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1. Introduction

In this paper, we investigate the following p(x)−Kirchhoff type problem

M (A (x,∇u)) div (a (x,∇u)) = |u|p(x)−2 u, in Ω,

a (x,∇u) ∂u
∂v = λ f (x, u) , on ∂Ω,

(P)

where Ω ⊂ RN (N ≥ 2) is a smooth bounded domain, λ is a positive parameter, p is continuous function
on Ω with p− := inf

x∈Ω
p (x), div (a (x,∇u)) is a p (x)−Laplace type operator and a(x, ξ) : Ω × RN → R is

the continuous derivative with respect to ξ of the mapping A : Ω × RN → R, A = A(x, ξ), i.e. a(x, ξ) =

∇ξA(x, ξ). Furthermore, f : ∂Ω × R→ R satisfies Carathéodory function and M : (0,∞)→ (0,∞) is a
continuous function.

Problem (P) is generalization of a model, the so-called Kirchhoff equation, introduced by Kirchhoff

[22]. Kirchhoff established a model given by the equation
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ρ
∂2u
∂t2 −

P0

h
+

E
2L

L∫
0

∣∣∣∣∣∂u
∂x

∣∣∣∣∣2 dx

 ∂2u
∂x2 = 0, (1.1)

where 0 ≤ x ≤ L, t ≥ 0, u is the lateral deflection, ρ is the mass density, h is the cross-sectional area, L
is the length, E is the Young’s modulus and P0 is the initial axial tension. This equation is an extension
of the classical D’Alambert’s wave equation by considering the effects of the changes in the length of
the strings during the vibrations.

Recently, equations with nonstandard growth condition have started to attract more attention due to
their various physical applications. In fact, there are applications concerning image restoration [11],
elastic mechanics [38], the image restoration or the motion of the so called electrorheological fluids
[30], stationary thermo-rheological viscous flows of non-Newtonian fluids [3] and the mathematical
description of the processes filtration of an idea barotropic gas through a porous medium [4].

As in the study of differential and partial differential equations, the investigate of Kirchhoff type
equations under different boundary conditions has initially been extended to the case involving the
p−growth conditions, and then the equations involving the p(x)−growth conditions. Especially,
researchers have studied extensively the existence, multiplicity, uniqueness, nontrivial weak solution
and regularity of solutions for various Kirchhoff type equations [5, 8, 12–14, 16, 19, 26, 34, 36]. For
example, Zhang and all in [36] studied the existence of nontrivial solutions and many solutions
for a nonlocal p (x)−Kirchhoff problem with a p+−superlinear subcritical Caratheodory reaction
term, which does not satisfy the Ambrosetti–Rabinowitz condition using Mountain Pass theorem
and Fountain theorem. Cao and all in [10] established the existence of nontrivial solutions for
p (x)−Laplacian equations without any growth and Ambrosetti-Rabinowitz conditions. In [31], the
author proved the existence of positive solutions using the Nehari manifold approach in W1,p(x)

0 (Ω).
The Steklov problems involving p (x)−Laplacian have been worked by some of the authors [1, 7,

15,32,35]. Especially, the authors have studied the problems of type (P) when M(t) = 1. For instance,
in [37], by applying the Ricceri’s three critical points theorem, the authors investigated the existence
of at least three solutions to the following elliptic problem:div (a (x,∇u)) + |u|p(x)−2 u = λ f (x, u) , in x ∈ Ω,

|∇u|p(x)−2 υ = µg (x, u) , on x ∈ ∂Ω,

where µ, λ ∈ [0,∞) , Ω ⊂ RN (N ≥ 2) is a bounded domain of smooth boundary ∂Ω, υ is the outward
unit normal vector on ∂Ω, p (x) ∈ C (Ω) is the variable exponent and f : Ω×R→ R and g : ∂Ω×R→ R

are two Carathéodory functions.
In [25], using Ricceri’s variational principle and mountain pass theorem, they showed we prove in a

different cases the existenceand multiplicity of a-harmonic solutions for the following elliptic problem:−div (a (x,∇u)) = 0, in x ∈ Ω,

|∇u|p(x)−2 υ = f (x, u) , on x ∈ ∂Ω,
(1.2)

