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1. Introduction

The weapon target allocation (WTA) problem is one of the crucial subjects for the automation
military command and control system. The earliest research on WTA problem introduced by Manne [1]
provides the basis WTA model, which is a classical constrained combinatorial optimization problem
and has been proved to be NP-hard. In Manne’s model, maximizing the probability of damage to
the target is the optimal goal, and time is not a dimension considered. Since then, various models of
WTA problem have been proposed and can be divided into two distinct categories: the Static WTA
(SWTA) [2–6] and the Dynamic WTA (DWTA) [7–11].

Most of the literature on the WTA problem focuses on optimizing a single objective, such as
minimizing the operation cost [5], maximizing the destruction of hostile targets [6], minimizing the
destruction of protected assets [9, 10]. However, in practical terms, the commander usually considers
more than one objective to evaluate the allocation scheme comprehensively. For example, focusing
only on maximizing the destruction of targets may result in a waste of weapon ammunitions, which
may lead to insufficient firepower in subsequent engagement. If multiple objectives are considered,
the WTA problem becomes a multi-objective programming (MOP) problem, which generally does not
have an absolutely optimal solution but a set of Pareto efficient solutions. For example, Leboucher
et al. [12] considered three different criteria as objectives, but they transform the multi-objective
functions to a single-objective function by linear weight method and get the optimal allocation
scheme under a preference of decision maker, which cannot comprehensively obtain the optimal
allocation schemes under various preferences. Xu [13] proposed a WTA model with two objective
functions and obtained a set of Pareto optimal solutions, but the model is simplified. For solving the
WTA problem with multiple objectives, the multi-objective evolutionary algorithm (MOEA) is an
effective way. Schaffer [14] designed the VEGA, which is regarded as the earliest MOEA. So far,
many outstanding MOEAs have been proposed. Deb [15] proposed the NSGA-II, which is the widely
used MOEAs that use fast non-dominated sorting and the crowding distance. Recently, the MOEAs
based on decomposition (MOEA/D) have become increasingly popular. They are based on the
principle of decomposing a MOP problem into a set of subproblems and optimizing them
simultaneously. Zhang [16] proposed the first version of MOEA/D. After that, many scholars have
improved the decomposition method [17, 18] and adaptive mechanism [19–21]. Shi [22] utilized the
NSGA-II to solve a WTA problem with two objectives. Li [23] utilized the NSGA-II and MOEA/D to
solve a WTA problem with two objectives and made a comparison. The performance of MOEA is
very sensitive to the parameters involved in it, so how to design efficient algorithms based on the
framework of MOEAs to solve scenario-based WTA problems is a research key.

For the literature about WTA problem mentioned above, a common assumption is that the battlefield
environment is deterministic, and all the parameters in these models are known. However, it is difficult
to meet in practice. On one hand, the electromagnetic interference and decoys released by the opponent
make it difficult to detect the target information and estimate the target threat value accurately. On
the other hand, the highly maneuverable flights of targets make it hard to assess the target attack
intention correctly. What’s more, some indicators, such as strategic value of protected assets and
the cost of human resources, both rely heavily on human experience. Thus, the WTA problem is
often indeterministic with vague or imprecise statements, which can be boiled down to problems of
observing the parameters themselves, deficiency in history and statistical data and the subjectivity
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of human judgement, etc. Some scholars consider these uncertain factors as random variables, and
then the probability theory is used to deal with them. For example, Krokhmal [24] utilized the CVaR
constraint to study the uncertainty in the WTA problem. Ahner [25] regarded the number of targets
for subsequent engagement as a random variable, and a two-stage stochastic programming model was
proposed. Li [26] proposed a robust optimization model for the uncertainty of interception probability.

However, the application of probability theory is based on the law of large numbers, i.e., it needs
a large scale of historical sample data as the support of credibility of results, which is difficult to
meet in the indeterminate battlefield environment. For this case, we can invite experts to give an
estimation and offer a distribution function for each uncertain parameter, but some surveys have shown
that human beings usually overestimate the occurrence degree of unlikely events, and human belief
degree may have larger variance than the real frequency of events, so if the probability theory is still
used to deal with them, the conclusion may be a paradox [27]. In order to better describe the subjective
imprecise quantity, Liu [28] proposed the uncertainty theory, which is a branch of mathematics based
on normality, duality, subadditivity, product axioms to deal with imprecision. To date, many scholars
have studied the uncertainty theory and established a complete mathematical system including the
uncertain set [29], uncertain process [30] and uncertain differential equation [31]. Meanwhile, it has
been studied in many application fields, like uncertain inference [29], uncertain programming [32],
uncertain statistics [33], uncertain portfolio selection [34], uncertain optimal control [35]. So far, there
are few relevant studies on WTA problem based on uncertainty theory.

In this paper, we aim to study the DWTA problem under uncertainty in a defensive scenario. The
main contributions of this paper can be summarized as follows. Firstly, we use the uncertainty theory
to deal with the uncertain factors in indeterminate battlefield environment and assume that the threat
value of targets, the value of protected assets and the extra cost of operation are uncertain variables,
and an uncertain multi-objective dynamic WTA (UMDWTA) model is established originally, where
the value of destruction of targets, the value of surviving assets and the cost of operation are the
objective functions. To make the proposed model solvable, a deterministic model named
Eσ-UMDWTA is derived based on expected value and standard deviation principle, which considers
the minimum average cost and the minimum fluctuation of the uncertain objective functions
simultaneously. Second, a virtual representation (VP) and construction procedure (CP) of feasible
solution for UMDWTA problem are proposed, which can facilitate the generation of the feasible
solution efficiently. Third, on the basis of VP and CP, an improved MOEA/D with adaptive weights
(MOEA/D-AW) is designed to obtain the Pareto efficient solutions of the proposed model, where
three new evolutionary operators are proposed to evolve the VP of feasible solution, and the adaptive
weights mechanism is employed to improve the distribution uniformity of the Pareto front obtained in
the iteration process. The test results show that the designed algorithm can obtain the Pareto fronts
with high uniformity and convergence in solving MOP problems. Finally, a case of the UMDWTA
problem is solved by the improved MOEA/D-AW, then various Pareto efficient solutions and
corresponding allocation schemes are obtained, and the simulation results also verify the effectiveness
of the improved MOEA/D-AW and feasibility of the UMDWTA model.

The paper is organized as follows. In Section 2, some basic knowledge of uncertainty theory and
multi-objective programming is reviewed. In Section 3, the UMDWTA model is established. In
Section 4, the solution method of UMDWTA is analyzed. In Section 5, the improved MOEA/D-AW is
designed, and its performance of solving MOP problem is tested by four test functions. In Section 6, a
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case of the UMDWTA problem is solved by the designed algorithm, and the simulation results are
analyzed. Finally, the main results of this paper are concluded in Section 7.

2. Preliminary

2.1. Uncertainty theory

Let Γ be a nonempty set, and L is a σ-algebra over Γ. Each element Λ in L is called an event. A set
function M from L to [0,1] is called an uncertain measure if it satisfied the following axioms [28]:
Axiom 1. (Normality axiom) M{Γ} = 1 for the universal set Γ;
Axiom 2. (Duality axiom) M{Λ} +M{Λc} = 1 for any event Λ ∈ L;
Axiom 3. (Subadditivity axiom) For every countable sequence of events Λ1,Λ2, ... ∈ L, we have

M

 ∞⋃
i=1

Λi

 ≤ ∞∑
i=1

M {Λi}.

The triplet (Γ,L,M) is called an uncertainty space. Furthermore, a product uncertain measure is as
follows.
Axiom 4. (Product axiom) Let (Γi,Li,Mi) be the uncertainty space for i = 1, 2, .... The product
uncertain measure M is an uncertain measure satisfying

M

 ∞∏
i=1

Λi

 = ∞∧
i=1

M {Λi} .

Definition 1. [28] An uncertain variable is a measurable function ξ from an uncertainty space
(Γ,L,M) to the set of real numbers, i.e., for any Borel set B of real numbers, the set

{ξ ∈ B} = {γ ∈ Γ | ξ(γ) ∈ B}

is an event in L.

Definition 2. [36] The uncertain variables ξ1, ξ1, ..., ξn are said to be independent if

M

 n⋂
i=1

(ξi ∈ Bi)

 = n∧
i=1

M {(ξi ∈ Bi)}

for any Borel sets B1, B2, ..., Bn of real numbers.

