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Abstract: The single-valued neutrosophic hesitant fuzzy set (SV-NHFS) is a hybrid structure of
the single-valued neutrosophic set and the hesitant fuzzy set that is designed for some incomplete,
uncertain, and inconsistent situations in which each element has a few different values designed
by the truth membership hesitant function, indeterminacy membership hesitant function, and falsity
membership hesitant function. A strategic decision-making technique can help the decision-maker
accomplish and analyze the information in an efficient manner. However, in our real lives, uncertainty
will play a dominant role during the information collection phase. To handle such uncertainties in
the data, we present a decision-making algorithm in the SV-NHFS environment. In this paper, we
first presented the basic operational laws for SV-NHF information under Einstein’s t-norm and t-
conorm. Furthermore, important properties of Einstein operators, including the Einstein sum, product,
and scalar multiplication, are done under SV-NHFSs. Then, we proposed a list of novel aggregation
operators’ names: Single-valued neutrosophic hesitant fuzzy Einstein weighted averaging, weighted
geometric, order weighted averaging, and order weighted geometric aggregation operators. Finally,
we discuss a multi-attribute decision-making (MADM) algorithm based on the proposed operators to
address the problems in the SV-NHF environment. A numerical example is given to illustrate the
work and compare the results with the results of the existing studies. Also, the sensitivity analysis and
advantages of the stated algorithm are given in the work to verify and strengthen the study.
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1. Introduction

The idea of “multi-attribute group decision making” (MAGDM) was put forward as a promising
and important field of research at the beginning of the 1970s. Since then, a growing number of
contributions have been made to theories and models that could be the basis for making decisions
that are more methodical and logically sound, employing a variety of criteria. According to one
viewpoint, decision-making is a process of problem-solving that ends with the choice of a solution
that is thought to be either the best or, at the very least, a reasonable and acceptable alternative among
a collection of plausible alternatives. The phrase “multi-criteria decision making” or “MAGDM” refers
to a sub field of operations research that focuses on the process of selecting the best option for a given
set of criteria by carefully and systematically examining all of the alternatives. By contrasting and
comparing all of the options, this is achieved. MAGDM issues and related solutions are regularly
encountered in a variety of disciplines, including the social sciences, economics, management, and
medicine. Struggling to figure out how to incorporate ambiguous information pieces that have been
offered by a broad range of sources in the process of arriving at a judgment or conclusion is one of the
most challenging challenges one encounters when meeting complexity that requires MAGDM. When
dealing with problems that call for MAGDM, this is one of the biggest difficulties one encounters.
Numerous surveys, including those by Bana and Costa [1], demonstrate the field’s vigour and the
variety of methodologies that have been created. A few years later, Bellman, Zadeh, and Zimmermann
introduced fuzzy sets into the field, paving the way for a new family of techniques to solve problems
that had previously been inaccessible and unsolvable with conventional MAGDM techniques. There
are various variations on the MAGDM theme, depending on the theoretical underpinnings used for the
modeling. Since it protects against data theft and destruction, cybersecurity is essential. This includes
sensitive data, personally identifiable information (PII), protected health information (PHI), personal
data, information relating to intellectual property, and computer networks utilized by the government
and industry. Without a cybersecurity programme, your business cannot defend itself against data
breach operations, making it an inevitable target for cyber criminals.

Both inherent risk and residual risk are increasing as a result of improved worldwide connectivity
and the use of cloud services like Amazon Web Services to store private and sensitive data. Due to
widespread poor cloud service design, highly trained cybercriminals, and widespread inadequate cloud
service setup, it is more likely that your company will be the victim of a successful cyberattack or
data breach. Business executives cannot exclusively rely on standard cybersecurity tools like firewalls
and antivirus software because hackers are growing more cunning and their strategies are becoming
more resistant to traditional cyber defenses. To stay well-protected, it’s crucial to cover all aspects of
cybersecurity. Any level of your organisation has the potential to pose a cyber threat. To educate
personnel about typical cyber threats, including social engineering scams, phishing, ransomware
attacks (think WannaCry), and other programmes made to steal sensitive data, workplaces must offer
cyber security awareness training. Due to the prevalence of data breaches, cybersecurity is essential
across all industries, not just those with strict regulations like the health care sector. After a data breach,
even small firms run the risk of having their reputations permanently damaged.

To help you understand the importance of cyber security, we’ve posted an essay describing the
numerous components of cybercrime you might not be aware of. You should be concerned about
cybersecurity risks if you aren’t already. Cybersecurity is the practise of preventing and responding
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to attacks on computer systems, networks, hardware, and software. Your sensitive data is at risk from
increasingly sophisticated and dynamic cyber attacks, which use cutting-edge methods that combine
social engineering and artificial intelligence (AI) to bypass well-established data protection safeguards.
The world is getting more and more dependent on technology, and as we create new technologies that
will eventually connect to our linked devices via Bluetooth and Wi-Fi, this dependence will only grow.
Intelligent cloud security solutions should be used in conjunction with stringent password rules such
as multi-factor authentication to limit unauthorised access and protect customer data while adopting
new technologies. Information theft is the most expensive and quickly spreading type of cybercrime.
mostly as a result of cloud services’ role in the growth of identity information vulnerability on the web.
It’s not the only one, though. Industrial controls, which are susceptible to disruption ordestruction,
are used to regulate power grids and other infrastructure. In order to cause strife within a business or
government, cyber attacks may also aim to threaten data integrity (destroy or change data), making
identity theft their secondary goal. As they gain experience, cybercriminals change the targets they
select, the methods by which they influence enterprises, and the manner in which they attack different
security systems. Here, we go over numerous security measures and their difficulties.

A fuzzy set (FS) is a mathematical representation of a group of elements (objects) with fuzzy
boundaries that allows for the potential of a progressive change in an element’s belongings to a group,
from full membership to non membership. This idea is presented in the fuzzy sets (FSs) theory as a way
to mathematically express fuzzy concepts that people use to describe how they perceive real systems,
their preferences, and goals, among other things. Applying the fuzzy decision theory, choose the best
security system that will protect you from hackers. Many challenges exist in security systems that are
only hazy when it comes to selecting the best option. When dealing with unstructured scenarios in
decision-making situations, classic or crisp methods may not always be the most effective. Zadeh [2]
developed FSs in 1965 as a technique to manage such inconsistency.

In FSs, Zadeh assigns membership grades in the range [0,1] to a set of components. Since many
of the set theoretic components of crisp conditions were given for FSs, Zadeh’s work in this area is
noteworthy. An improved version of the FS that contains membership and non-membership degrees
was the intuitionistic fuzzy set (IFS), which was the subject of Atanassov’s [3] research. IFSs have
been shown to be useful and frequently used by academics to assess uncertainty and instability in
data over the last few decades. To explain the hesitant fuzzy set (HFS) more forcefully than the
preceding classical fuzzy set extensions, Torra [5] developed the HFS, which necessitates that the
membership have a collection of potential values. In order to handle circumstances where experts
are split between several possibilities for an indicator, alternative, element, etc. [6, 7], a new model
based on HFSs was recently put into place. HFSs are particularly effective at addressing the issues of
group decision making when experts hesitate between several potential memberships for an element
of a series of decisions [8]. Many extensions to HFS have been implemented to handle more
complex environments [34], including the interval-valued hesitated fuzzy set [9, 10], the hesitant-
triangular fuzzy set [11, 12], the hesitant-multiplicative set [13], the hesitant-fuzzy linguistic word
set [14], the hesitant-fuzzy uncertain linguistic set [15], the dual HFS [16, 17], and the generalized
HFS [18]. Several scholars have used aggregation operators to apply the HFS notion to group
decision-making settings [19–22]. The neutrosophic set (NS), a philosophical field and mathematical
instrument for understanding the genesis, nature, and range of neutralities, was initially put forth by
Smarandache [23]. It examines the origins, character, and scope of neutralities as well as how they
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interact with other ideational spectrums.
The NS generalizes the concepts of the classic set [27], fuzzy set, interval-valued fuzzy set,