where Ω ⊂ RN (N ≥ 2) is a bounded domain of smooth boundary ∂Ω and υ is the outward unit normal
vector on ∂Ω. f : ∂Ω × R → R and a : Ω × RN → R satisfy appropriate conditions. In [24], the
authors studied the problem (1.2) for case f (x, u) = λ|u|m(x)−2u, where the functions m (x) ∈ L∞ (∂Ω).
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If a : Ω×RN → R satisfies the appropriate conditions, then the authors proved infinitely many positive
eigenvalue sequences via the Ljusternik–Schnirelmann principle and a new variational technique.
Now, we also mention some new paper that are related to our work. In [21], the authors concerned
with a nontrivial weak solution under appropriate conditions a weighted Steklov problem involving
the p (x)−Laplacian operator in Sobolev spaces with variable exponents by variational method and
Ekeland’s principle. Ourraoui in [28] proved some results on the existence and uniqueness of solutions
concerned a class of elliptic problems involving p (x)−Laplacian with Steklov boundary condition.
In [6], the author investigated the existence and multiplicity of solutions for Steklov problem with non-
standard growth condition without using the Ambrosetti-Rabinowitz type condition. In [2], the authors
obtained the existence and multiplicity of solutions for the nonlinear Steklov boundary value problem,
using Mountain Pass, Fountain and Ricceri three critical points theorems for M(t) = 1 in problem
(P). In [20], the authors established the existence of infinitely many solutions for perturbed nonlocal
problems with variable exponent and nonhomogeneous Neumann conditions using variational methods
and critical point theory with m1 ≤ M (t) ≤ m2,where for all s > 0 and m1 and m2 are positive constants
and A (x,∇u) =

∫
Ω

1
p(x)

(
|∇u|p(x) + a (x) |u|p(x)

)
dx for problem (P). Chammen and all in [9] studied the

existence and the multiplicity of solutions is obtained by using variational methods, and mountain pass
lemma combined with Ekeland variational principle for a class of Steklov Neumann boundary value
problems involving p(x)−Laplacian operator when M(t) = 1 for problem (P).

Inspired by the papers above mentioned, we studied the Steklov problem involving the
p (x)−Kirchhoff type operator. The present article is composed of three sections. In the second part, we
introduce necessary notations, fundamental hypothesis and the variable exponent Lebesgue-Sobolev
spaces on which we work. In the third part, after giving some basic results that will be useful for the
proof of our principal theorems, we give the main theorems and their proofs.

2. Preliminaries and main results

In order to discuss problem (P), we review some basic properties about the variable exponent
Lebesgue- Sobolev spaces ( Lp(x) (Ω) ,W1,p(x) (Ω) and W1,p(x)

0 (Ω)), we refer to [18, 23, 32, 34].
Set

C+

(
Ω
)

=
{
p : p ∈ C

(
Ω
)
, p (x) > 1, for all x ∈ Ω

}
.

Denote 1 < p− := inf
x∈Ω

p (x) ≤ p (x) ≤ p+ := sup
x∈Ω

p (x) < ∞ for all p (x) ∈ C+

(
Ω
)
.

We define the variable exponent Lebesgue space by

Lp(x) (Ω) =

{
u |u : Ω→ R is a measurable and

∫
Ω

|u (x)|p(x) dx < ∞
}
,

with the norm

|u|Lp(x)(Ω) = |u|(p(x),Ω) = inf
{
ι > 0 :

∫
Ω

∣∣∣∣∣u (x)
ι

∣∣∣∣∣p(x)

dx ≤ 1
}
.

Moreover, we can define C+ (∂Ω) and p−, p+ for any p (x) ∈ C (∂Ω) , and denote

Lp(x) (∂Ω) =

{
u |u : ∂Ω→ R is a measureable and

∫
∂Ω

|u (x)|p(x) dσ < ∞

}
,
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endowed with the norm

|u|Lp(x)(∂Ω) = |u|(p(x),∂Ω) = inf
{
% > 0 :

∫
∂Ω

∣∣∣∣∣u (x)
%

∣∣∣∣∣p(x)

dσ ≤ 1
}
.

where dσ is the measure on the boundary. Moreover, if p1 (x) and p2 (x) are two functions in
C+