Theorem 1. [28] Let ξ1, ξ1, ..., ξn be uncertain variables, and f is a real-valued measurable function.
Then, f (ξ1, ξ1, ..., ξn) is an uncertain variable.

Definition 3. [28] The uncertainty distribution Φ of an uncertain variable ξ is defined by

Φ(x) =M {ξ ≤ x}

for any real number x ∈ R.

Definition 4. [36] Let ξ be an uncertain variable with regular uncertainty distribution Φ, and then the
inverse function Φ−1 is called the inverse uncertainty distribution of ξ .
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Definition 5. [28] An uncertain variable ξ is called linear if it has a linear uncertainty distribution

Φ(x) =


0 i f x < a

(x − a)/(b − a) i f a ≤ x ≤ b
1 i f x > b

denoted by ξ ∼ z(a, b, c) where a, b, c are real numbers within a < b < c.

Definition 6. [28] An uncertain variable ξ is called zigzag if it has a zigzag uncertainty distribution

Φ(x) =


0 i f x < a

(x − a)/2(b − a) i f a ≤ x ≤ b
(x + c − 2b)/2(c − b) i f b ≤ x ≤ c

1 i f x > c

denoted by ξ ∼ z(a, b, c) where a, b, c are real numbers within a < b < c.

Definition 7. [28] An uncertain variable ξ is called exponential if it has a exponential uncertainty
distribution

Φ(x) =
{

1 − exp(−λx) i f x > 0
0 i f x ≤ 0

denoted by x ∼ E(λ) where λ is a constant within λ > 0.

Theorem 2. [33] Let ξ1, ξ2, ..., ξn be independent uncertain variables with regular uncertainty
distributions Φ1,Φ1, ...,Φn, respectively. If the function f (x1, x2, ..., xn) is a measurable function which
is strictly increasing with respect to x1, x2, ..., xm and strictly decreasing with respect to
xm+1, xm+2, ..., xn, then ξ = f (ξ1, ξ2, ..., ξn) is an uncertain variable with inverse uncertainty distribution

Ψ−1(α) = f (Φ−1
1 (α), ...,Φ−1

m (α),Φ−1
m+1(1 − α), ...,Φ−1

n (1 − α)).

Definition 8. [28] Let ξ be an uncertain variable, and then the expected value of ξ is defined by

E[ξ] =
∫ +∞

0
M {ξ ≥ x}dx −

∫ 0

−∞

M {ξ < x} dx

provided that at least one of the two integrals is finite.

Theorem 3. [28] Let ξ be an uncertain variable with regular uncertainty distribution Φ. If the
expected value exists, then

E[ξ] =
∫ 1

0
Φ−1(α)dα.

Definition 9. [28] Let ξ be an uncertain variable with finite expected value e, and then the variance
of ξ is defined by

V[ξ] = E
[
(ξ − e)2

]
.

Theorem 4. [28] Let ξ be an uncertain variable with regular uncertainty distribution Φ and finite
expected value e. Then,

V[ξ] =
∫ 1

0

(
Φ−1(α) − e

)2
dα.

The above contents are some basic definitions and theorems of uncertainty theory, which are used
subsequently.
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2.2. Multi-objective programming

A programming problem with multiple optimization objectives is called a multi-objective
programming (MOP) problem. The general MOP model with m objective functions is represented as
follows:

(MOP)
{

min f (x) = ( f1(x), f2(x), ..., fm(x))
s.t. x ∈ D

(2.1)

where x = (x1, x2, ..., xn)T is the decision vector; D denotes the feasible region.
Then, some related definitions of MOP model are introduced here.

Definition 10. [37] (Absolutely optimal solution) Let x̃ ∈ D, and if it satisfies

fi(x̃) ≤ fi(x),∀i ∈ {1, 2, ...,m}

for any given x ∈ D, then the solution x̃ is called the absolute optimal solution of the MOP
problem (2.1).

Definition 11. [37] (Pareto dominance) For a given vector y1 = (y11, y12, ..., y1m) ∈ Rm, it dominates
the vector y2 = (y21, y22, ..., y2m) ∈ Rm if and only if

∀i ∈ {1, 2, ...,m}, y1i ≤ y2i

and ∃ j ∈ {1, 2, ...,m}, y1i < y2i,

which is denoted as y1 ≺ y2.

Definition 12. [37] (Non-dominated solution) For a given set Γ ⊂ Rm and y ∈ Γ, if there is no other
vector y′ ∈ Γ such that y′ ≺ y, then the vector y is called a non-dominated solution in the set Γ.

Definition 13. [37] (Pareto efficient solution) For a given MOP model (2.1), the vector x∗ ∈ D is
called a Pareto efficient solution if there is no x ∈ D such that f (x) ≺ f (x∗).

Definition 14. [37] (Pareto optimal set) For a given MOP model (2.1), the Pareto optimal set D∗ is
defined as follows:

D∗ = {x ∈ D | ¬∃x′ ∈ D, f (x′) ≺ f (x)}.

Definition 15. [37] (Pareto front) For a given MOP model (2.1), the Pareto front is defined as follows:

PF∗ = { f (x) = ( f1(x), f2(x), ... fm(x)) | x ∈ D∗}.

3. Establishment of the UMDWTA model

This section describes a scenario of the air defense combat operation and establishes an uncertain
multi-objective dynamic WTA (UMDWTA) model.
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3.1. Problem description

The following scenario is considered: There are K ground assets to be protected (protected assets).
At one point, the radars detect some hostile targets, and they are going to attack the protected assets.
There are W weapons that can launch missiles to intercept these targets. Since there is still a period of
time before the targets break through the defense, the interception process can be divided into S stages,
where one stage is the minimum combat time unit. The commander can make a decision to allocate
weapons to intercept targets in each stage. Figure 1 shows the scenario description.

Interception

Attack
Targets

Weapons

Protected assets

Figure 1. Scenario description.

However, due to the various uncertainties in indeterminate battlefield environment discussed in
Section 1, some parameters are uncertain, like the attack intention of each target, the threat value of
each target, the strategic value of each asset, the extra cost of operation.

3.2. Objective functions of UMDWTA

Different evaluation criteria result in different weapon-target allocation schemes. Here we employ
three criteria as the objectives of UMDWTA model: the value of destruction of targets, the value of
surviving assets and the cost of operation. For ease of reading, Table 1 summarizes some notations that
are used throughout this paper.
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Table 1. Symbols explanation.

Symbol Definition
pi jh The degree that weapon j can successfully intercept target k at stage h.
Ci The cost of one missile launched by weapon i.
ni The maximum number of targets that weapon i can engage at each stage.
m j The maximum number of weapons that can be allocated to target k at each stage.
Ni The amount of ammunition of weapon i.

F The engagement feasibility matrix (F = [ fi jh]W×T×S ), where fi jh = 1 if weapon i can be
allocated to target j; otherwise, fi jh = 0.

Xt The decision variable at current stage t (Xt = [Xt,Xt+1, ...,XS ], Xk = [xi j(k)]W(k)×T (k)),
where xi j(k) = 1 if weapon i is allocated to target j at stage k; xi j(k) = 0 otherwise.

ξT, j Positive uncertain variable defined in (Γ,L,M), which reflects the threat value of target j.

ξA, jk
Positive uncertain variable defined in (Γ,L,M), which reflects the degree that target j
successfully attack asset k.

ξV,k
Positive uncertain variable defined in (Γ,L,M), which reflects the value of protected asset
k.

ξC
Positive uncertain variable defined in (Γ,L,M), which reflects the extra cost per
interception.

ξ
Uncertain vector composed of all uncertain variables, including ξT, j, ξA, jk, ξV,k and ξC (∀ j ∈
{1, 2, ...,T (t)},∀k ∈ {1, 2, ...,K})

ΦT, j The uncertainty distribution of ξT, j.
ΦA, jk The uncertainty distribution of ξA, jk.
ΦV,k The uncertainty distribution of ξV,k.
ΦC The uncertainty distribution of ξC.

3.2.1. The value of destruction of targets

Destroying the incoming hostile targets is the most direct goal in the defense, so the value of
destruction of targets should be employed as an objective function, which is the most widely
employed combat effectiveness evaluation criteria in relevant studies [7, 8].