intuitionistic interval-valued fuzzy sets [28], dialetheist set, paradoxist set, and tautological set [29]. A
NS is indicated by membership degree β<(κ), indeterminacy α<(κ) and non membership degree γ<(κ),
where β<(κ), α<(κ) and γ<(κ) are elements from ]0−,1+[ . Although NS philosophically generalises
the notions of FS, IFS, and all the existing structures, it will be challenging to implement in real-world
scientific and engineering situations. This concept is critical in many contexts, such as information
fusion, where data from several sensors is integrated. Recently, neutrosophic sets have primarily
been used in engineering and other sectors to make decisions. Wang et al. [30] proposed a single-
valued neutrosophic set (SV-NS), which can handle inaccurate, indeterminate, and incompatible data
challenges. Many other researchers have defined its extensions; for example, see [31]. On the one hand,
an SV-NS is a NS that allows us to convey ambiguity, imprecision, incompleteness, and inconsistency
in the real world. It would be more suitable to employ uncertain information and an inconsistent
information matrix in decision-making [32, 33, 35]. SV-NSs, on the other hand, can be employed in
scientific and technical applications since SV-NS theory is useful in modelling ambiguous, imprecise,
and inconsistent data [36,37]. The SV-NS is suitable for collecting imprecise, unclear, and inconsistent
information in multi criteria decision-making analysis due to its ability to easily capture the ambiguous
character of subjective judgments. Many researchers work on the operators of the NSs, which can be
seen as Domi operators [38], Einstein operators [39] and many others. Also, we can see the use of
these operators in decision-making [40, 41].

Motivation

The security categorization is used in the security controls selection process to choose the initial
baseline of security controls (i.e., low or moderate) that will adequately safeguard the data and
information systems that are housed within the cloud service environment. According to a risk
assessment or a security requirement specific to an organization, a cloud service may call for the
implementation of alternative or compensating security controls that were not part of the initial
baseline, or it may call for the addition of additional security controls or enhancements to address
specific organisational needs. In order to accomplish this, the Control Tailoring Workbook (CTW)
gives the CSP a list of the FedRAMP security controls applicable to the cloud environment and helps
identify the exception scenarios for the service offering. This allows the platform to be pre-qualified
before resources are used to develop all of the other necessary FedRAMP documentation requirements.
Your security systems and the procedures necessary for the GRC programme are regularly monitored
by modern governance, risk, and compliance (GRC) solutions. These duties could include gathering
evidence, risk assessment, risk management for vendors, staff training, and gap analysis. By actively
protecting your data and assisting you in remaining compliant, you may earn the trust of your clients,
business associates, suppliers, and investors. However, there are several GRC tools on the market,
each claiming to be the best, making it easy to become perplexed if you are seeking GRC solutions.
Therefore, in order to save you time and help you narrow down your search for the best GRC tools, we
have chosen the top four. Using the SV-NHF environment, we choose the best option according to our
system requirements.
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In this research work, we administered the Einstein aggregation operators (AOs) to the SV-
NHFS environment. i.e., the SV-NHFEWA, SV-NHFEOWA, SV-NHFEHWA, SV-NHFEWG, SV-
NHFEOWG, and SV-NHFEHWG operators. Idempotency, boundness, and monotonicity are among
the properties of the recommended operators that have been established. Such operators take the SV-
NS AOs into consideration in hesitant scenarios, which is their main benefit. In the case of hesitant
material, the lack of SV-NHFE AOs could lead to a scarcity of hesitant information.

This study’s remaining sections are organised as follows: Briefly explained in Section 1 are some
fundamental SV-FSs, HFSs, and SV-NHFS theory concepts. Section 2 provides an explanation of
basic notations and ideas. In Sections 3 and 4, respectively, a unique idea of SV-neutrosophic hesitant
fuzzy sets (SV-NHFSs) with Einstein aggregation operations is introduced. A collection of algebraic
SV-NHF Einstein aggregation operators for aggregating uncertain data is provided in Section 5 for use
in making decisions. Section 6 of the manuscript marks its conclusion.

2. Preliminaries

Let’s go over the basics of fuzzy sets, intuitionistic fuzzy sets, hesitant fuzzy sets, and neutrosophic
sets in this part. Once they have been approved, these ideas will be implemented later.

Definition 1. [2] For a fixed set Ξ. A FS< in Ξ is presented as

< = {〈δ`,∆< (δ`)〉 |δ` ∈ Ξ} ,

for each δ` ∈ Ξ, the membership degree (MD) ∆< : Ξ → ∆ specifies the degree to which the element
δ` ∈ <, where ∆ −→ [0, 1] be the unit interval.

Definition 2. [3] For a fixed set Ξ. An IFS< in Ξ is presented as

< = {〈δ`,∆< (δ`) ,O< (δ`)〉 |δ` ∈ Ξ} ,

∆< (δ`) is known as the MD and O< (δ`) is the non MD where (∆< (δ`) ,O< (δ`)) −→ [0, 1] . Moreover,
it is required that 0 ≤ ∆< (δ`) + O< (δ`) ≤ 1, for each δ` ∈ Ξ.

Definition 3. [4] For a fixed set Ξ. A HFS< in Ξ is presented as

< =
{〈
δ`,∆<hκ

(δ`)
〉
|δ` ∈ Ξ

}
where ∆<hκ

(δ`) is in the form of set, that’s contained some possible values in unit interval, i.e.,[0, 1]
which represent the MD of δ` ∈ Ξ in<.

Definition 4. [23] Suppose Ξ is a fixed set and Υ ∈ Ξ. A NS κ in Ξ is denoted as MD ∆κ(Υ), an
indeterminacy Λκ(Υ) and a non MD ∇κ(Υ). ∆κ(Υ), Λκ(Υ) and ∇κ(Υ) are subset of ]0−,1+[ and

∆κ(Υ),Λκ(Υ),∇κ(Υ) : Ξ −→
]
0−,1+[ .

The representation of NS κ is mathematically defined as:

κ = {〈Υ,∆κ(Υ),Λκ(Υ),∇κ(Υ))〉 |Υ ∈ Ξ},

where
0− < ∆κ(Υ) + Λκ(Υ) + ∇κ(Υ) ≤ 3+.
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Definition 5. [30] Let Ξ be a fixed set and Υ ∈ Ξ. A SV-NS A in Ξ is defined as MD ∆A(Υ), an
indeterminacy ΛA(Υ) and a non MD ∇A(Υ). ∆A(Υ),ΛA(Υ) and ∇A(Υ) are subsets of [0, 1] , and

∆A(Υ),ΛA(Υ),∇A(Υ) : Ξ −→ [0, 1] .

The representation of SV-NS A is mathematically defined as:

A = {〈Υ,∆A(Υ),ΛA(Υ),∇A(Υ))〉 |Υ ∈ Ξ},

where
0 < ∆A(Υ) + ΛA(Υ) + ∇A(Υ) ≤ 3.

Definition 6. [24, 25] Let Ξ be a fixed set. The representation of SV-NHFS < is mathematically
defined as:

< =
{
〈Υ,∆`Ξ

(Υ),Λ`Ξ
(Υ),∇`Ξ

(Υ)〉|Υ ∈ <
}

where ∆`Ξ
(Υ),Λ`Ξ

(Υ),∇`Ξ
(Υ) are set of some values in [0, 1], indicate the hesitant grade of

membership, indeterminacy and non membership of the element Υ ∈ < to the set Ξ.

Definition 7. [26] For a fixed set Ξ, the S V-NHFS < is represented mathematically as follows:

< = {
〈
Υ,∆`<(Υ),Λ`<(Υ),∇`<(Υ)

〉
|Υ ∈ Ξ},

where ∆`<(Υ),Λ`<(Υ) and ∇`<(Υ) are sets of some values in [0, 1] and denote the MD, indeterminacy
and non MD sequentially. It satisfy the following properties:

∀Υ ∈ Ξ : ∀µ<(Υ) ∈ ∆`<(Υ),∀λ<(Υ) ∈ Λ`<(Υ),∀ν<(Υ) ∈ O`<(Υ)

and
∀ν<(Υ) ∈ ∇`<(Υ) with

(
max

(
∆`<(Υ)

))
+

(
min

(
Λ`<(Υ)

))
+

(
min

(
∇`<(Υ)

))
≤ 3,

and (
min

(
∆`<(Υ)

))
+

(
min

(
Λ`<(Υ)

))
+

(
max

(
∇`<(Υ)

))
≤ 3.

For simplicity, we will use a pair< = (∆`< ,Λ`< ,∇`<) to mean S V-NHFS .