(
Ω
)

such that p1 (x) ≤ p2 (x) almost everywhere x ∈ Ω, then there exists a continuous embedding
Lp2(x) (Ω) ↪→ Lp1(x) (Ω), and ıf Lp′(x) (Ω) denotes the conjugate space of Lp(x) (Ω) , where 1

p′(x) + 1
p(x) = 1,

then we write Hölder-Type inequality∫
Ω

|uv| dx ≤ (
1
p−

+
1

(p−)′
) |u|p(x) |v|p′(x) , (2.1)

for any u ∈ Lp(x) (Ω) and v ∈ Lp′(x) (Ω).
The variable exponent Sobolev space W1,p(x) (Ω) is defined by

W1,p(x) (Ω) =
{
u ∈ Lp(x) (Ω) : |∇u| ∈ Lp(x) (Ω)

}
,

with the norm

‖u‖1,p(x) : = inf
{
ζ > 0 :

∫
Ω

(∣∣∣∣∣∇u (x)
ζ

∣∣∣∣∣p(x)

+

∣∣∣∣∣u (x)
ζ

∣∣∣∣∣p(x))
dx ≤ 1

}
,

or

‖u‖1,p(x) = |u|p(x) + |∇u|p(x), for all u ∈ W1,p(x) (Ω) .

The space W1,p(x)
0 (Ω) is denoted by the closure of C∞0 (Ω) in W1,p(x) (Ω) with respect to the norm ‖u‖1,p(x).

We can define an equivalent norm

‖u‖ = |∇u|p(x), for all u ∈ W1,p(x)
0 (Ω) .

If p− > 1 and p+ < ∞, the Lp(x) (Ω), Lp(x) (∂Ω), W1,p(x) (Ω) and W1,p(x)
0 (Ω) are separable, reflexive

and uniformly convex Banach spaces. An important role in manipulating the generalized Lebesgue-
Sobolev spaces is played by the modular of the Lp(x) (Ω) space, which is the mapping ψ (u) : Lp(x) (Ω)→
R defined by

ψ (u) :=
∫

Ω

|u (x)|p(x) dx, ∀u ∈ Lp(x) (Ω) .

Proposition 2.1 [18, 23]. For all u, un ∈ Lp(x) (Ω) ( n = 1, 2, ...) and p+ < ∞, the following properties
hold true:

(i) |u|p(x) > 1 (= 1, < 1) ⇐⇒ ψ (u) > 1 (= 1, < 1) ,
(ii) min

(
|u|p

−

p(x), |u|
p+

p(x)

)
≤ ψ (u) ≤ max

(
|u|p

−

p(x), |u|
p+

p(x)

)
,

(iii) |un − u|p(x) → 0 (→ ∞)⇔ ψ(un − u)→ 0 (→ ∞) .

Proposition 2.2 [15]. Let ϕ (u) =
∫
∂Ω
|u (x)|p(x) dσ. For all u, un ∈ Lp(x) (∂Ω) ( n = 1, 2, ...), we have
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(i) |u|Lp(x)(∂Ω) > 1⇒ |u|p
−

Lp(x)(∂Ω) ≤ ϕ (u) ≤ |u|p
+

Lp(x)(∂Ω),

(ii) |u|Lp(x)(∂Ω) < 1⇒ |u|p
+

Lp(x)(∂Ω) ≤ ϕ (u) ≤ |u|p
−

Lp(x)(∂Ω),

(iii) |un − u|p(x) → 0 (→ ∞)⇔ ϕ(un − u)→ 0 (→ ∞) .

Proposition 2.3 [17]. Let p(x) and q(x) be measurable functions such that 1 ≤ p(x)q(x) ≤ ∞ and
p(x) ∈ L∞(Ω) for a.e. x ∈ Ω. Let u ∈ Lq(x)(Ω), u , 0. Then

min
(
|u|p

−

p(x)q(x) , |u|
p+

p(x)q(x)

)
≤

∣∣∣|u|p(x)
∣∣∣
q(x) ≤ max

(
|u|p

−

p(x)q(x) , |u|
p+

p(x)q(x)

)
.

In particular, if p(x) = p is constant, then we have

||u|p|q(x) = |u|ppq(x).

Proposition 2.4 [17, 23, 32].