Generally, the interception of each weapon at each stage is independent of each other, so the degree
of each target being destroyed after the final stage is equal to the product of the degrees to which each
weapon destroys it at each stage. Meanwhile, since the state of each target is different, each target
has its own threat value, denoted by ξT, j, and the destroying of the target with higher threat value
contributes more to the objective. The formulation of this objective for current stage t is shown as
follows:

max fd(Xt, ξ) =
T (t)∑
j=1

ξT, j

1 − S∏
h=t

W∏
i=1

(1 − pi jh)xi jh

 (3.1)

where Xt = [Xt,Xt+1, ...,XS ] with Xk = [xi j(k)]W(k)×T (k) is the decision matrix at stage k (xi j(k) = 1
if weapon i is assigned to target j at stage k; xi j(k) = 0 otherwise); pi jh is the degree that weapon i
successfully intercept target j at stage t; T (t) is the number of existing targets at current stage t; ξT, j is
the threat value of target j.
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In previous models, the threat value of each target is determined by many factors, e.g., the target
type, the attack angle, the velocity of target, the target range [38]. However, in the indeterminate
battlefield environment discussed above, it is difficult to obtain the state information of targets
accurately, so we can consider the threat value of each target as an uncertain variable and invite
experts to subjectively estimate them based on the incomplete information. Here, the experts give the
minimum value and maximum value of it, thus ξT, j is considered as a linear uncertain variable, i.e.,
ξT, j ∼ L(aT, j, bT, j), and its uncertainty distribution is

ΦT, j(x) =


0, i f x ≤ aT, j

(x − aT, j)/(bT, j − aT, j), i f aT, j < x ≤ bT, j

1, i f x > bT, j

where aT, j and bT, j are the maximum and minimum threat value of target j, respectively, within 0 ≤
aT, j < bT, j.

3.2.2. The value of surviving assets

The commander usually wants to avoid the destruction of protected assets as much as possible, so
the value of surviving protected assets after the final stage can be employed as an objective function,
which is employed as the combat effectiveness evaluation criterion in relevant studies [9, 10].

If a target survives after the final stage, we say that the target breaks through the defense of weapons,
and then it is able to attack the protected assets. Therefore, the degree that asset k survives (is not
attacked by any target) after the final stage is

Ps(k) =
T (t)∏
j=1

1 − ξA, jk S∏
h=t

W∏
i=1

(1 − pi jh)xi jh

,
where ξA, jk is the degree that target j successfully attacks asset k if it breaks through the defense of
weapons.

The surviving of asset that has higher strategic value contributes more to the objective, so the
formulation of the objective for current stage t is shown as follows:

max fs(Xt, ξ) =
K∑

k=1

ξV,k

T (t)∏
j=1

1 − ξA, jk S∏
h=t

W∏
i=1

(1 − pi jh)xi jh

, (3.2)

where ξV,k is the strategic value of asset k.
However, the strategic value of each protected asset is determined by subjective factors, which has

been discussed in Section 1, so it is reasonable to consider it as an uncertain variable and invite experts
to eastimate it. Here, the experts give the maximum and minimum value of it, thus ξV,k is a linear
uncertain variable, i.e., ξV,k ∼ L(aV,k, bV,k), and its uncertainty distribution is

ΦV,k(x) =


0, i f x ≤ aV,k

(x − aV,k)/(bV,k − aV,k), i f aV,k < x ≤ bV,k

1, i f x > bV,k

where aV,k and bV,k are the maximum and minimum value of asset k, respectively, within 0 ≤ aV,k < bV,k.
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Meanwhile, the degree that target j successfully attacks asset k, denoted by ξA, jk, is affected by many
uncertain factors, e.g., the attack intention of target, the type of target and the amount of ammunition
carried by the target, so we can consider it as an uncertain variable and invite experts to estimate it.
Here, the experts give the maximum, average and minimum value of it, thus ξA, jk is a zigzag uncertain
variable, i.e., ξA, jk ∼ z(aA, jk, bA, jk, cA, jk), and its uncertainty distribution is

ΦA, jk(x) =


0, i f x ≤ aA, jk

(x − aA, jk)/2(bA, jk − aA, jk), i f aA, jk < x ≤ bap,k

(x + cA, jk − 2bA, jk)/2(cA, jk − bA, jk), i f bA, jk < x ≤ cA, jk

1, i f x > cA, jk

where aA, jk, bA, jk and cA, jk are the maximum, average and minimum degree that target j destroys asset
k, respectively, within 0 ≤ aA, jk < bA, jk < cA, jk ≤ 1.

3.2.3. The cost of operation

Only considering the maximization of the value of destruction of targets and the value of surviving
protected assets may result in the waste of resources, and thus the cost of operation in all stages should
be taken as an objective function.

The cost of operation mainly refers to the cost of missiles that all weapon systems launch to intercept
the targets and other extra costs, e.g., the wastage of equipment, the cost of human resources. Here, we
assume that a weapon can only launch one missile in a stage, so the formulation of the objective for
current stage t is shown as follows:

min fc(X t, ξ) =
W∑

i=1

Ci

S∑
h=t

T (t)∑
j=1

xi jh

 + ξC W∑
i=1

S∑
h=t

T (t)∑
j=1

xi jh (3.3)

where Ci is the cost of one missile of weapon i; ξC is the extra cost per interception.
Since the extra cost is hard to predict objectively, we consider it as an uncertain variable and invite

the experts to estimate it. Here, the experts regard it as an exponential uncertain variable of parameter
λ, i.e., ξC ∼ E(λ), and its uncertainty distribution is

Φc(x) =
{

1 − exp(−λx), i f x > 0
0 i f x ≤ 0

where λ is a real number within λ > 0.

3.3. Constraints

The constraints in the above UMDWTA problem mainly include the following four categories:

T (t)∑
j=1

xi jh ≤ ni,∀h ∈ {t, t + 1, ..., S },∀i ∈ {1, 2, ...,W}; (3.4)

W∑
i=1

xi jh ≤ m j,∀h ∈ {t, t + 1, ..., S },∀ j ∈ {1, 2, ...,T (t)}; (3.5)
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S∑
h=t

T (t)∑
j=1

xi jh ≤ Ni,∀i ∈ {1, 2, ...,W}; (3.6)

xi jh ≤ fi jh,∀h ∈ {t, t + 1, ..., S },∀i ∈ {1, 2, ...,W},
∀ j ∈ {1, 2, ...,T (t)}.

(3.7)

Inequation (3.4) limits the number of targets that a weapon can engage at each stage. Most actual
weapons can shoot only one target at a stage, so ni is usually set to be 1. Besides, a special weapon
that is capable of engaging multiple targets simultaneously can be viewed as multiple separate
weapons. Inequation (3.5) ensures that at most m j weapons can be allocated to target j at a stage, and
m j usually depends primarily on weapon performance, firing strategy and the threat value of target.
Inequation (3.6) reflects that the amount of ammunitions, as used by a certain weapon i through all
stages, cannot exceed its predefined allowable amount Ni. Inequation (3.7) is a very important
constraint to the actual dynamic WTA problem which reflects the influence of time windows on the
engagement feasibility of weapons. If weapon i can be allocated to target j in stage h, then fi jh = 1;
otherwise, fi jh = 0.

3.4. Mathematical model

Based on the objective functions and constraints analyzed above, the mathematical formulation of
the UMDWTA problem is as follows:

(UMDWTA)



min f (Xt, ξ)
=

(
− fd(Xt, ξ),− fs(Xt, ξ), fc(Xt, ξ)

)
=

(
−

T (t)∑
j=1
ξT, j

(
1 −

S∏
h=t

W∏
i=1

(1 − pi jh)xi jh

)
,

−
K∑

k=1
ξV,k

T (t)∏
j=1

[
1 − ξA, jk

S∏
h=t

W∏
i=1

(1 − pi jh)xi jh

]
,

W∑
i=1

(
Ci

S∑
h=t

T (t)∑
j=1

xi jh

)
+ ξC

W∑
i=1

S∑
h=t

T (t)∑
j=1

xi jh

)
s.t.