Definition 8. Let
$1 = (∆`$1

,Λ`$1
,∇`$1

)

and
$2 = (∆`$2

,Λ`$2
,∇`$2

)

be two SV-NHFNs. Following are the fundamental set theoretic operations:

$1 ∪$2 =


⋃

µ1∈∆`$1
µ2∈∆`$2

max (µ1, µ2) ,
⋃

ν1∈Λ`$1
ν2∈Λ`$2

min (ν1, ν2) ,
⋃

λ1∈∇`$1
λ2∈∇`$2

min (λ1, λ2)


;

$1 ∩$2 =


⋃

µ1∈∆`$1
µ2∈∆`$2

min (µ1, µ2) ,
⋃

ν1∈Λ`$1
ν2∈Λ`$2

max (ν1, ν2) ,
⋃

λ1∈∇`$1
λ2∈∇`$2

max (λ1, λ2)


;

$c
1 =

{
∇`$1

,Λ`$1
,∆`$1

}
.
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3. Einstein operational laws based on SV-NHFEs

The application of t-norms in FS theory at the intersection of two FSs is widely recognized.
T-conorms are being used to model disjunction or union. These are simple explanations of the
conjunction and disjunction in mathematical fuzzy logic syntax, and they are used to combine criteria
in MCDM. The Einstein sum (⊕ε) and Einstein product (⊗ε) are case studies of t-conorms and t-norms,
respectively, and are stated in the SV-NHF environment as follows.

Ñ ⊕ε Š =
Ñ + Š

1 + ÑŠ
; Ñ ⊗ε Š =

ÑŠ

1 +
(
1 − Ñ

) (
1 − Š

) .
Based on the above Einstein operations, we give the following new operations on SV-NHF
environment.

Definition 9. Let<1 =
(
υh`1

, τh`1
,Υh`1

)
and<2 =

(
υh`2

, τh
`2
,Υh

`2

)
be two SV-NHFEs and, then

<1 ⊕<2 =



⋃
Ξ1∈υh`1

(l`),Ξ2∈υh`2
(l`)

(
Ξ1+Ξ2

1+Ξ1Ξ2

)
,⋃

κ1∈τh`1
(l`) ,κ2 ∈τh`2

(l`)

(
κ1κ2

1+(1−κ1)(1−κ2)

)
,

⋃
χ1∈Υh`1

(l`) ,χ2 ∈Υh`2
(l`)

(
χ1χ2

1+(1−χ1)(1−χ2)

)


;

<1 ⊗<2 =



⋃
Ξ1∈υh`1

(l`),Ξ2∈υh`2
(l`)

(
Ξ1Ξ2

1+(1−Ξ1)(1−Ξ2)

)
,⋃

κ1∈τh`1
(l`) ,κ2 ∈τh`2

(l`)

(
κ1+κ2
1+κ1κ2

)
,

⋃
χ1∈Υh`1

(l`) ,χ2 ∈Υh`2
(l`)

(
χ1+χ2

1+χ1χ2

)


;

η<1 =



⋃
Ξ1∈υh`1

(l`)

(
(1+Ξ1)η−(1−Ξ1)η

(1+Ξ1)η+(1−Ξ1)η

)
,

⋃
κ1∈τh`1

(l`)

(
2κη1

(2−κ1)η+(κ1)η

)
,

⋃
χ1∈Υh`1

(l`)

(
2χη1

(2−χ1)η+(χ1)η

)


;

<
η
1 =



⋃
Ξ1∈υh`1

(l`)

2Ξ
η
1

(2−Ξ1)η+(Ξ1)η⋃
κ1∈τh`1

(l`)

(
(1+κ1)η−(1−κ1)η

(1+κ1)η+(1−κ1)η 1 − (1 − κ1)η
)
,⋃

χ1∈Υh`1
(l`)

(
(1+χ1)η−(1−χ1)η

(1+χ1)η+(1−χ1)η 1 − (1 − χ1)η
)


.
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4. SV-NHF Einstein aggregation operators

Within this section, we explained several novel Einstein operators for SV-NHFNs, namely
the SV-neutrosophic hesitant-fuzzy Einstein weighted averaging (SV-NHFEWA) operator, the SV-
neutrosophic hesitant-fuzzy Einstein ordered weighted averaging (SV-NHFEOWA) operator, the
SV-neutrosophic hesitant-fuzzy Einstein weighted geometric (SV-NHFEWG) operator, and the SV-
neutrosophic hesitant-fuzzy Einstein ordered weighted geometric (SV-NHFEOWG) operator.

4.1. SV-Neutrosophic hesitant fuzzy Einstein weighted averaging operators

Definition 10. Let < ̂ =
(
υh` ̂

, τh` ̂
,Υh` ̂

)
( ̂ = 1, 2, ....., ı̃) be a collection of SV-NHFNs, = =

(=1,=2, ....,=ı̃)T are the weights of< ̂ ∈ [0, 1] with
∑ı̃

̂=1= ̂ = 1. Then S V-NHFEWA:S V-HFN ı̃ −→

S V-NHFN such that

S V − NHFEWA(<1,<2, ....,<ı̃) = =1.ε<1 ⊕ε =2.ε<2 ⊕ε ..... ⊕ε =ı̃.ε<ı̃

is called the SV-neutrosophic hesitant fuzzy Einstein weighted averaging operator.

Theorem 1. Let δ ̂ =
(
υh` ̂

, τh` ̂
,Υh` ̂

)
( ̂ = 1, 2, ....., ı̃) be a collection of SV-NHFNs. Then the

aggregation result using SV-NHFEWA, we can achieve the following

S V − NHFEWA(δ1, δ2, ...., δı̃) =



⋃
Ξδ ̂∈υδ ̂

Πı̃
̂=1

(
1+Ξδ ̂

)= ̂
−Πı̃

̂=1

(
1−Ξδ ̂

)= ̂
Πı̃
̂=1

(
1+Ξδ ̂

)= ̂
+Πı̃

̂=1

(
1−Ξδ ̂

)= ̂ ,⋃
κδ ̂∈τδ ̂

2Πı̃
̂=1

(
κδ ̂

)= ̂
Πı̃
̂=1

(
2−κδ ̂

)= ̂
+Πı̃

̂=1

(
κδ ̂

)= ̂ ,⋃
χδ ̂∈Υδ ̂

2Πı̃
̂=1

(
κδ ̂

)= ̂
Πı̃
̂=1

(
2−χδ ̂

)= ̂
+Πı̃

̂=1

(
χδ ̂

)= ̂


where = = (=1,=2, ....,=ı̃)T are the weights of δ ̂ with = ̂ ∈ [0, 1] with

∑ı̃
̂=1= ̂ = 1.

Proof. We will demonstrate the theorem by mathematical induction. For ı̃ = 2

S V − NHFEWA(δ1, δ2) = =1.εδ1 ⊕ε =2.εδ2.

Since both =1.εδ1 and =2.εδ2 are SV-NHFNs, and also, =1.εδ1 ⊕ε =2.εδ2 is a SV-NHFN.

=1.εδ1 =



⋃
Ξδ1∈υδ1

(1+Ξδ1)
=1−(1−Ξδ1)

=1

(1+Ξδ1)
=1 +(1−Ξδ1)

=1
,⋃

κδ1∈τδ1

2(κδ1)
=1

(2−κδ1)
=1 +(κδ1)

=1
,⋃

χδ1∈Υδ1

2(χδ1)
=1

(2−χδ1)
=1 +(χδ1)

=1


.

AIMS Mathematics Volume 8, Issue 3, 5551–5573.



5559

=2.εδ2 =



⋃
Ξ2∈υδ2

(1+Ξδ2)
=2−(1−Ξδ2)

=2

(1+Ξδ2)
=2 +(1−Ξδ2)

=2
,⋃

κδ2∈τδ2

2(κδ2)
=2

(2−κδ2)
=2 +(κδ2)

=2
,⋃

χδ2∈Υδ2

2(χδ2)
=2

(2−χδ2)
=2 +(χδ2)

=2


.