(i) if q (x) ∈ C+

(
Ω
)

and q (x) < p∗ (x) for all x ∈ Ω, then the embedding W1,p(x)
0 (Ω) ↪→ Lq(x) (Ω) is

compact and continuous, where

p∗ (x) :=

 N p(x)
N−p(x) , if N > p (x) ,

∞, if N ≤ p (x) ,

(ii) if q (x) ∈ C+ (∂Ω) and q (x) < p∂ (x) for all x ∈ ∂Ω, then the trace embedding W1,p(x)
0 (Ω) ↪→

Lq(x) (∂Ω) is compact and continuous, where

p∂ (x) :=

 (N−1)p(x)
N−p(x) , if N > p (x) ,

∞, if N ≤ p (x) ,

(iii) Poincaré inequality ; i.e.there is a positive constant C > 0 such that

|u|p(x) ≤ C ‖u‖ , for all u ∈ W1,p(x)
0 (Ω) .

Remark 2.5. If N < p− ≤ p(x) for any x ∈ Ω, by Theorem 2.2 in [18] and Remark 1 in [29],
we deduce that W1,p(x) (Ω) is continuously embedded in W1,p− (Ω). Since N < p−, it follows that
W1,p(x) (Ω) is compactly embedded in C

(
Ω
)
. Defining ‖u‖C

(
Ω
) = sup

x∈Ω

|u (x)| , we find that there exists a

positive constant c∗ > 0 such that

‖u‖C
(
Ω
) ≤ c∗ ‖u‖1,p(x) , for all u ∈ W1,p(x) (Ω) .

Theorem 2.6 (Mountain-Pass Geometry) [33]. Let X be a Banach spaces and Jλ ∈ C1(X,R)
satisfies Palais-Smale condition. Assume that Jλ(0) = 0, and there exist two positive real numbers η
and r such that

(i) There exist two positive real numbers η and r such that Jλ (u) ≥ r > 0 with ‖u‖ = η,
(ii) There exists u1 ∈ X such that ‖u1‖ > η and Jλ (u1) < 0.
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Put
G = {φ ∈ C ([0, 1] , X) : φ (0) = 0, φ (1) = u1} .

Set β = inf {max Jλ (φ ([0, 1])) : φ ∈ G}. Then β ≥ r and β is a critical value of Jλ.

Theorem 2.7 [8]. Let X be a separable and reflexive real Banach space, Φ : X → R a continuous
Gâteaux differentiable and sequentially weakly lower semi-continuous functional whose Gâteaux
derivative admits a continuous inverse on X∗, Ψ : X → R a continuous Gâteaux differentiable
functional whose Gâteaux derivative is compact. Assume that,

(i) lim
‖u‖→∞

Jλ(u) = lim
‖u‖→∞

(Φ (u) + λΨ (u)) = ∞ for all λ > 0,

(ii) There are r ∈ R and u0, u1 ∈ X such that Φ (u0) < r < Φ (u1),
(iii) infu∈Φ−1((−∞,r]) Ψ(u) > (Φ(u1)−r)Ψ(u0)+(r−Φ(u0))Ψ(u1)

Φ(u1)−Φ(u0) .

Then there exist an open interval Θ ⊂ (0,∞) and a positive real number ρ such that for each λ ∈ Θ the
equation

Φ′ (u) + λΨ′ (u) = 0

has at least three solutions in X whose norms are lees than ρ.
Throughout this paper, we consider the following assumptions:
(M1) M : (0,∞)→ (0,∞) is a continuous function such that

m1sα−1 ≤ M (s) ≤ m2sα−1,∀ s > 0

where m1,m2 and α are real numbers such that 0 < m1 ≤ m2 and α > 1 .
(A1) There exists a constant c0 > 0 such that satisfies the following growth condition

|a(x, ξ)| ≤ c0(1 + |ξ|p(x)−1), for all x ∈ Ω and ξ ∈ RN

(A2) The following inequalities hold

|ξ|p(x)
≤ a(x, ξ) ξ ≤ p (x) A(x, ξ), for all x ∈ Ω and ξ ∈ RN .

(A3) A (x, 0) = 0, for all x ∈ Ω.

(A4) A is p(x)-uniformly convex: There exists a constant k0 > 0 such that

A(x,
u + υ

2
) ≤

1
2

A(x, u) +
1
2

A(x, υ) − k0 |u − υ|p(x) , for all x ∈ Ω and u, υ ∈ RN .