T (t)∑
j=1

xi jh ≤ ni,∀h ∈ {t, t + 1, ..., S },∀i ∈ {1, 2, ...,W}

W∑
i=1

xi jh ≤ m j,∀h ∈ {t, t + 1, ..., S },∀ j ∈ {1, 2, ...,T (t)}
S∑

h=t

T (t)∑
j=1

xi jh ≤ Ni,∀i ∈ {1, 2, ...,W}

xi jh ≤ fi jh,∀h ∈ {t, t + 1, ..., S },∀i ∈ {1, 2, ...,W}
∀ j ∈ {1, 2, ...,T (t)}.

(3.8)

Note that the maximization of fd(Xt, ξ) and fs(Xt, ξ) are equivalent to the minimization of − fd(Xt, ξ)
and − fs(Xt, ξ), respectively. For simplicity, let G denote the feasible region of the UMDWTA model
above.

Remark 1. The decision variable matrix Xt represents the total stages allocation scheme for the
current stage t. If the defender observes that some targets have been destroyed or some other dynamic
event happened at the current stage, then the parameters of the UMDWTA model need to be
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reevaluate for the next stage t + 1. In this case, the weapons need to be reallocated to targets, and a
new decision variable matrix Xt+1 will be generated. Otherwise, the decision variable matrix remains
the same.

4. Solution method of the UMDWTA model

The model (3.8) contains uncertain variables and multiple objective functions, and it is an
unsolvable model because there is no natural ordered relation in uncertain space. In this section we
introduced three methods which can convert the unsolvable UMDWTA model to a deterministic one.

Different real-life problems call for different meanings of valuation to satisfy its needing practical
application, then result in different compromise decisions [39]. Since we want to minimize the average
cost of objective functions, it is rational to use the expected value model, which can be represented as
follows:

(E−UMDWTA)


min E

(
f (Xt, ξ)

)
=

(
E

(
− fd(Xt, ξ)

)
, E

(
− fs(Xt, ξ)

)
, E

(
fc(Xt, ξ)

))
s.t. Xt ∈ G

(4.1)

where E(·) denotes the expected value.
What’s more, the stability and volatility are usually important, so minimizing the variance of

objective functions should be considered, which can be represented as follows:

(V−UMDWTA)


min V

(
f (Xt, ξ)

)
=

(
V

(
− fd(Xt, ξ)

)
,V

(
− fs(Xt, ξ)

)
,V

(
fc(Xt, ξ)

))
s.t. Xt ∈ G

(4.2)

where V(·) denotes the variance.
Sometimes both expected value and standard deviation need to be taken into account

simultaneously, so the following model can be established:

(Eσ−UMDWTA)


min

(
E

(
f (Xt, ξ)

)
, σ

(
f (Xt, ξ)

))
=

(
E

(
− fd(Xt, ξ)

)
, E

(
− fs(Xt, ξ)

)
, E

(
fc(Xt, ξ)

)
,

σ
(
− fd(Xt, ξ)

)
, σ

(
− fs(Xt, ξ)

)
, σ

(
fc(Xt, ξ)

))
s.t. Xt ∈ G

(4.3)

where σ(·) denotes the standard deviation, i.e., σ(·) =
√

V(·).
Problems (4.1)–(4.3) are called the E-UMDWTA model, V-UMDWTA model and Eσ- UMDWTA

model, respectively. For simplicity, we use x to replace Xt in subsequence. Note that the validity of
the above models is based on the assumption that the objective functions are uncertain variables, and
their variances are finite.

Through any one of the above three methods, the original uncertain model (3.8) can be converted
to a deterministic one. In this paper, we choose the Eσ-UMDWTA model for analysis since it
considers the minimum average cost and the minimum fluctuation of the uncertain objective functions
simultaneously. Hence, the Pareto efficient solution of Eσ-UMDWTA model can be defined:

Definition 16. Let x̃ ∈ G, the solution x̃ is called the expected-value standard deviation efficient
solution of the UMDWTA model if it is a Pareto efficient solution of the Eσ-UMDWTA model, that
is, there is no x ∈ G such that (E (f (x, ξ)) , σ (f (x, ξ))) ≺ (E (f (x̃, ξ)) , σ (f (x̃, ξ))).
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The expected-value efficient solution of E-UMDWTA and the variance efficient solution of
V-UMDWTA can be similarly defined, respectively. Further, the relation among these three efficient
solutions is given by Theorem 5.

Theorem 5. Let G1 and G2 be the set of expected-value efficient solutions of E-UMDWTA model
and the set of variance efficient solutions of V-UMDWTA model, respectively, and let G3 be the set of
expected-value standard deviation efficient solutions of Eσ-UMDWTA model, so we have G1∩G2 ⊂ G3.

Proof. If G1 ∩ G2 = ∅, the conclusion is clearly valid. If G1 ∩ G2 , ∅, we prove it by contradiction:
Let x be both the expected-value efficient solution of E-UMDWTA model and the variance efficient
solution of V-UMDWTA model, i.e., x ∈ G1 ∩ G2. If x < G3, then there is x̄ ∈ G such that
(E (f (x̄, ξ)) , σ (f (x̄, ξ))) ≺ (E (f (x, ξ)) , σ (f (x, ξ))), i.e.,

E[ fi(x̄, ξ)] ≤ E[ fi(x, ξ)], σ[ fi(x̄, ξ)] ≤ σ[ fi(x, ξ)],∀i ∈ {1, 2, 3},

and there is i0(i0 ∈ {1, 2, 3}) satisfying

E[ fi0(x̄, ξ)] < E[ fi0(x, ξ)] or σ[ fi0(x̄, ξ)] < σ[ fi0(x, ξ)].

If E[ fi0(x̄, ξ)] < E[ fi0(x, ξ)], x is not an expected-value efficient solution of E−UMDWTA model,
i.e., x < G1, which contradicts the prerequisite that x ∈ G1 ∩G2.

Otherwise, σ[ fi0(x̄, ξ)] < σ[ fi0(x, ξ)], since σ[ fi0(x̄, ξ)] > 0 and σ[ fi0(x, ξ)] > 0, we have
V[ fi0(x̄, ξ)] < V[ fi0(x, ξ)], and x is not a variance efficient solution of V-UMDWTA model, i.e.,
x < G2, which also contradicts the prerequisite that x ∈ G1 ∩G2. The theorem is proved. □

Furthermore, we can assume that the uncertain variables in model (3.8) are all independent since
there’s no coupling between them, so the calculation formulas of Eσ-UMDWTA model (4.3) can be
derived subsequently.

For any given x ∈ {x |x ∈ G,x , 0 }, the functions − fd(x, ξ), − fs(x, ξ) and fc(x, ξ) are all real-
value measurable functions of ξ, so we can know that these three objective functions are all uncertain
variables through Theorem 1. Additionally, we can get the following three properties:

1) − fd(x, ξ) is strictly decreasing with respect to ξT, j for any j = 1, 2, ...,T (t);
2) − fs(x, ξ) is strictly decreasing with respect to ξV,k for any k = 1, 2, ..., S , and it is strictly

increasing with respect to ξA, jk, for any j = 1, 2, ...,T (t) and any k = 1, 2, ..., S ;
3) fc(x, ξ) is strictly increasing with respect to ξcos.

Let Ψ−1
d (α), Ψ−1

s (α) and Ψ−1
c (α) denote the inverse uncertainty distributions of − fd(x, ξ), − fs(x, ξ)

and fc(x, ξ), respectively, and then through Theorem 2, their calculation formulas are as follows:

Ψ−1
d (α) = −

T (t)∑
j=1

Φ−1
T, j(1 − α)

1 − S∏
h=t

W∏
i=1

(1 − pi jh)xi jh

 , (4.4)

Ψ−1
s (α) = −

K∑
k=1

Φ−1
V,k(1 − α)

T (t)∏
j=1

1 − Φ−1
A, jk(α)

S∏
h=t

W∏
i=1

(1 − pi jh)xi jh

, (4.5)

Ψ−1
c (α) =

W∑
i=1

Ci

S∑
h=t

T (t)∑
j=1

xi jh

 + Φ−1
c (α)

W∑
i=1

S∑
h=t

T (t)∑
j=1

xi jh. (4.6)
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Hence, the expected value and standard deviation of objective functions can be calculated through
Theorem 3 and Theorem 4, respectively. The formulation is as follows:

e1 = E[− fd(x, ξ)] =
∫ 1

0
Ψ−1

d (α)dα, (4.7)

e2 = E[− fs(x, ξ)] =
∫ 1

0
Ψ−1

s (α)dα, (4.8)

e3 = E[ fc(x, ξ)] =
∫ 1

0
Ψ−1

c (α)dα, (4.9)

σ[− fd(x, ξ)] =

√∫ 1

0

(
Ψ−1

d (α) − e1

)2
dα, (4.10)

σ[− fs(x, ξ)] =

√∫ 1

0

(
Ψ−1

s (α) − e2
)2dα, (4.11)

σ[ fc(x, ξ)] =

√∫ 1

0

(
Ψ−1

c (α) − e3
)2dα. (4.12)

To sum up, the original UMDWTA model (3.8) is converted to a determinate MOP model (4.3)
called Eσ-UMDWTA model and the calculation formulas (4.7)–(4.12) are derived. However, it is
difficult to obtain the Pareto front and Pareto solutions of Eσ-UMDWTA model analytically, so it is
needed to design an efficient multi-objective evolutionary algorithm (MOEA) to solve it.