Then

S V − NHFEWA(δ1, δ2) = =1.εδ1 ⊕ε =2.εδ2

=



⋃
Ξ1∈υδ1

(1+Ξδ1)
=1−(1−Ξδ1)

=1

(1+Ξδ1)
=1 +(1−Ξδ1)

=1
,⋃

κδ1∈τδ1

2(κδ1)
=1

(2−κδ1)
=1 +(κδ1)

=1
,⋃

χδ1∈Υδ1

2(κδ1)
=1

(2−χδ1)
=1 +(χδ1)

=1


⊕ε



⋃
Ξ2∈υδ2

(1+Ξδ2)
=2−(1−Ξδ2)

=2

(1+Ξδ2)
=2 +(1−Ξδ2)

=2
,⋃

κδ2∈τδ2

2(κδ2)
=2

(2−κδ2)
=2 +(κδ2)

=2
,⋃

χδ2∈Υδ2

2(χδ2)
=2

(2−χδ2)
=2 +(χδ2)

=2


.

=



⋃
Ξ1∈υδ1
Ξ2∈υδ2

(1+Ξδ1)
=1−(1−Ξδ1)

=1

(1+Ξδ1)
=1 +(1−Ξδ1)

=1
+

(1+Ξδ2)
=2−(1−Ξδ2)

=2

(1+Ξδ2)
=2 +(1−Ξδ2)

=2

1+

 (1+Ξδ1)
=1−(1−Ξδ1)

=1

(1+Ξδ1)
=1 +(1−Ξδ1)

=1

.ε
 (1+Ξδ2)

=2−(1−Ξδ2)
=2

(1+Ξδ2)
=2 +(1−Ξδ2)

=2


,

⋃
κδ1∈τδ1
κδ2
∈τδ2

 2(κδ1)
=1

(2−κδ1)
=1 +(κδ1)

=1

.ε
 2(κδ2)

=2

(2−κδ2)
=2 +(κδ2)

=2


1+

1− 2(κδ1)
=1

(2−κδ1)
=1 +(κδ1)

=1

.ε
1− 2(κδ2)

=2

(2−κδ2)
=2 +(κδ2)

=2


,

⋃
χδ1∈Υδ1
χδ2
∈τδ2

 2(χδ1)
=1

(2−χδ1)
=1 +(χδ1)

=1

.ε
 2(χδ2)

=2

(2−χδ2)
=2 +(χδ2)

=2


1+

1− 2(χδ1)
=1

(2−χδ1)
=1 +(χδ1)

=1

.ε
1− 2(χδ2)

=2

(2−χδ2)
=2 +(χδ2)

=2





=



⋃
Ξ1∈υδ1
Ξ2∈υδ2

(1+Ξδ1)
=1−.ε(1+Ξδ2)

=2−(1−Ξδ1)
=1 .ε(1−Ξδ2)

=2

(1+Ξδ1)
=1−.ε(1+Ξδ2)

=2 +(1−Ξδ1)
=1 .ε(1−Ξδ2)

=2
,

⋃
κδ1∈τδ1
κδ2
∈τδ2

2(κδ1)
=1(κδ2)

=2

(2−κδ1)
=1 .ε(2−κδ2)

=2 +(κδ1)
=1
.ε(κδ2)

=2
,

⋃
χδ1∈Υδ1
χδ2
∈τδ2

2(χδ1)
=1(χδ2)

=2

(2−χδ1)
=1 .ε(2−χδ2)

=2 +(χδ1)
=1
.ε(χδ2)

=2


.

AIMS Mathematics Volume 8, Issue 3, 5551–5573.



5560

Thus, the result holds for ı̃ = 2. Assume that the results holds for ı̃ = ג

S V − NHFEWA(δ1, δ2, ...., δג) =



⋃
Ξ ̂∈υδ ̂

Πג̂=1

(
1+Ξδ ̂

)= ̂
−Πג̂=1

(
1−Ξδ ̂

)= ̂
Πג
̂=1

(
1+Ξδ ̂

)= ̂
+Πג

̂=1

(
1−Ξδ ̂

)= ̂ ,⋃
κδ ̂∈τδ ̂

2Πג̂=1

(
κδ ̂

)= ̂
Πג
̂=1

(
2−κδ ̂

)= ̂
+Πג

̂=1

(
κδ ̂

)= ̂ ,⋃
χδ ̂∈Υδ ̂

2Πג̂=1

(
χδ ̂

)= ̂
Πג
̂=1

(
2−χδ ̂

)= ̂
+Πג

̂=1

(
χδ ̂

)= ̂


.

Now we will prove for ı̃ = ג + 1

S V − NHFEWA(δ1, δ2, ...., δ1+ג) = S V − NHFEWA(δ1, δ2, ...., δג) ⊕ε 1+גεδ.1+ג=

=



⋃
Ξ ̂∈υδ ̂

Πג̂=1

(
1+Ξδ ̂

)= ̂
−Πג̂=1

(
1−Ξδ ̂

)= ̂
Πג
̂=1

(
1+Ξδ ̂

)= ̂
+Πג

̂=1

(
1−Ξδ ̂

)= ̂ ,⋃
κδ ̂∈τδ ̂

2Πג̂=1

(
κδ ̂

)= ̂
Πג
̂=1

(
2−κδ ̂

)= ̂
+Πג

̂=1

(
κδ ̂

)= ̂ ,⋃
χδ ̂∈Υδ ̂

2Πג̂=1

(
χδ ̂

)= ̂
Πג
̂=1

(
2−χδ ̂

)= ̂
+Πג

̂=1

(
χδ ̂

)= ̂


⊕ε



⋃
Ξ1+ג∈υδ1+ג

(1+Ξδ1+ג)
(1+גΞδ−1)−1+ג=

1+ג=

(1+Ξδ1+ג)
1+ג= +(1−Ξδ1+ג)

1+ג=
,⋃

κδ1+ג∈τδ1+ג

2(κδ1+ג)
1+ג=

(2−κδ1+ג)
1+ג= +(κδ1+ג)

1+ג=
,⋃

χδ1+ג∈Υδ1+ג

2(κδ1+ג)
1+ג=

(2−χδ1+ג)
1+ג= +(χδ1+ג)

1+ג=



=



⋃
Ξ ̂∈υδ ̂

Π1+ג
̂=1

(
1+Ξδ ̂

)= ̂
−Π1+ג

̂=1

(
1−Ξδ ̂

)= ̂
Π1+ג
̂=1

(
1+Ξδ ̂

)= ̂
+Π1+ג

̂=1

(
1−Ξδ ̂

)= ̂ ,⋃
κδ ̂∈τδ ̂

2Π1+ג
̂=1

(
κδ ̂

)= ̂
Π1+ג
̂=1

(
2−κδ ̂

)= ̂
+Π1+ג

̂=1

(
κδ ̂

)= ̂ ,⋃
χδ ̂∈Υδ ̂

2Π1+ג
̂=1

(
χδ ̂

)= ̂
Π1+ג
̂=1

(
2−χδ ̂

)= ̂
+Π1+ג

̂=1

(
χδ ̂

)= ̂


.

Thus

S V − NHFEWA(δ1, δ2, ...., δı̃) =



⋃
Ξ ̂∈υδ ̂

Πı̃
̂=1

(
1+Ξδ ̂

)= ̂
−Πı̃

̂=1

(
1−Ξδ ̂

)= ̂
Πı̃
̂=1

(
1+Ξδ ̂

)= ̂
+Πı̃

̂=1

(
1−Ξδ ̂

)= ̂ ,⋃
κδ ̂∈τδ ̂

2Πı̃
̂=1

(
κδ ̂

)= ̂
Πı̃
̂=1

(
2−κδ ̂

)= ̂
+Πı̃

̂=1

(
κδ ̂

)= ̂ ,⋃
χδ ̂∈Υδ ̂

2Πı̃
̂=1

(
κδ ̂

)= ̂
Πı̃
̂=1

(
2−χδ ̂

)= ̂
+Πı̃

̂=1

(
χδ ̂

)= ̂


.