Our main results in this paper are the proofs of the following theorems, which are based on the
Mountain Pass Theorem [33] and the Ricceri Theorem [8] . Let X denote the variable exponent Sobolev
space W1,p(x)

0 (Ω).
Theorem 2.8. Suppose that (M1) , (A1) − (A5) , p+ < αp− and f satisfies the following conditions

hold
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(f1) There exits c1 is a positive constant such that

| f (x, t)| ≤ c1

(
1 + |t|m(x)−1

)
,∀ (x, t) ∈ ∂Ω × R,

where m (x) ∈ C+ (∂Ω) such that p+ < m− := inf
x∈∂Ω

m (x) ≤ m (x) ≤ m+ := sup
x∈∂Ω

m (x) < p∂ (x)

(f2) f (x, t) = o
(
|t|αp+−1

)
as t → 0, for x ∈ ∂Ω and αp+ < m−

(AR) Ambrosetti-Rabinowitz’s Condition holds, i.e., there exists M > 0 and θ > m2αp+

m1
such that

0 < θF(x, t) ≤ f (x, t)t, |t| ≥ M, for all x ∈ ∂Ω.

Then there exists λ∗ > 0 such that for any λ ∈ (0, λ∗) , problem (P) has a nontrivial weak solution in X .
Theorem 2.9. Assume that (M1), (A1) − (A5) and f satisfies the following conditions hold
(f3) f : ∂Ω × R→ R satisfies Carathéodory condition and

| f (x, t)| ≤ n (x) + k |t|β(x)−1 , for all (x, t) ∈ ∂Ω × R,

where k ≥ 0 is a constant, n (x) ∈ L
β(x)
β(x)−1 (∂Ω) , and β(x) ∈ C+ (∂Ω) such that

1 < β− := inf
x∈Ω
β (x) ≤ β (x) ≤ β+ := sup

x∈Ω

β (x) < p−and N < p−.

(f4) If |t| ∈ (0, 1) , then F(x, t) < 0 and t ∈ (t0,∞) for t0 > 1, then F(x, t) > $ > 0.
Then there exist an open interval Θ ⊂ (0,∞) and a constant ρ > 0 such that for any λ ∈ Θ, problem

(P) has at least three weak solutions in X whose norms are less than ρ.

3. Proofs of main results

Definition 3.1. We say that u ∈ X is a weak solution of the boundary value problem (P) if and only
if

M
(∫

Ω

A (x,∇u)
) ∫

Ω

a (x,∇u)∇v +

∫
Ω

|u|p(x)−2 uvdx

= λ

∫
∂Ω

f (x, u)vdσ

for any v ∈ X. We define the functionals ; Φ,Ψ : X → R

Φ (u) = M̂ (Λ (u) ) +

∫
Ω

1
p (x)

|u|p(x)dx

Ψ (u) = −

∫
∂Ω

F (x, u) dσ, u ∈ X

where M̂ (t) ,Λ (u) and F (x, t) are denoted by

M̂ (t) =

∫ t

0
M (k) dk, Λ (u) =

∫
Ω

A (x,∇u) dx and F (x, t) =

∫ t

0
f (x, k) dk,
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for all t > 0 and (x, k) ∈ ∂Ω × R.

Proposition 3.2 [15]. Let f : ∂Ω × R → R is a Carathéodory function satisfying (f1). For each u ∈ X,
set κ (u) =

∫
∂Ω

F (x, u) dσ. Then κ (u) ∈ C1(X,R) and

〈
κ
′

(u) , υ
〉

=

∫
∂Ω

f (x, u) υdσ,

for all υ ∈ X . Moreover, the operator κ : X → X∗ is compact.

Lemma 3.3 [27].

(i) A verifies the growth condition |A (x, ξ)| ≤ c0(|ξ| + |ξ|p(x)), for all x ∈ Ω and ξ ∈ RN;
(ii) A is p(x)− homogeneous, A (x, zξ) ≤ A (x, ξ) zp(x), for all z ≥ 1, ξ ∈ RN and x ∈ Ω.

Lemma 3.4 [27].