5. Improved MOEA/D-AW for solving UMDWTA problem

5.1. Virtual representation and construction procedure of feasible solution

The decision variable Xt of UMDWTA is a binary matrix with high dimensions and is restricted by
inequations (3.4)–(3.7), so it is difficult to directly generate a feasible solution in the iteration process.
To overcome this case, a virtual representation (VP) of UMDWTA solutions and its feasible solution
construction procedure (CP) is proposed, which can generate a feasible solution quickly and efficiently.

First, the virtual representation is the permutation of the available allocation pairs which are defined
as follows:

Definition 17. An available allocation pair denoted by i- j-h is called an AAP, which indicates that
weapon i is assigned to target j in stage h.

Example 1. Given an UMDWTA problem with two weapons, two targets and two stages, all the AAPs
of it consist of following pairs: (1) 1-1-1; (2) 1-1-2; (3) 1-2-1; (4) 1-2-2; (5) 2-1-1; (6) 2-1-2; (7) 2-2-1;
(8) 2-2-2.
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Then, any permutation of them, like (2)-(1)-(5)-(7)-(3)-(8)-(4)-(6), is called a virtual representation
(VP) of a certain UMDWTA solution. The foundation on which we employ the VP is that the
generation of UMDWTA solution depends on the allocation order of AAPs. In fact, the
permutation-based representation is common for the quadratic allocation problem (QAP) which is a
classical NP-hard combinatorial optimization problem [40]. However, a certain permutation of AAPs
for UMDWTA does not produce a feasible solution directly since some AAPs may cause violation of
constraints. For this matter, several auxiliary variables are firstly defined which can record the state
information currently, and they are used to judge which AAPs in the permutation cause violation to
constraints. The auxiliary variables are defined as follows:

1) NWS = [nWS (i, h)]W×S : nWS (i, h) denotes the number of targets that weapon i is assigned to in
stage h;

2) NTS = [nTS ( j, h)]T×S : nTS ( j, h) denotes the number of weapons that are assigned to target j in
stage h;

3) NW = [nW(i)]1×W : nW(i) denotes the number of times that weapon i is assigned to the targets in
all stages.

With the variables defined above, the rules for handling the constraints of inequations (3.4)–(3.6)
are presented as follows:

1) If nWS (i, h) = ni, weapon i will not be assigned to other targets any more in stage h;
2) If nTS ( j, h) = m j, no more weapons will be assigned to target j in stage h;
3) If nW(i) = Ni, weapon i will not be assigned to any target in any stage.

For inequation (3.7), we can handle it directly by the engagement feasibility matrix F, i.e., if fi jh = 0,
the AAP i− j−h is not allowed. Then, the pseudocode of feasible solution CP is shown in Algorithm 1.

Algorithm 1: Construction procedure.
1 VP is a given permutation of AAPs;
2 Initialize the auxiliary variables NWS ,NTS ,NW and the decision variables Xt to zero vectors;
3 for l = 1 to size(VP) do
4 if adding the l-th AAP (il, jl, hl) in VP does not cause any violation to constraints (Judged

by current auxiliary variables and engagement feasibility matrix) then
5 Mark this AAP as an AAAP;
6 Update the decision variables xil jl(hl) = 1 and the auxiliary variables including

nWS (il, hl), nTS ( jl, hl), nW(il);
7 else
8 Mark this AAP as an UAAP;
9 end

10 end
11 return Xt

In the process of adding AAPs to the allocation scheme following the order of permutation, the
auxiliary variables will be updated dynamically. If the updated auxiliary variables after adding an
AAP violate any constraints (contradict the rules), this AAP will be unallowed and marked as an
unassigned AAP (UAAP); otherwise, it will be allowed and marked as an assigned AAP (AAAP). It
is easy to prove that no violation of constraints will occur due to the mechanism. Hence, for a certain
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permutation of AAPs, a feasible solution of UMDWTA can be generated by the CP. To the contrary, it
is easy to prove that any feasible solution of UMDWTA can be generated by using the CP to a certain
but not unique permutation of AAPs.

Additionally, it’s easy to get the following two properties:

Property 1. Given a certain VP, there is no conflict among the AAAPs contained in it, i.e., the
generated feasible solution Xt will not be changed by only rearranging the order of AAAPs.

Property 2. Given a certain VP, for a set of consecutive UAAPs following behind an AAAP, the
generated feasible solution Xt will not be changed by only rearranging the order of these UAAPs.

In the following content of the algorithm design, we use VP and CP to represent and generate the
feasible solutions of UMDWTA problem in the iterative process. What’s more, since the collection
of all VPs for a UMDWTA problem is too large to search efficiently, the search scope is limited to
the collection of VPs consisting of all AAPs. This restriction is justified because the VP consisting
of all AAPs has larger values of E(− fd(x, ξ)) and E(− fs(x, ξ)) than some VPs that do not consist of
all AAPs, which is consistent with goal that decision makers generally prefer a larger destruction of
targets or more surviving assets.

5.2. The framework of improved MOEA/D

Multi-objective evolutionary algorithm based on decomposition (MOEA/D) [16] is one of the most
popular algorithms among the MOEAs, which search for Pareto efficient solutions by decomposing
the original MOP problem into a series of single objective optimization subproblems and optimizing
each subproblem. Specially, when solving MOP problem with many objectives, MOEA/D has not
the problem of "selection pressure" that NSGA-II has. There are several common decomposition
approaches including weighted sum approach, Tchebycheff (TCH) approach, angle-based approach,
boundary intersection (BI) approach [17], etc.

In this section, we modify the general MOEA/D framework with Ideal-Nadir TCH approach and
design an improved algorithm to solve the UMDWTA problem efficiently, in which three new
evolutionary operators are proposed to generate more promising offspring in the iteration process, and
the adaptive weights mechanism is employed to increase the uniformity of the Pareto front adaptively.
The framework of the improved MOEA/D is given in Algorithm 3.

5.2.1. Population initialization

First, since the Ideal-Nadir TCH approach [41] can overcome the defects of the weighted sum
approach caused by the dimension variance of objective functions and is easier to implement, the
original MOP problem is decomposed to a series of subproblems by it as follows: max gTCH(x

∣∣∣λ, z∗, znad ) = min
1≤i≤m

(λ j

∣∣∣∣∣ znad
j − f j(x)

znad
j −z∗j

∣∣∣∣∣)
s.t. x ∈ G

(5.1)

where z∗ = (z∗1, z
∗
2, ..., z

∗
m) and znad = ((znad

1 , z
nad
2 , ..., z

nad
m )) are the ideal point and nadir point,

respectively, i.e., z j
∗ = min{ f j(x) |x ∈ G } and z j

∗ = max{ f j(x) |x ∈ G } for any j = 1, ...,m;
λ = (λ1, λ2, ..., λm) ∈ Rm is the weight vector satisfying

∑m
j=1 λ j = 1, and 0 ≤ λ j < 1 for any

j = 1, ...,m.
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It can be proved that the optimal solution of model (5.1) must be a weakly Pareto efficient solution
of original MOP problem (4.3), and different weight vectors can lead individuals to diverse Pareto
efficient solutions. Here, we use the uniform randomly (UR) method to initialize the weight vectors
for subproblems (5.1). The process can be described as the following steps:

S tep 1. Randomly generate 5,000 weight vectors to construct the set λ1, and initialize a vector set λ′

that contains all dimensional unit weight vectors including (1,0,...,0), (0,1,...,0), ..., (0,0,...,1);
S tep 2. Find the weight vector in λ1 which has the longest Euclidean distance with the vectors in λ,

and transfer it from λ1 to λ′;
S tep 3. If the number of vectors in λ′ reaches N (population size), go to S tep 4; Otherwise repeat

S tep 2;
S tep 4. Normalize the weight vectors in λ′ by Eq (5.2) to obtain a series of initialized weight vectors

λ0,

λ0 = WS (λ′) = (
1
λ1∑m

i=1
1
λi

, ...,

1
λm∑m
i=1

1
λi

). (5.2)

By the above method, the original MOP problem is decomposed to N subproblems with N weight
vectors, denoted by W (W = (W(1), ...,W(N))). After that, a VP containing all AAPs is randomly
initialized as the initial individual for each subproblem, denoted by VPi (i = 1, ...,N), and its
corresponding feasible solution is constructed by the CP. Then, the objective values of it are
calculated. All the N individuals make up the initial population.