�

There are some properties which are fulfilled by the SV-NHFEWA as follows:

Theorem 2. Suppose δ ̂ =
(
υh` ̂

, τh` ̂
,Υh` ̂

)
( ̂ = 1, 2, ....., ı̃) be a group of SV-NHFNs, = =

(=1,=2, ....,=ı̃)T are the weights of δ ̂ with = ̂ ∈ [0, 1] with
∑ı̃

̂=1= ̂ = 1; then we have the following:

(1) Boundary:
δ− ≤ S V − NHFEWA(δ1, δ2, ...., δı̃) ≤ δ+
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where

δ− =

min
1≤ ̂≤ı̃

min
Ξδ ̂∈υh` ̂

Ξδ ̂,max
1≤ ̂≤ı̃

max
κδ ̂∈τh` ̂

κδ ̂,max
1≤ ̂≤ı̃

max
κδ ̂∈Υh` ̂

χδ ̂

 ;

δ+ =

max
1≤ ̂≤ı̃

max
Ξδ ̂∈υh` ̂

Ξδ ̂,min
1≤ ̂≤ı̃

min
κδ ̂∈τh` ̂

κδ ̂,min
1≤ ̂≤ı̃

min
κδ ̂∈Υh` ̂

χδ ̂

 .
(2) Monotonicity: Let δ∗̂ =

(
υ̇h` ̂

, τ̇h` ̂
,Υh` ̂

)
( ̂ = 1, 2, ....., ı̃) be a collection of SV-NHFNs. Then

S V − NHFEWA(δ1, δ2, ...., δı̃) ≤ S V − NHFEWA(δ∗1, δ
∗
2, ...., δ

∗
ı̃ ).

Proof. (1) Let f (x) = 1−x
1+x , x ∈ [0, 1], then f ′(x) = −2

(1+x)2 < 0, so f (x) is a decreasing function. Let max
Ξδ ̂ = max1≤ ̂≤ı̃ maxΞδ ̂∈υh` ̂

Ξδ ̂, min Ξδ ̂ = min1≤ ̂≤ı̃ minΞδ ̂∈κh` ̂
Ξδ ̂ and min Ξδ ̂ = min1≤ ̂≤ı̃ minΞδ ̂∈Υh` ̂

Ξδ ̂

min
(
Ξδ ̂

)
≤

(
Ξδ ̂

)
≤ max

(
Ξδ ̂

)
f orall ̂ = 1, 2, ....., ı̃

f (max
(
Ξδ ̂

)
) ≤

(
Ξδ ̂

)
≤ f (min

(
Ξδ ̂

)
) f orall ̂ = 1, 2, ....., ı̃

1 −max
(
Ξδ ̂

)
1 + max

(
Ξδ ̂

) ≤ 1 −
(
Ξδ ̂

)
1 +

(
Ξδ ̂

) ≤ 1 −min
(
Ξδ ̂

)
1 + min

(
Ξδ ̂

) .
Since = = (=1,=2, ....,=ı̃)T are the weights of δ ̂ with = ̂ ∈ [0, 1] with

∑ı̃
̂=1= ̂ = 1, we have

1 −max
(
Ξδ ̂

)
1 + max

(
Ξδ ̂

)
= ̂

≤

1 −
(
Ξδ ̂

)
1 +

(
Ξδ ̂

)
= ̂

≤

1 −min
(
Ξδ ̂

)
1 + min

(
Ξδ ̂

)
= ̂

;

ı̃∏
̂=1

1 −max
(
Ξδ ̂

)
1 + max

(
Ξδ ̂

)
= ̂

≤

ı̃∏
̂=1

1 −
(
Ξδ ̂

)
1 +

(
Ξδ ̂

)
= ̂

≤

ı̃∏
̂=1

1 −min
(
Ξδ ̂

)
1 + min

(
Ξδ ̂

)
= ̂

;

1 −max
(
Ξδ ̂

)
1 + max

(
Ξδ ̂

)
∑ı̃
̂=1 = ̂

≤

ı̃∏
̂=1

1 −
(
Ξδ ̂

)
1 +

(
Ξδ ̂

)
= ̂

≤

1 −min
(
Ξδ ̂

)
1 + min

(
Ξδ ̂

)
∑ı̃
̂=1 = ̂

.

⇐⇒

1 −max
(
Ξδ ̂

)
1 + max

(
Ξδ ̂

) ≤ ı̃∏
̂=1

1 −
(
Ξδ ̂

)
1 +

(
Ξδ ̂

)
= ̂

≤

1 −min
(
Ξδ ̂

)
1 + min

(
Ξδ ̂

) ;

⇐⇒

 2

1 + max
(
Ξδ ̂

) ≤ 1 +

ı̃∏
̂=1

 1 −
(
Ξδ ̂

)
1 +

(
Ξδ ̂

)2


= ̂

≤

 2

1 + min
(
Ξδ ̂

)2

 ;

⇐⇒

1 + min
(
Ξδ ̂

)
2

 ≤ 1

1 +
ı̃∏̂
=1

(
1−

(
Ξδ ̂

)
1+

(
Ξδ ̂

)
)= ̂ ≤

1 + max
(
Ξδ ̂

)
2

 ;
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⇐⇒
(
1 + min

(
Ξδ ̂

))
≤

2

1 +
ı̃∏̂
=1

(
1−

(
Ξδ ̂

)
1+

(
Ξδ ̂

)
)= ̂ ≤ (

1 + max
(
Ξδ ̂

))
;

⇐⇒ min
(
Ξδ ̂

)
≤

2

1 +
ı̃∏̂
=1

(
1−

(
Ξδ ̂

)
1+

(
Ξδ ̂

)
)= ̂ − 1 ≤ max

(
Ξδ ̂

)
;

⇐⇒ min
(
Ξδ ̂

)
≤

ı̃∏̂
=1

(
1 +

(
Ξδ ̂

))= ̂
−

ı̃∏̂
=1

(
1 −

(
Ξδ ̂

))= ̂
ı̃∏̂
=1

(
1 +

(
Ξδ ̂

))= ̂
+

ı̃∏̂
=1

(
1 −

(
Ξδ ̂

))= ̂ ≤ max
(
Ξδ ̂

)
.

Thus,

min Ξδ ̂ ≤

ı̃∏̂
=1

(
1 +

(
Ξδ ̂

))= ̂
−

ı̃∏̂
=1

(
1 −

(
Ξδ ̂

))= ̂
ı̃∏̂
=1

(
1 +

(
Ξδ ̂

))= ̂
+

ı̃∏̂
=1

(
1 −

(
Ξδ ̂

))= ̂ ≤ max Ξδ ̂.

Consider g(y) =
2−y

y , y ∈ (0, 1],then g′(y) = − 2
y2 , i.e., g(y) is a decreasing function on (0, 1]. Let max

κδ ̂ = max1≤ ̂≤ı̃ maxκδ ̂∈τh` ̂
κδ ̂, minκδ ̂=min1≤ ̂≤ı̃minκδ ̂∈τh` ̂

,and minκδ ̂=min1≤ ̂≤ı̃minκδ ̂∈Υh` ̂
.

min
(
κδ ̂

)
≤

(
κδ ̂

)
≤ max

(
κδ ̂

)
f orall ̂ = 1, 2, ....., ı̃

g
(
max

(
κδ ̂

))
≤ g

((
κδ ̂

))
≤ g

(
min

(
κδ ̂

))
f orall ̂ = 1, 2, ....., ı̃

2 −max
(
κδ ̂

)
max

(
κδ ̂

) ≤
2 −

(
κδ ̂

)(
κδ ̂

) ≤
2 −min

(
κδ ̂

)
min

(
κδ ̂

)
2 −max

(
κδ ̂

)
max

(
κδ ̂

) 
= ̂

≤

2 −
(
κδ ̂

)(
κδ ̂

) 
= ̂

≤

2 −min
(
κδ ̂

)
min

(
κδ ̂

) 
= ̂

ı̃∏
̂=1

2 −max
(
κδ ̂

)
max

(
κδ ̂

) 
= ̂

≤

ı̃∏
̂=1

2 −
(
κδ ̂

)
(
κδ ̂

)2


= ̂

≤

ı̃∏
̂=1

2 −min
(
κδ ̂

)
min

(
κδ ̂

)2


= ̂

2 −max
(
κδ ̂

)
max

(
κδ ̂

) 
∑ı̃
̂=1 = ̂

≤

ı̃∏
̂=1

2 −
(
κδ ̂

)(
κδ ̂

) 
= ̂

≤

2 −min
(
κδ ̂

)
min

(
κδ ̂

) 
∑ı̃
̂=1 = ̂

2 −max
(
κδ ̂

)
max

(
κδ ̂

)  ≤ ı̃∏
̂=1

2 −
(
κδ ̂

)(
κδ ̂

) 
= ̂

≤

2 −min
(
κδ ̂

)
min

(
κδ ̂

) 
2

max
(
κδ ̂

) ≤ 1 +

ı̃∏
̂=1

2 −
(
κδ ̂

)(
κδ ̂

) 
= ̂

≤
2

min
(
κδ ̂

)
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max
(
κδ ̂

)2

2
≤

1

1 +
ı̃∏̂
=1

(
2−

(
κδ ̂

)2(
κδ ̂

)2

)= ̂ ≤ min
(
κδ ̂

)2

2

max
(
κδ ̂

)
≤

2

1 +
ı̃∏̂
=1

(
2−

(
κδ ̂

)
(
κδ ̂

)2

)= ̂ ≤ min
(
κδ ̂

)

