2 − 2b

]}
ds1ds2

and it can be observed that the following inequalities:

(i) L
(
ā, b̄, ν, γ

)
≤ L

(
ā, b̄, ν̄, γ̄

)
, ∀ν ∈ R+,∀γ ∈ R

2
+;

(ii) L (a, b, ν̄, γ̄) ≥ L
(
ā, b̄, ν̄, γ̄

)
, ∀(a, b) ∈ ϑ

are satisfied at
(
ā, b̄

)
=

(
4
(
s1 + s2

)
, 2

)
with Lagrange multiplier ν̄ = 0, γ̄1

1 + γ̄1
2 = 7.

Next, we formulate (MCP2)ς associated to (MCP2) via an exact l1 penalty method as follows:

(MCP2)ς min
(a(·),b(·))

∫
ϕ0,1

{(
−2b − b3

)
+ ς

[
max

{
0, 16 − a2

}
+

∣∣∣∣∣ ∂a
∂s1 − 2b

∣∣∣∣∣ +

∣∣∣∣∣ ∂a
∂s2 − 2b

∣∣∣∣∣]} ds1ds2.

Further, the fact that the problem (MCP2) is a KT- pseudoinvex problem is quite evident at
(
ā, b̄

)
on

A × B. Thus, all the assumptions of Theorem 4.1 are fulfilled. Hence, we conclude that
(
ā, b̄

)
=(

4
(
s1 + s2

)
, 2

)
is also a minimizer of (MCP2)ς.

Theorem 4.2. Let
(
ā, b̄

)
be a minimizer of the penalized problem (MCP)ς. Assume that ϑ is a compact

subset of Ru × Rv and for any ς > ς̄, the inequality∫
ϕ

χ(a, b, ς)ds ≮
∫
ϕ

χ(ā, b̄, ς)ds

is satisfied for all (a, b) ∈ ϑ. Further, if the considered problem (MCP) is KT-pseudoinvex at
(
ā, b̄

)
on

A× B, then
(
ā, b̄, ν̄, γ̄

)
is a saddle point of the Lagrange functional defined for (MCP).

Proof. To show that
(
ā, b̄, ν̄, γ̄

)
is a saddle point of the Lagrange functional defined for (MCP), first, we

prove that
(
ā, b̄

)
is an optimal solution of (MCP). By hypothesis,

(
ā, b̄

)
is a minimizer to (MCP)ς, then

by Proposition 3.1, we have ∫
ϕ

ψ(π̄)ds ≤
∫
ϕ

ψ(π)ds, ∀(a, b) ∈ ϑ, (4.4)

which indicates that, on the set of all feasible solutions, the value of
∫
ϕ
ψ(π)ds is bounded below in a

compact set ϑ.
Now, we shall prove that

(
ā, b̄

)
is an optimal solution to (MCP). Let us proceed by contradiction

and assume that
(
ā, b̄

)
is not a feasible solution to (MCP). Then, by (3.1), it follows that∫

ϕ

 r∑
m=1

ζ+
m(π̄) +

u∑
κ=1

l∑
%=1

∣∣∣∣∣∂aκ

∂s%
− ηκ%(π̄)

∣∣∣∣∣
 ds > 0. (4.5)

AIMS Mathematics Volume 8, Issue 3, 5687–5702.



5699

Further, if we consider a point
(
â, b̂

)
as a feasible solution of (MCP) then, for any ς > ς̄, we get∫

ϕ

χ
(
â, b̂, ς

)
ds ≮

∫
ϕ

χ
(
ā, b̄, ς

)
ds.

According to the definition of the penalized problem (MCP)ς, the above inequality implies that

∫
ϕ

ψ(π̂) + ς

 r∑
m=1

ζ+
m(π̂) +

u∑
κ=1

l∑
%=1

∣∣∣∣∣∂aκ

∂s%
− ηκ%(π̂)

∣∣∣∣∣

 ds

≮

∫
ϕ

ψ(π̄) + ς

 r∑
m=1

ζ+
m(π̄) +

u∑
κ=1

l∑
%=1

∣∣∣∣∣∂aκ

∂s%
− ηκ%(π̄)

∣∣∣∣∣

 ds. (4.6)

Also, on considering

ς > max


∫
ϕ
ψ(π̂)ds −

∫
ϕ
ψ(π̄)ds∫

ϕ

{∑r
m=1 ζ

+
m(π̄) +

∑u
κ=1

∑l
%=1

∣∣∣∂aκ
∂s% − η

κ
%(π̄)

∣∣∣} ds
, ς̄

 , (4.7)

the inequalities (4.4), (4.5) and (4.7) imply that ς is a finite non-negative real number and we obtain
the following inequality∫

ϕ

ψ(π̄) + ς

 r∑
m=1

ζ+
m(π̄) +

u∑
κ=1

l∑
%=1

∣∣∣∣∣∂aκ

∂s%
− ηκ%(π̄)

∣∣∣∣∣

 ds >

∫
ϕ

ψ(π̂)ds. (4.8)

From the feasibility of
(
â, b̂

)
in (MCP) and (3.1), we have

ς

 r∑
m=1

ζ+
m(π̂) +

u∑
κ=1

l∑
%=1

∣∣∣∣∣∂aκ

∂s%
− ηκ%(π̂)

∣∣∣∣∣
 = 0.