(i) The functional Λ is well-defined on X,
(ii) The functional Λ is of class C1 (X,R) and

〈Λ′ (u) , v〉 =

∫
Ω

a (x,∇u) .∇vdx, for all u, v ∈ X,

(iii) The functional Λ is weakly lower semi-continuous on X,
(iv) For all u, υ ∈ X

Λ(
u + υ

2
) ≤

1
2

Λ (u) +
1
2

Λ (υ) − k0 ‖u − υ‖p− ,

(v) For all u, υ ∈ X
Λ (u) − Λ (υ) ≥ 〈Λ′ (υ) , u − υ〉 ,

(vi) Jλ is weakly lower semi-continuous on X.

Then energy functional associated to the problem (P) is Jλ (u) = Φ (u) + λΨ (u). Furthermore, from
Proposition 3.2, Lemma 3.3, Lemma 3.4, (f1) and (M1), it is easy to see that the functional Φ,Ψ ∈

C1(X,R) and the derivate of Jλ is the mapping J′λ : X → R. Then, we have

〈J
′

λ (u) , υ〉 =

M
(∫

Ω

A (x,∇u)
) ∫

Ω

a (x,∇u)∇υdx +

∫
Ω

|u|p(x)−2 uυdx − λ
∫
∂Ω

f (x, u) vdσ,

for any u, υ ∈ X and we can infer that critical points of functional Jλ are the weak solutions for problem
(P).

Lemma 3.5. Suppose (M1), (f1) , (A2), (AR) and αp− > p+ hold. Then, the functional Jλ satisfies
Palais-Smale (PS ) condition for any λ ∈ (0,+∞) .
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Proof. Let assume that there exists a sequence {un} ⊂ X such that

|Jλ(un)| ≤ C and J′λ(un)→ 0 as n→ ∞. (3.1)

Firstly, we prove that {un} is bounded in X. Arguing by contradiction and passing to a subsequence, we
have ‖un‖ → ∞ as n → ∞. From (M1),(AR) , (3.1) and considering ‖un‖ > 1, for n large enough, we
get

C + ‖un‖ ≥ Jλ(un) −
1
θ

〈
J′λ(un), un

〉
≥

m1

α

(∫
Ω

A (x,∇un) dx
)α
−

m2 p+

θ

(∫
Ω

A (x,∇un) dx
)α−1 ∫

Ω

A (x,∇un) dx

−
1
p+

∫
Ω

|un|
p(x) dx +

1
p−

∫
Ω

|un|
p(x) dx − λ

(∫
∂Ω

(
1
θ

f (x, un) un − F (x, un)
)

dσ
)

≥

(
m1

α
−

m2 p+

θ

) (∫
Ω

A (x,∇un) dx
)α
−

1
p+
‖un‖

p+

.

From (A3) and Proposition 2.2 (ii), we have

C + ‖un‖ ≥

(
m1

α
−

m2 p+

θ

)
1

(p+)α
‖un‖

αp−
−

1
p+
‖un‖

p+

If this last inequality is divided by ‖un‖
αp− and pass to the limit as n → ∞, we obtain a contradiction

with the condition (AR) . So, αp− > p+, {un} is bounded in X. Thus, we may extract a subsequence
{un} ⊂ X and u ∈ X such that un ⇀ u in X.

Next, we will show that un → u in X. Taking into account relation (3.1), we obtain that〈
J′λ (un) , un − u

〉
→ 0. That is,

〈
J′λ(un), un − u

〉
= (3.2)

M
(∫

Ω

A (x,∇un) dx
) ∫

Ω

a (x,∇un) (∇un − ∇u) dx

−

∫
∂Ω

f (x, un) (un − u) dσ→ 0

Moreover, using (f1) and the inequality (2.1), we deduce that∣∣∣∣∣∫
∂Ω

f (x, un) (un − u) dσ
∣∣∣∣∣ ≤ ∣∣∣∣∣∫

∂Ω

(
c1 + c1 |un|

m(x)−1
)

(un − u) dσ
∣∣∣∣∣

≤ c1

∫
∂Ω

|(un − u)| dσ

+c2

∣∣∣|un|
m(x)−1

∣∣∣
Lm′(x) |un − u|Lm(x)(∂Ω)

AIMS Mathematics Volume 8, Issue 3, 5352–5368.