max
(
κδ ̂

)
≤

2
ı̃∏̂
=1

((
κδ ̂

))= ̂
ı̃∏̂
=1

(
2 −

(
κδ ̂

))= ̂
+

ı̃∏̂
=1

((
κδ ̂

))= ̂ ≤ min
(
κδ ̂

)

max κδ ̂ ≤
2

ı̃∏̂
=1

(
κδ ̂

)= ̂
ı̃∏̂
=1

(
2 −

(
κδ ̂

))= ̂
+

ı̃∏̂
=1

((
κδ ̂

))= ̂ ≤ min κδ ̂.

Let S V − NHFEWA(δ1, δ2, ...., δı̃) = δ
(
Ξδ ̂

)
, then ≤ Ξδ ̂ ≤ . �

Definition 11. Let δ ̂ =
(
υh` ̂

, τh` ̂
,Υh` ̂

)
( ̂ = 1, 2, ....., ı̃) be a collection of SV-NHFNs, = =

(=1,=2, ....,=ı̃)T are the weights of δ ̂ ∈ [0, 1] with
∑ı̃

̂=1= ̂ = 1. Then S V − NHFEWG : S V −
NHFN ı̃ −→ S V − NHFN such that

S V − NHFEWA(δ1, δ2, ...., δı̃) = δ=1
1 ⊗ε δ

=2
2 ⊗ε ..... ⊗ε δ

=ı̃
ı̃ .

is called the SV-neutrosophic hesitant fuzzy Einstein weighted geometric operator.

Theorem 3. Let δ ̂ =
(
υh` ̂

, τh` ̂
,Υh` ̂

)
( ̂ = 1, 2, ....., ı̃) be a collection of SV-NHFNs. Then the

aggregation result using SV-NHFEWG, we can achieve the following

S V − NHFEWG(δ1, δ2, ...., δı̃) =



⋃
Ξδ ̂∈υδ ̂

Πı̃
̂=1

(
1+Ξδ ̂

)= ̂
−Πı̃

̂=1

(
1−Ξδ ̂

)= ̂
Πı̃
̂=1

(
1+Ξδ ̂

)= ̂
+Πı̃

̂=1

(
1−Ξδ ̂

)= ̂ ,⋃
κδ ̂∈τδ ̂

2Πı̃
̂=1

(
κδ ̂

)= ̂
Πı̃
̂=1

(
2−κδ ̂

)= ̂
+Πı̃

̂=1

(
κδ ̂

)= ̂ ,⋃
χδ ̂∈Υδ ̂

2Πı̃
̂=1

(
χδ ̂

)= ̂
Πı̃
̂=1

(
2−χδ ̂

)= ̂
+Πı̃

̂=1

(
χδ ̂

)= ̂


where = = (=1,=2, ....,=ı̃)T are the weights of δ ̂ with = ̂ ∈ [0, 1] with

∑ı̃
̂=1= ̂ = 1.

There are some properties which are fulfilled by the SV-NHFEWG as follows:

Theorem 4. Let δ ̂ =
(
υh` ̂

, τh` ̂
,Υh` ̂

)
( ̂ = 1, 2, ....., ı̃) be a collection of SV-NHFNs, = =

(=1,=2, ....,=ı̃)T are the weights of δ ̂ with = ̂ ∈ [0, 1] with
∑ı̃

̂=1= ̂ = 1; then we have the following:
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(1) Boundary:
δ− ≤ S V − NHFEWG(δ1, δ2, ...., δı̃) ≤ δ+

where

δ− =

min
1≤ ̂≤ı̃

min
Ξδ ̂∈υh` ̂

Ξδ ̂,max
1≤ ̂≤ı̃

max
κδ ̂∈τh` ̂

κδ ̂,max
1≤ ̂≤ı̃

max
κδ ̂∈Υh` ̂

χδ ̂


δ+ =

max
1≤ ̂≤ı̃

max
Ξδ ̂∈υh` ̂

Ξδ ̂,min
1≤ ̂≤ı̃

min
κδ ̂∈τh` ̂

κδ ̂,min
1≤ ̂≤ı̃

min
κδ ̂∈Υh` ̂

χδ ̂

 .
(2) Monotonicity: Let δ∗̂ =

(
υ̇h` ̂

, τ̇h` ̂
,Υh` ̂

)
( ̂ = 1, 2, ....., ı̃) be a collection of SV-NHFNs. Then

S V − NHFEWG(δ1, δ2, ...., δı̃) ≤ S V − NHFEWG(δ∗1, δ
∗
2, ...., δ

∗
ı̃ ).

We developed the following ordered weighted operators based on SV-NHFNs.

Definition 12. (1) Let δ ̂ =
(
υh` ̂

, τh` ̂
,Υh` ̂

)
( ̂ = 1, 2, ....., ı̃) be a collection of SV-NHFNs, = =

(=1,=2, ....,=ı̃)T are the weights of δ ̂ ∈ [0, 1] with
∑ı̃

̂=1= ̂ = 1. Then S V-NHFEOWA: S V-
NHFN ı̃ −→ S V-NHFN such that

S V − NHFEOWA(δ1, δ2, ...., δı̃) = =1.εδρ(1) ⊕ε =2.εδρ(2) ⊕ε ..... ⊕ε =ı̃.εδρ(ı̃)

=



⋃
Ξδρ( ̂)

∈υδρ( ̂)

Πı̃
̂=1

(
1+Ξδρ( ̂)

)= ̂
−Πı̃

̂=1

(
1−Ξδρ( ̂)

)= ̂
Πı̃
̂=1

(
1+Ξδρ( ̂)

)= ̂
+Πı̃

̂=1

(
1−Ξδρ( ̂)

)= ̂ ,
⋃

κδρ( ̂)
∈τδρ( ̂)

2Πı̃
̂=1

(
κδρ( ̂)

)= ̂
Πı̃
̂=1

(
2−κδρ( ̂)

)= ̂
+Πı̃

̂=1

(
κδρ( ̂)

)= ̂ ,
⋃

χδρ( ̂)
∈Υδρ( ̂)

2Πı̃
̂=1

(
χδρ( ̂)

)= ̂
Πı̃
̂=1

(
2−χδρ( ̂)

)= ̂
+Πı̃

̂=1

(
χδρ( ̂)

)= ̂ ,


where δρ( ̂) be the ̂th largest in them, is called the SV-neutrosophic hesitant fuzzy Einstein ordered
weighted averaging operator.

(2) Let δ ̂ =
(
υh` ̂

, τh` ̂
,Υh` ̂

)
( ̂ = 1, 2, ....., ı̃) be a collection of SV-NHFNs, = = (=1,=2, ....,=ı̃)T are

the weights of δ ̂ ∈ [0, 1] with
∑ı̃

̂=1= ̂ = 1. Then S V −NHFEOWG : S V −NHFN ı̃ −→ S V −NHFN
such that

S V − NHFEOWG(δ1, δ2, ...., δı̃) = δ=1
ρ(1) ⊗ε δ

=2
ρ(2) ⊗ε ..... ⊗ε δ

=ı̃
ρ(ı̃)

=



⋃
χδρ( ̂)

∈Υδρ( ̂)

2Πı̃
̂=1

(
χδρ( ̂)

)= ̂
Πı̃
̂=1

(
2−χδρ( ̂)

)= ̂
+Πı̃

̂=1

(
χδρ( ̂)

)= ̂ ,
⋃

κδρ( ̂)
∈τδρ( ̂)

2Πı̃
̂=1

(
κδρ( ̂)

)= ̂
Πı̃
̂=1

(
2−κδρ( ̂)

)= ̂
+Πı̃

̂=1

(
κδρ( ̂)

)= ̂ ,
⋃

Ξδρ( ̂)
∈υδρ( ̂)

Πı̃
̂=1

(
1+Ξδρ( ̂)

)= ̂
−Πı̃

̂=1

(
1−Ξδρ( ̂)

)= ̂
Πı̃
̂=1

(
1+Ξδρ( ̂)

)= ̂
+Πı̃

̂=1

(
1−Ξδρ( ̂)

)= ̂ ,


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where δρ( ̂) be the ̂th largest in them, is called the SV-neutrosophic hesitant fuzzy Einstein ordered
weighted geometric operator.