Thus, the inequality (4.8) can be rewritten as∫
ϕ

ψ(π̄) + ς

 r∑
m=1

ζ+
m(π̄) +

u∑
κ=1

l∑
%=1

∣∣∣∣∣∂aκ

∂s%
− ηκ%(π̄)

∣∣∣∣∣

 ds

>

∫
ϕ

ψ(π̂) + ς

 r∑
m=1

ζ+
m(π̂) +

u∑
κ=1

l∑
%=1

∣∣∣∣∣∂aκ

∂s%
− ηκ%(π̂)

∣∣∣∣∣

 ds.

The above expression is in contradiction to inequality (4.6). It leads to the fact that
(
ā, b̄

)
is a feasible

solution of (MCP). This result in association with (4.4) leads to the conclusion that (MCP) attains its
optimal solution at

(
ā, b̄

)
.

Now, we show that
(
ā, b̄, ν̄, γ̄

)
is a saddle point of the Lagrange functional defined for (MCP). Since(

ā, b̄
)

is an optimal solution to (MCP), there exist Lagrange multipliers ν̄ ∈ Rr and γ̄ ∈ Rul such that
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the necessary optimality conditions (2.1)–(2.3) are satisfied at
(
ā, b̄

)
on A × B. From the necessary

optimality condition (2.3) and the feasibility of
(
ā, b̄

)
in (MCP), we have∫

ϕ

νmζm(π̄)ds ≤
∫
ϕ

ν̄mζm(π̄)ds, ∀νm ∈ R
r
+.

Equivalently, ∫
ϕ

ψ(π̄) +

r∑
m=1

νmζm(π̄) +

u∑
κ=1

l∑
%=1

γκ%

(
∂aκ

∂s%
− ηκ%(π̄)

) ds

≤

∫
ϕ

ψ(π̄) +

r∑
m=1

ν̄mζm(π̄) +

u∑
κ=1

l∑
%=1

γ̄κ%

(
∂aκ

∂s%
− ηκ%(π̄)

) ds.

By Definition 4.1, we get

L
(
ā, b̄, ν, γ

)
≤ L

(
ā, b̄, ν̄, γ̄

)
, ∀ν ∈ Rr

+, γ ∈ R
ul
+ .

Next, we prove the second condition of the saddle point of the Lagrange functional defined for (MCP).
On the other hand, by hypothesis, (MCP) is KT-pseudoinvex at

(
ā, b̄

)
onA×B. Therefore, we get the

following inequality ∫
ϕ

[
ψa(π̄) + ν̄m(ζm)a(π̄) + γ̄κ%(η

κ
%)a(π̄)

]
θds −

∫
ϕ

γ̄κ%D%θds

+

∫
ϕ

[
ψb(π̄) + ν̄m(ζm)b(π̄) + γ̄κ%(η

κ
%)b(π̄)

]
ξds ≥ 0,

implies ∫
ϕ

ψ(π)ds −
∫
ϕ

ψ(π̄)ds ≥ 0, ∀(a, b) ∈ A × B.

Since ϑ ⊂ A × B, therefore, the following inequality is also satisfied for all (a, b) ∈ ϑ,∫
ϕ

ψ(π)ds −
∫
ϕ

ψ(π̄)ds ≥ 0,

or ∫
ϕ

ψ(π)ds ≥
∫
ϕ

ψ(π̄)ds.

If we set ν̄m = 0,∀m = 1, r then the above inequality can be written as∫
ϕ

ψ(π) +

r∑
m=1

ν̄mζm(π) +

u∑
κ=1

l∑
%=1

γ̄κ%

(
∂aκ

∂s%
− ηκ%(π)

) ds

≥

∫
ϕ

ψ(π̄) +

r∑
m=1

ν̄mζm(π̄) +

u∑
κ=1

l∑
%=1

γ̄κ%

(
∂aκ

∂s%
− ηκ%(π̄)

) ds.

By Definition 4.1, we get

L (a, b, ν̄, γ̄) ≥ L
(
ā, b̄, ν̄, γ̄

)
, ∀(a, b) ∈ ϑ.

Therefore, this completes the proof. �
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5. Conclusions

Through the study of (MCP), we led to the conclusion that the exact l1 penalty method serves as
the best tool for the construction of an equivalent auxiliary control problem (MCP)ς associated with
(MCP). Further, a relationship between an optimal solution of (MCP) and a minimizer of (MCP)ς
was established under KT-pseudoinvexity assumptions. Furthermore, we discussed the optimality of
the considered problem (MCP) with the help of saddle point criteria. Also, we provided a non-trivial
example to strengthen the results demonstrated in this paper.
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17. S. Treanţă, M. Arana-Jiménez, KT-pseudoinvex multi-time control problem, Optim. Control Appl.
Meth., 39 (2018), 1291–1300. https://doi.org/10.1002/oca.2410
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