5.2.2. Neighborhood selection

The neighbors of individual i are defined as follows:

B(i) = { j
∣∣∣W( j) is one of the n weights closest to W(i) }

n = round(δ · N)
(5.3)

where δ ∈ (0, 1) is the parameter that determines the size of the neighborhood.
In the exploitation search of each individual, we will select its neighbors as muting pool since their

weight vectors are closed, i.e., the Euclidean distance is small, and their corresponding subproblems
generally have similar optimal solutions, which means that the knowledge of them can be shared to
each other.

5.2.3. Evolutionary operation

For each individual, it corresponds to a subproblem of TCH approach with a weight vector, so our
goal is to lead it to the optimal solution of its subproblem. In this paper, the following three evolution
operators are proposed to search for better solutions for each individual (subproblem).

1) Local search operator
The first evolution operator is the local search (LS) operator, which is to generate a new solution by

exchanging the order of two AAPs in the VP. As stated in Property 1 and Property 2, a feasible solution
of UMDWTA can be generated by different VPs, so randomly changing the order of AAPs in a VP
may leads to the same feasible solution. From the element of CP, we can see that any AAP ranking
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first in a VP will be marked as an AAAP, so selecting an UAAP and exchanging it with the first AAP
in a VP can greatly generate a new feasible solution. Figure 2 describes the rationale of it.

Figure 2. The illustration of the rationale for LS operator.

We apply the LS operator to each UAAP in the current VP in turns, and the set of new generated
VPs is called the neighborhood of the LS operator. Then, we find the best one among them (which
has the optimal objective value for the subproblem) and replace the current VP with it. Note that the
number of neighbors of the LS operator will rapidly grow with the number of AAPs in the VP, and
the computing time consumed by the LS operator will be also increases rapidly. To avoid this case, a
tenure parameter te is set, and the LS operator will be released when executing te times.

2) Crossover operator

Two individuals may be selected as parents to generate offspring. The common AAAPs shared by
the two parents will remain and be moved to the head to generate offspring. This strategy follows the
idea that "good" genes should be inherited. Figure 3 describes the rationale of this operator.

Figure 3. The illustration of the rationale for crossover operator.

3) Mutation operator

To avoid individuals falling into locally optimal solutions, the mutation operator is employed to
increase the diversity of the population. The rationale of the mutation operator is similar to that of
the LS operator, but the number of selected UAAPs, denoted as m, is randomly selected from the set
{2, ..., size(S UAAP)}. Then, the selected UAAPs will be moved to the head of the current VP in sequence.
Figure 4 describes the rationale of this operation when m = 3.
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Figure 4. The illustration of the rationale for mutation operator.

Combining the above three evolution operators, the offspring production mechanism can be
described as the following steps:

S tep 1. For the i-th individual in the current population, VPi, the LS operator is employed to search for
the optimal solution VP∗ in its neighborhood of the LS operator. If VP∗, VPi, regard VP∗ as
the offspring of VPi, denoted by V̄Pi = VP∗; otherwise VP∗ = VPi, which means there is no
better solution in its neighborhood of the LS operator, and then go to S tep 2.

S tep 2. Randomly select mating pool from the neighbors defined in Eq (5.3), then produce the offspring
as follows:

¯VPi =

{
cr(VPi) i f rand ≤ psl

mu(VPi) i f rand > psl
(5.4)

where cr(VPi) and mu(VPi) are the individuals obtained by performing the crossover operator
and the mutation operator on VPi, respectively; psl is the probability of performing crossover
operator within 0 < psl < 1.

In S tep 1, the LS operator is employed to search for the better solution locally, and if it exists, treat
it as the offspring. In S tep 2, if no better solution can be found locally, the crossover operator and
mutation operator will be employed to guide the individual to jump out of the local optimal solution
and seek the global optimal solution.

5.2.4. Non-dominant solutions storage

In addition to the evolutionary population, a collection called external population (EP ) is defined
to store all non-dominant solutions and corresponding Pareto efficient solutions found in the iteration
process. The size of EP is set to twice that of the evolutionary population, 2N. The EP is also the
output when the algorithm stops.

5.2.5. Weight vectors adaptation

When using MOEA/D to solve complex MOP problems whose true Pareto fronts are discontinuous
or not uniformly distributed, the outputs obtained may perform poorly in diversity and distribution
uniformity if use unchanged uniformly distributed weights generated by UR method. To overcome
this defect, this paper employs the weight vectors adaptation mechanism which uses the sparsity level
among the population to adaptively adjust the weight vectors of subproblems. This mechanism can
efficiently improve the diversity of the Pareto front obtained.
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First, based on the vicinity distance [21], the sparsity level is defined as follows:

S L(VP j,P ) =
m∏

i=1

L
NN j

i
2 (5.5)

where L
NN j

i
2 is the objective function Euclidean distance of j-th individual, VP j, along with that of its i-

th nearest individual in the population, P . The m (the number of objective functions) closest Euclidean
distances are used.

The sparsity level of each individual in the population is calculated among the population itself by
Eq (5.5), and the individual with the lowest sparsity level will be removed. If 5% of the population
(subproblems), nus, have not been removed yet, repeat the above process.

After that, calculate the sparsity level of each individual in EP among the population, and the
individual with highest sparsity level in EP , VPsp, will be selected as the individual to be added to
the current population. The new corresponding weight vector of the selected individual (subproblem),
λsp, is generated as follows:

λsp = (
1

f sp
1 −z∗1∑m

k=1
1

f sp
k −z∗k

, ...,

1
f sp
m −z∗m∑m

k=1
1

f sp
k −z∗k

) (5.6)

where f sp
k is k-th objective value of VPsp. The process is repeated until nus new individuals

(subproblems) are add to the population. The pseudocode is shown in Algorithm 2.

Algorithm 2: Weight vectors adaptation.
1 P , W , EP are the population, weight vectors, external population, respectively;
2 nus← 0.05N;
3 ad just ← 0;
4 while ad just < nus do
5 Calculate the sparsity level of each individual in P among P by equation (5.5);
6 Remove the individual with the minimum sparsity level;
7 ad just ← ad just + 1;
8 end
9 while ad just > 0 do

10 Calculate the sparsity level of each individual in EP among P by equation (5.5);
11 Find the individual VPsp with the largest sparsity level in EP and generate a new

subproblem with weight vector λsp by equation (5.6);
12 Add the new constructed subproblem λsp to W associated with the individual VPsp to the

current P ;
13 end
14 Update the neighbors B of individuals defined in (5.3);
15 return P , W and B

5.2.6. Algorithm explanation

Straightforwardly, the pseudocode of the improved MOEA/D with adaptive weights (MOEA/D-
AW) is illustrated in Algorithm 3.
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Algorithm 3: Improved MOEA/D-AW.
1 EP ← ∅;
2 Initialize the weight vectors set W and the population P ;
3 Determine the neighbors B of individual by equation (5.3);
4 Use Algorithm 1 to construct the corresponding decision variable for each individual and

calculate its objective values;
5 Initialize the reference point z∗ and nadir point znad according to P ;
6 t ← 0; nr ← 0.5 · round(δ · N);
7 while t < Genmax do
8 O ← ∅;
9 for each i ∈ {1, ...,N} do