5. A method for decision making using suggested operators

Here, we designed a system for SV-NHF details information to be incorporated into MAGDM to
represent uncertainty.

5.1. Algorithm’s steps

Step-1: The collection of data from experts.

Step-2: Normalize the experts data based on the benefit and cost.

Step-3: Apply the aggregation Operators as given below The SV-NHFWA operator

S V − NHFEWA(δ1, δ2, ...., δı̃) =



⋃
Ξδ ̂∈υδ ̂

Πı̃
̂=1

(
1+Ξδ ̂

)= ̂
−Πı̃

̂=1

(
1−Ξδ ̂

)= ̂
Πı̃
̂=1

(
1+Ξδ ̂

)= ̂
+Πı̃

̂=1

(
1−Ξδ ̂

)= ̂ ,⋃
κδ ̂∈τδ ̂

2Πı̃
̂=1

(
κδ ̂

)= ̂
Πı̃
̂=1

(
2−κδ ̂

)= ̂
+Πı̃

̂=1

(
κδ ̂

)= ̂ ,⋃
χδ ̂∈Υδ ̂

2Πı̃
̂=1

(
κδ ̂

)= ̂
Πı̃
̂=1

(
2−χδ ̂

)= ̂
+Πı̃

̂=1

(
χδ ̂

)= ̂ ,


and the SV-NHFWG operator

S V − NHFEWG(δ1, δ2, ...., δı̃) =



⋃
Ξδ ̂∈υδ ̂

2Πı̃
̂=1

(
Ξδ ̂

)= ̂
Πı̃
̂=1

(
2−Ξδ ̂

)= ̂
+Πı̃

̂=1

(
Ξδ ̂

)= ̂⋃
κδ ̂∈τδ ̂

2Πı̃
̂=1

(
κδ ̂

)= ̂
Πı̃
̂=1

(
2−κδ ̂

)= ̂
+Πı̃

̂=1

(
κδ ̂

)= ̂ ,⋃
χδ ̂∈Υδ ̂

Πı̃
̂=1

(
1+χδ ̂

)= ̂
−Πı̃

̂=1

(
1−χδ ̂

)= ̂
Πı̃
̂=1

(
1+χδ ̂

)= ̂
+Πı̃

̂=1

(
1−χδ ̂

)= ̂


.

Step-4: Find the score value based on the score function given below

s(δ) =

(
1

Mδ

∑
}i∈νhġ ,

(}i)
)
−

(
1
Nδ

∑
%i∈τhκ

(%i)
)
−

(
1

S δ

∑
%i∈Υhκ

(αi)
)
.

Here Mδ,Nδ and S δ represent the number of the elements in each of the MD, an indeterminacy
and non MD respectively.

Step-5: Rank the alternative based on score values and find the best option.

In the Figure 1, You can see the flow chart of the algorithm for decision-making.
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Figure 1. Flow chart for algorithm.

5.2. Numerical example

Cybersecurity is crucial since it guards against theft and destruction of many types of data. This
covers delicate information, personally identifiable information (PII), protected health information
(PHI), personal data, data pertaining to intellectual property, and information systems used by the
government and business.
Case study: We provide a real-world example of cybersecurity types and challenges. Our aim is to
choose the best type of security to handle and protect.
(1) C̊1 : Internet of things security: In the context of the Internet of Things (IoT), where almost any
physical or logical entity or object may be given a unique identifier and the capability to communicate
autonomously over a network, “Internet of Things privacy” refers to the special considerations
necessary to protect the information of individuals from exposure in the IoT environment. Insecure
communications, security mechanisms that were originally developed for desktop computers but are
difficult to implement on resource-constrained IoT devices, data leaks from IoT systems, malware
risks, cyber attacks, secure networks, and secure data are the most frequent Internet of Things security
issues.
(2) C̊2 : Cloud security: Cloud computing’s use of data privacy makes it possible to collect, store,
move, and share data over the internet without endangering the privacy of individual users’ personal
information. Misconfiguration, which is a major contributor to cloud data breaches, unauthorised
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access, insecure interfaces and APIs, account hijacking, a lack of visibility, external data sharing,
malicious insiders, and cyber attacks are a few obstacles.
(3) C̊3 : Network security: By limiting the introduction or spread of a wide range of potential dangers
within a network, network security is a set of technologies that safeguards the usefulness and integrity
of a company’s infrastructure. Among the challenges are numerous misconfigurations, lax oversight
of privileged access, poor tool compatibility, a lack of visibility, and controls that are out of date with
infrastructure changes.
Criteria: δ1 = Control of Hijacking data, δ2 = Lack of visibility, δ3 = Secure networks, and δ4 = Cyber
attacks. The given weight vector is = = (0.314, 0.355, 0.331)T . Table 1 showing all the collective data
of DM.

Table 1. Collective data of decision makers.
C̊1 C̊2 C̊3

δ1

{
(0.25, 0.35) , (0.31) ,

(0.33, 0.59)

} {
(0.45) , (0.84) ,

(0.84, 0.96)

} {
(0.79) , (0.66, 0.73) ,

(0.7, 0.43)

}
δ2

{
(0.8, 0.1) , (0.15, 0.2) ,

(0.45, 0.28)

} {
(0.51) , (0.37, 0.43) ,

(0.7, 0.13)

} {
(0.91, 0.61) , (0.36, 0.24) ,

(0.86, 0.24)

}
δ3

{
(0.95, 0.23) , (0.99) ,

(0.28, 0.96)

} {
(0.1) , (0.36, 0.46) ,

(0.63)

} {
(0.55, 0.65) , (0.39) ,

(0.69, 0.91)

}
δ4

{
(0.4, 0.66) , (0.55) ,

(0.89)

} {
(0.71) , (0.65, 0.15) ,

(0.56, 0.95)

} {
(0.21) , (0.32, 0.68) ,

(0.92, 0.98)

}
= = (0.34, 0.35, 0.31)T

Step 1. Because the attributes are uniform so there are no need to normalized.

Step 2. By exploiting the proposed SV-NHFWA operator, we achieve the overall preference values δı̃
of the alternative δı̃(ı̃ = 1, 2, 3, 4). For instance

S V − NHFEWA(δ1, δ2, ...., δı̃) =



⋃
Ξδ ̂∈υδ ̂

Πı̃
̂=1

(
1+Ξδ ̂

)= ̂
−Πı̃

̂=1

(
1−Ξδ ̂

)= ̂
Πı̃
̂=1

(
1+Ξδ ̂

)= ̂
+Πı̃

̂=1

(
1−Ξδ ̂

)= ̂ ,⋃
κδ ̂∈τδ ̂

2Πı̃
̂=1

(
κδ ̂

)= ̂
Πı̃
̂=1

(
2−κδ ̂

)= ̂
+Πı̃

̂=1

(
κδ ̂

)= ̂ ,⋃
χδ ̂∈Υδ ̂

2Πı̃
̂=1

(
κδ ̂

)= ̂
Πı̃
̂=1

(
2−χδ ̂

)= ̂
+Πı̃

̂=1

(
χδ ̂

)= ̂


δ1 =

{
〈1.1453, 1.1460〉 , 〈0.6460, 0.6632〉 ,

〈0.6670, 0.5877, 0.6948, 0.6137, 0.7770, 0.6914, 0.8066, 0.7196〉

}
.