10 E ← B(i);
11 Use the offspring production mechanism to produce offspring V̄P, then construct its

decision variable by Algorithm 1 and calculate its objective values f (V̄P);
12 z∗ ← min(z∗,f (V̄P));
13 znad ← max(znad,f (V̄P));
14 update← 0;
15 while update < nr and E , ∅ do
16 j← Randomly select an index from E;
17 E ← E\ j;
18 if gTCH(V̄P

∣∣∣W ( j), z∗, znad ) ≤ gTCH(VP j

∣∣∣W ( j), z∗, znad ) then
19 VP j ← V̄P;
20 update← update + 1;
21 end
22 end
23 if ¬∃q ∈ EP ,f (q) ≺ f (V̄P) then
24 EP ← EP ∪ ¯̄VP;
25 EP ← EP \{q ∈ EP

∣∣∣f (V̄P) ≺ f (q) };
26 end
27 end
28 while |EP | > 2N do
29 Remove the individual with the highest sparsity level from EP ;
30 end
31 if t%(Genmax × 5%) == 0 and t ≤ Genmax × 90% then
32 Update the weight vectors W , the neighbors B and the population P using the

Algorithm 2;
33 end
34 t ← t + 1;
35 end
36 return EP and P
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At the beginning, a set of weight vectors W generated by the UR method decompose the original
MOP problem (4.3) to a series of subproblems, and then the neighborhood structure is initialized to
B. Then, initialize an individual for each subproblem in W , and all individuals form a population P
(Line 1–4).

In each generation, the LS operator is first employed to search for the best solution locally for
each individual (subproblem). If there is a better one, treat it as an offspring. Otherwise, a mating
pool E is selected for the individual to produce an offspring by employing the crossover operator or
mutation operator. Then, the offspring will update at most nr individuals in E if the objective value
of its corresponding subproblem can be improved. Meanwhile, the EP will be updated by combining
the offspring with the current EP and deleting the solutions that are dominated by any other solution
in the combination (Line 9–27).

After each generation, if the size of EP is larger than 2N, the sparsest individual in EP will be
deleted (Line 28–30).

Finally, for every 5% of the evolutionary process, up to 90% of the total number of generations,
the weight vectors of subproblems and population will be updated through weight vectors adaptation
mechanism. The algorithm stops when the maximum number of generations is reached. The EP is
the Pareto front and Pareto efficient solutions obtained by the algorithm (Line 31–36).

5.3. Performance test

To verify the effectiveness of improved MOEA/D-AW in solving MOP problem, four typical test
functions, ZDT1, ZDT2, ZDT3 and ZDT4 [42], with convex, non-convex and discontinuous Pareto
fronts respectively are employed to test the performance of it in solving MOP problem firstly. Notice
that above four test functions are continuous real-value functions, thus the evolution operator is
replaced by original crossover and mutation operators in genetic algorithm [43].

The search space is set to [0, 1]n, n = 30 for ZDT1, ZDT2, ZDT3, and [0, 1] × [−5, 5]n−1, n = 10
for ZDT4. The traditional MOEA/D [16] is employed as the comparison algorithm, and the inverse
generational distance (IGD) and spacing metric (SP) [17] are selected as performance indexes to
measure the convergence and distribution uniformity of Pareto fronts obtained by algorithms,
respectively. The smaller the IGD is, the closer the Pareto front obtained by the algorithm is to the
real Pareto front. The smaller the SP is, the better the distribution uniformity of the Pareto front
obtained by the algorithm is. The control parameters of two algorithms are given in Table 2.

Table 2. Control parameters of MOEA/D-AW and MOEA/D.

Parameter Value
Population size N 50

Maximum generation Genmax 200
Neighborhood size δ 0.1
Crossover probability 0.9
Mutation probability 1/size (mating pool)

For each test function, the initial population is set to be the same, and two algorithms will run 30
times independently. Tables 3 and 4 show the performance indexes of MOEA/D-AW and MOEA/D
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on ZDT1, ZDT2, ZDT3 and ZDT4, respectively. It is shown that the average IGD and SP of 30
experiments obtained by MOEA/D-AW are smaller than those obtained by MOEA/D, which means
that the Pareto fronts obtained by MOEA/D-AW are generally closer to the true Pareto fronts and
more evenly distributed than that obtained by MOEA/D under the same parameter settings. In fact,
the UR method initializes a set of uniformly distributed weight vectors, and the weight vectors
adaption mechanism can adaptively adjust the weight vectors of subproblems according to the
sparisity level of individuals, which can avoid the overcrowding of population in the iterative process
and effectively improve the distribution uniformity of the Pareto front obtained. Undoubtedly, the
MOEA/D-AW outperforms MOEA/D in solving the MOP problem, so it is reasonable to apply the
improved MOEA/D-AW to solving the UMDWTA problem.

Table 3. IGD index of two algorithms.

Algorithm ZDT1 ZDT2 ZDT3 ZDT4

MOEA/D-AW
best 0.0589 0.0756 0.0958 0.1496

worst 0.6254 0.5824 0.4937 0.6486
average 0.3958 0.2206 0.1920 0.3963

MOEA/D
best 0.0783 0.0852 0.1208 0.2036

worst 0.5830 0.7428 0.4309 0.9614
average 0.4003 0.2234 0.2192 0.4265

Table 4. SP index of two algorithms.

Algorithm ZDT1 ZDT2 ZDT3 ZDT4

MOEA/D-AW
best 0.0016 0.0013 0.0023 0.0081

worst 0.0182 0.0216 0.0389 0.0961
average 0.0072 0.0058 0.0091 0.0183

MOEA/D
best 0.0058 0.0043 0.0097 0.0121

worst 0.0247 0.0382 0.1041 0.1385
average 0.0093 0.0068 0.0147 0.0275

6. Simulation case

In order to further verify the availability of the UMDWTA model and the applicability of improved
MOEA/D-AW in solving the UMDWTA problem, a case is presented and solved by the algorithm in
this Section.

6.1. Relevant parameters of UMDWTA

In this case, the basic parameters in model (3.8) and model (4.3) are set as W = 20, T = 10, S = 5,
K = 5, and other parameters are shown in Table 5.
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Table 5. Parameters of the case.

Input date Detailed information

pi jh Randomly select from [0.5, 0.95], ∀i = 1, ...,W, ∀ j = 1, ...,T , ∀h = t, ..., S .
Ci 5 + 0.5 × (i − 1), ∀i = 1, ...,W.

ξT, j
L(aT, j, bT, j), aT, j and bT, j are randomly selected from [0.5, 4] and [6, 10], respectively,
∀ j = 1, ...,T .

ξV,k
L(aV,k, bV,k), aV,k, bV,k are randomly selected from [1, 5], [7, 10], respectively, ∀k =
1, ...,K.

ξA, jk
z(aA, jk, bA, jk, cA, jk), aA, jk, bA, jk, cA, jk are randomly selected from [0.2, 0.3], [0.4, 0.5],
[0.6, 0.7], respectively, ∀ j = 1, ...,T , ∀k = 1, ...,K.

ξC E(λ), λ = 0.6.
ni 1, ∀i = 1, ...,W.
Ni Randomly select from {3, 4, 5}, ∀i = 1, ...,W.
F The probability that fi jh = 1 is 0.5, ∀i = 1, ...,W, ∀ j = 1, ...,T , ∀k = 1, ...,K.

The parameter m j ( j = 1, ...,T ) is set to 1, 2 or 3 according to Eq (6.1), which follows the rules that
the higher the target threat value is, the more weapons are allowed to be allocated to it.

m j =


1, i f 0 < aT, j ≤ 2
2, i f 2 < aT, j ≤ 3
3, i f 3 < aT, j ≤ 4

.

(6.1)

6.2. Experienmental parameters

The experimental parameters are shown in Table 6.

Table 6. Experiment parameters.

Parameter Value
N 50

Genmax 50
δ 0.1
te 0.2× size(VP)
psl 0.6

6.3. Comparison algorithm

In order to verify the effectiveness of the algorithm, we use the improved MOEA/D without adaptive
weights mechanism. The rest of the framework is the same as the improved MOEA/D-AW. Due to the
large number of objective functions of the UMDWTA model, the Pareto fronts obtained by the two
algorithms are not convenient to be visually represented in figure form. Here we calculate the SP [17]
and C-metric [26] to give a further comparison study between improved MOEA/D-AW and improved
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MOEA/D on solving UMDWTA problem. The definition of C-metric is given as follows:

C(PF1, PF2) =

∣∣∣µ ∈ PF2

∣∣∣∃v ∈ PF1 : v dominates µ
∣∣∣

|PF2|
(6.2)

where PF1 and PF2 are the Pareto fronts obtained by two algorithms, respectively. The C-metric can
reflect the quality of the Pareto front obtained by the two algorithms, i.e., if
C(PF1, PF2) < C(PF2, PF1), the proportion of solutions in PF2 dominated by PF1 is smaller than
that of solutions in PF1 dominated by PF2, so the quality of PF2 is better than that of PF1.

6.4. Result analysis

The two algorithms will run 10 times for this case in MATLAB_R2018b environment on a PC
with Intel Core i5 CPU 2.30GHz and 12 GB internal memory. The average running time of improved
MOEA/D-AW and improved MOEA/D is 21.4326 s and 19.8357 s, respectively.

The statistical results of C-metric and SP of Pareto fronts on the UMDWTA case are shown in
Tables 7 and 8. Denote by PF1 and PF2 the Pareto front obtained by improved MOEA/D-AW and that
obtained by improved MOEA/D, respectively.

Table 7. Statistical results of C-metric between MOEA/D-AW (PF1) and MOEA/D (PF2).

C(PF1, PF2)
max 0.04
min 0

mean 0.006

C(PF2, PF1)
max 0.02
min 0

mean 0.003

Table 8. Statistical results of SP of MOEA/D-AW and MOEA/D.

MOEA/D-AW MOEA/D

SP
max 1.1732 1.5838
min 0.8394 0.8156

mean 0.9564 1.3849

There are two observations that can be derived from Tables 7 and 8. First, both improved
MOEA/D-AW and improved MOEA/D can obtain the Pareto front with high quality in solving the
case of UMDWTA problem, but the Pareto front obtained by improved MOEA/D-AW contains more
non-dominated solution than that obtained by improved MOEA/D. Second, as to the comparison
results in Table 8, the SP of Pareto front obtained by improved MOEA/D-AW is smaller than that of
Pareto front obtained by improved MOEA/D averagely, i.e., the improved MOEA/D-AW outperforms
the improved MOEA/D in distribution uniformity, which is consistent with former analysis that the
adaptive weights mechanism can improve the distribution uniformity performance of output.

After that, we randomly pick one simulation result, and the Pareto front of Eσ-UMDWTA
model (4.3) and corresponding Pareto efficient solutions which are also called Pareto efficient
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allocation schemes are obtained. Part of the Pareto front obtained by improved MOEA/D-AW is
shown in Table 9.

Table 9. Part of the Pareto front obtained by improved MOEA/D-AW.

No. E(− fd) σ(− fd) E(− fs) σ(− fs) E( fc) σ( fc)

1 -56.1232∗ 10.6045 -28.2705∗ 11.0020 848.9565 115.8239
2 -54.9364 10.2355 -26.0664 10.1336 838.3866 114.2797
3 -49.3543 8.5090∗ -15.8587 6.1128 819.2369 111.1917
4 -49.6632 8.5962 -15.6832 6.1794 829.8067 112.7359
5 -56.0576 10.5844 -28.1394 10.9516 798.7170 109.6457
6 -53.0653 9.6571 -22.3130 8.7167 812.7694 111.1905
7 -49.4325 8.5292 -15.3705 6.0552∗ 819.2369 111.1917
8 -56.0239 10.5745 -28.0706 10.9251 770.6123 106.5561
9 -55.7068 10.4765 -27.4521 10.6878 763.0275∗ 105.0124∗

10 -49.6006 8.5819 -15.6016 6.1469 797.2245 109.6454

Note: ∗ means the best value among the values of the same column.

Table 9 shows that different objective functions of the Eσ-UMDWTA model restrict each other,
which is mainly reflected in two aspects. One is the mutual restriction between different evaluation
indicators: The solution with smaller E(− fd) or smaller E(− fs) usually has larger E( fc) (No.1, No.2,
No.10), i.e., allocation scheme with higher expected value of destruction of targets or higher expected
value of surviving assets usually consumes more operation cost than other allocation schemes, which
is also consistent with the actual combat situation. The second is the contradiction between the
expected value and the standard deviation of the same evaluation indicator: The allocation scheme
which performs better in the expected value of destruction of targets (E(− fd)) or surviving assets
(E(− fs)) generally has greater standard deviation, i.e., the stability is not ideal.

It can be seen from Table 9 that the Pareto efficient allocation schemes of the Eσ-UMDWTA model
are contradictory, and there is no single allocation scheme that minimizes all the objective functions,
i.e., there is no absolute optimal allocation scheme. If the decision makers hope to maximize the
expected value of destruction of targets, i.e., to minimize E(− fd), they have to sacrifice the operation
cost. Similarly, if they hope to maximize the expected value of surviving assets, it will also take more
operation cost. This result verifies the availability of the model to some extent.

In conclusion, the improved MOEA/D-AW designed in this paper can effectively solve UMDWTA
problem and obtained a series of Pareto efficient allocation schemes, and then different optimal
allocation schemes can be defined under different combat missions.

There are mainly two methods for decision makers to select the optimal allocation scheme from the
obtained Pareto efficient allocation schemes for different combat missions. The first method is to set
different weights to each objective function according to specific requirement, which is also called the
linear weighting method; the second method is to find the optimal allocation scheme of minimizing
one objective when other objectives meet certain limits, which is also called the main target method.

For example, we assume that the decision makers pay more attention to the expected value of
destruction of targets, so we given the weight vector w = (0.5.0.1, 0.1, 0.1, 0.1, 0.1) to objective
functions. Then, we can choose the optimal allocation scheme directly from the Pareto efficient
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allocation schemes obtained by algorithm directly and list it in Table 10. The objective value of this
allocation scheme after normalization under the given weights is 58.3218. Commonly, the decision
makers can adjust the weights according to the actual requirement and choose the corresponding
optimal allocation scheme from the Pareto efficient allocation schemes.

Table 10. Optimal allocation scheme under the weight vector w = (0.5.0.1, 0.1, 0.1, 0.1, 0.1).

Weapon S = 1 S = 2 S = 3 S = 4 S = 5

W1 2 9 ⋇ 1 8
W2 ⋇ 5 8 ⋇ 2
W3 10 ⋇ 8 7 ⋇

W4 10 ⋇ 10 ⋇ 6
W5 9 ⋇ 7 4 7
W6 9 2 ⋇ 10 ⋇

W7 2 9 ⋇ 1 8
W8 ⋇ 9 ⋇ 8 3
W9 3 3 3 5 7

W10 6 6 1 4 8
W11 1 ⋇ 7 2 6
W12 ⋇ 4 ⋇ 5 1
W13 4 1 5 3 1
W14 ⋇ 8 1 10 ⋇

W15 6 10 ⋇ 6 ⋇

W16 5 ⋇ 4 7 6
W17 5 10 4 1 2
W18 8 5 2 ⋇ ⋇

W19 7 ⋇ 9 8 4
W20 4 ⋇ 9 ⋇ 10

Note: 1) The number "2" in the first unit (W1,S = 1) represents that weapon 1 is assigned to target 2 in stage 1, and the others is for the
same reason.

2) ⋇ means that this weapon unit is not assigned to any target in the stage.

7. Conclusions

In this paper, the WTA problem was studied based on uncertainty theory originally, and an
UMDWTA model was established. Then, based on the actual battlefield requirements, a solution
method based on expected value and standard deviation principle was provided to convert the
proposed unsolvable model to a deterministic one, which was a traditional MOP problem and had a
set of Pareto efficient solutions instead of absolutely optimal solution. In order to solve the model
efficiently, an improved MOEA/D with adaptive weights was designed, and the algorithm has been
tested on four well-known MOP test functions, and the results showed that MOEA/D-AW
outperforms MOEA/D greatly in both convergence and unform distribution. Finally, a case of
UMDWTA was presented and solved by the designed algorithm, and a set of Pareto efficient solutions
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was obtained, which provided the decision maker a series of reference schemes. The results suggested
that the objective values and the allocation schemes of UMDWTA model obtained by algorithm were
consistent with the real situation, and the designed algorithm was an efficient multi-objective
optimizer. The work in this paper can provide theoretical guidance and support for solving WTA
problem in the indeterminate battlefield environment which is full of uncertainties.
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