Similarly for other alternatives

δ2 =


〈1.0897, 1.1308, 1.1120, 1.1555〉 ,

〈0.3341, 0.2954, 0.3521, 0.3117, 0.3660, 0.3244, 0.3853, 0.3419〉 ,
〈0.7233, 0.5204, 0.4409, 0.2987, 0.6375, 0.4503, 0.3787, 0.2533〉


δ3 =

{
〈1.0889, 1.0855, 1.1467, 1.1453〉 , 〈0.6132, 0.6579〉 ,

〈0.5811, 0.6271, 0.8142, 0.8673〉

}
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δ4 =

{
〈1.1536, 1.1430〉 , 〈0.5817, 0.7041, 0.3657, 0.4574〉 ,

〈0.8276, 0.8400, 0.9449, 0.9576〉

}

s(δ) =

(
1

Mδ

∑
}i∈νhġ ,

(}i)
)
−

(
1
Nδ

∑
%i∈τhκ

(%i)
)
−

(
1

S δ

∑
%i∈Υhκ

(αi)
)
.

Step 3. The score values are obtained as

s(δ1) = −0.2036, s(δ2) = 0.3202, s(δ3) = −0.2414, s(δ4) = −0.2715.

Step 4.
s(δ2) > s(δ1) > s(δ3) > s(δ4).

Therefore
δ2 > δ1 > δ3 > δ4.

The best choice is δ2.

For SV-NHFWG operator

Here we start from all the collective data of the DM, which is shown in Table 2 as well,

Table 2. Collective data of decision makers.
C̊1 C̊2 C̊3

δ1

{
(0.25, 0.35) , (0.31) ,

(0.33, 0.59)

} {
(0.45) , (0.84) ,

(0.84, 0.96)

} {
(0.79) , (0.66, 0.73) ,

(0.7, 0.43)

}
δ2

{
(0.8, 0.1) , (0.15, 0.2) ,

(0.45, 0.28)

} {
(0.51) , (0.37, 0.43) ,

(0.7, 0.13)

} {
(0.91, 0.61) , (0.36, 0.24) ,

(0.86, 0.24)

}
δ3

{
(0.95, 0.23) , (0.99) ,

(0.28, 0.96)

} {
(0.1) , (0.36, 0.46) ,

(0.63)

} {
(0.55, 0.65) , (0.39) ,

(0.69, 0.91)

}
δ4

{
(0.4, 0.66) , (0.55) ,

(0.89)

} {
(0.71) , (0.65, 0.15) ,

(0.56, 0.95)

} {
(0.21) , (0.32, 0.68) ,

(0.92, 0.98)

}
Step 2. By exploiting the proposed SV-NHFWG operator, we achieve the overall preference values δı̃

of the alternative δı̃(ı̃ = 1, 2, 3, 4).

S V − NHFEWG(δ1, δ2, ...., δı̃) =



⋃
Ξδ ̂∈υδ ̂

2Πı̃
̂=1

(
Ξδ ̂

)= ̂
Πı̃
̂=1

(
2−Ξδ ̂

)= ̂
+Πı̃

̂=1

(
Ξδ ̂

)= ̂⋃
κδ ̂∈τδ ̂

2Πı̃
̂=1

(
κδ ̂

)= ̂
Πı̃
̂=1

(
2−κδ ̂

)= ̂
+Πı̃

̂=1

(
κδ ̂

)= ̂ ,⋃
χδ ̂∈Υδ ̂

Πı̃
̂=1

(
1+χδ ̂

)= ̂
−Πı̃

̂=1

(
1−χδ ̂

)= ̂
Πı̃
̂=1

(
1+χδ ̂

)= ̂
+Πı̃

̂=1

(
1−χδ ̂

)= ̂


δ1 =

{
〈0.4199, 0.5538〉 , 〈0.6460, 0.6632〉 ,

〈1.3219, 1.2874, 1.3375, 1.3034, 1.3607, 1.3272, 1.3759, 1.3428〉

}
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δ2 =


〈0.9132, 0.8008, 0.3404,−0.2506〉 ,

〈0.3341, 0.2954, 0.3521, 0.3117, 0.3660, 0.3244, 0.3853, 0.3419〉 ,
〈1.3397, 1.2589, 1.2450, 1.1600, 1.3127, 1.2305, 1.2164, 1.1304〉


δ3 =

{
〈0.5267, 0.5969,−1.3692,−1.0489〉 ,

〈0.6132, 0.6579〉 , 〈1.2827, 1.3081, 1.3782, 1.4018〉

}
δ4 =

{
〈0.2414, 0.5379〉 , 〈0.5817, 0.7041, 0.3657, 0.4574〉 ,

〈1.3849, 1.3909, 1.4350, 1.4408〉

}
.

Step 3. The score values are obtained as

s(δ1) = −1.4998, s(δ2) = −1.1246, s(δ3) = −2.3019, s(δ4) = −1.5504.

Step 4.
s(δ2) > s(δ1) > s(δ4) > s(δ3).

Therefore
δ2 > δ1 > δ4 > δ3.

The best choice is δ2. The comparison analysis using S V-NP HFWA and S V-NP HFWG are
shown in Table 3.

Table 3. Comparison of ranking.
Operators Score Best Alternative
S V-NP HFWA S c (δ1) > S c (δ2) > S c (δ3) > S c (δ4) δ1

S V-NP HFWG S c (δ1) > S c (δ3) > S c (δ2) > S c (δ4) δ1

Therefore the best choice is δ1. After applying test Step 1, we came up with the identical best
alternative δ1 that we had in our suggested numerical case analysis. Test Steps 2 and 3, We are
now testing the validity test Steps 2 and 3 to demonstrate that the proposed approach is reliable and
relevant. To this end, we first transformed the MAGDM problem into three smaller sub-problems
such as {δ1, δ2, δ3} and {δ2, δ3, δ4}. We now apply our suggested decision-making approach to
the smaller problems that have been transformed and have obtained the following ranking of
alternatives: δ1 > δ3 > δ4, δ1 > δ2 > δ3 and δ2 > δ3 > δ4 respectively. We find that δ1 > δ2 >

δ3 > δ4 is the same as the standard decision-making approach results when assigning a detailed
ranking.

6. Conclusions

A strong fusion of a SV-NS and HFS called SV-NHFS was developed for situations where each
object has a range of potential values that are dictated by MD, indeterminacy, and non MD. A SV-
NHFEWA operator, SV-NHFEWG operator, SV-NHFEOWG operator and SV-NHFEOWA operators
are all suggested in this article. Additionally, based on the SV-NHFEWA and SV-NHFEWG operators,
we suggested novel MADM approach. More information on the advantages of these techniques is
provided below.
(1) First, there are important characteristics of the SV-NHFEWG and SV-NHFEWA operators,
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including idempotency, commutativity, boundedness, and monotonicity.
(2) Second, the conversion of the SV-NHFEWA and SV-NHFEWG operators to the earlier AOs for
SVNHFSs demonstrates the adaptability of the suggested AOs.
(3) Third, the results obtained by the SV-NHFEWA and SV-NHFEWG operators are accurate and
dependable when compared to other existing techniques for MADM problems in an SV-NHF context,
demonstrating their applicability in real-world situations.
(4) The methods for MAGDM that are suggested in this paper are able to further acknowledge more
association between attributes and alternatives, demonstrating that they have a higher accuracy and a
larger reference value than the methods currently in use, which are unable to take into account the
inter-relationships of attributes in practical applications. This indicates that the methods for MAGDM
that are suggested in this paper can recognize even more associations between attributes.
(5) The proposed aggregation operators are also put to use in practise to look at symmetrical analysis
in the choice of a workable cybersecurity control selection technique.
(6) Future research on personalized individual consistency control consensus problems, consensus
reaching with non-cooperative behavior management decision-making problems, and two-sided
matching decision-making with multi-granular and incomplete criteria weight information could all
benefit from the use of the proposed AOs. The degrees of membership, abstention, and non-
membership have no bearing on this examination of the restrictions imposed by proposed AOs. On this
side of the intended AOs, a new hybrid structure of interactive and prioritized AOs may be observed
being implemented.
(7) We will examine the conceptual framework of SV-NHFSs for Einstein operations in future work
using innovative decision-making approaches like as TOPSIS, VIKOR, TODAM, GRA, and EDAS.
We’ll also talk about how these techniques are used in domains including analytical thinking, intelligent
systems, social sciences, finance, management of human resources, robotics, navigation, horticulture,
soft computing, and many others.
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