5361

where c2 > 0 is a constant. On the other hand, from Proposition 2.3, if we consider the compact
embedding X ↪→ Lm(x) (∂Ω) , that is, |un − u|Lm(x)(∂Ω) → 0 as n→ ∞, we obtain∫

∂Ω

f (x, un) (un − u) dσ→ 0. (3.3)

So, we use (3.3) in the above inequality (3.2), we have

M
(∫

Ω

A (x,∇un) dx
) ∫

Ω

a (x,∇un) (∇un − ∇u) dx→ 0.

Moreover, from (M1), we conclude that∫
Ω

a (x,∇un) (∇un − ∇u) dx→ 0.

that is, lim
n→∞
〈Λ′ (un) , un − u〉 = 0. From Lemma 3.4 (v), we write

0 = lim
n→∞
〈Λ′ (un) , u − un〉 ≤ lim

n→∞
(Λ (u) − Λ (un)) = Λ (u) − lim

n→∞
Λ (un)

or
lim
n→∞

Λ (un) ≤ Λ (u) . (3.4)

Thus, from Lemma 3.4 (iii) and the above inequality (3.4), we have

lim
n→∞

Λ (un) = Λ (u) . (3.5)

Now, we assume by contradiction that {un} does not converge strongly to u in X. Then, there exists
ξ > 0 and a subsequence

{
unk

}
of {un} such that

∥∥∥unk − u
∥∥∥ ≥ ε. Moreover, by Lemma 3.4 (iv), we get

1
2

Λ (u) +
1
2

Λ
(
unk

)
− Λ(

unk + u
2

) ≥ k0

∥∥∥unk − u
∥∥∥p−
≥ k0ε

p− . (3.6)

Letting k → ∞ in the inequality (3.6) and and using the inequalities (3.5), we have

lim sup
n→∞

Λ(
unk + u

2
) ≤ Λ (u) − k0ε

p− .

Moreover, we have {
unk + u

2
} converges weakly to u in X. Using Lemma 3.4 (iii), we obtain

Λ (u) ≤ lim inf
n→∞

Λ(
unk + u

2
),

which is a contradiction. Therefore, it follows that {un} converges strongly to u in X. The proof of
Lemma 3.5 is complete.

Lemma 3.6. Suppose (M1), (f1) , (f2) , (A3)and (AR) hold. Then the following statements hold;

(i) There exist two positive real numbers η and r such that Jλ (u) ≥ r > 0, u ∈ X with ‖u‖ = η.
(ii) There exists u ∈ X such that ‖u‖ > η, Jλ (u) < 0.
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Proof. (i) Let ‖u‖ < 1. From (f1) and (f2), we obtain

F(x, t) ≤ ε |t|αp+

+ cε |t|m(x) ,∀ (x, t) ∈ ∂Ω × R. (3.7)

On the other hand, using the continuous embeddings X ↪→ Lp(x) (Ω) , X ↪→ Lαp+ (∂Ω) and X ↪→

Lm(x) (∂Ω), there exists positive constants c3, c4 and c5 such that

|u|Lp(x)(Ω) ≤ c3 ‖u‖ , |u|Lm(x)(∂Ω) ≤ c4 ‖u‖

and |u|Lαp+ (∂Ω) ≤ c5 ‖u‖ , ∀ u ∈ X. (3.8)

Therefore, by Proposition 2.1, Proposition 2.2, (M1), the inequalities (3.7) and (3.8) , we obtain

Jλ (u) ≥
m1

α (p+)α
‖u‖αp+

+

∫
Ω

1
p (x)

|u|p(x)dx − λ
∫
∂Ω

(
ε |t|αp+

+ cε |t|m(x)
)

dσ

≥
m1

α (p+)α
‖u‖αp+

+
cp+

3

p+
‖u‖p−

− λεcαp+

4 ‖u‖αp+

− λcεcm−
5 ‖u‖

m− ,

for ‖u‖ small enought. Let ε > 0 be small enough such that 0 < λεcαp+

4 ≤

(
m1

2α(p+)α +
cp+

3
p+

)
, we have

Jλ (u) ≥
m1

2α (p+)α
‖u‖αp+

− λcεcm−
5 ‖u‖

m−

≥ ‖u‖αp+

(
m1

2α (p+)α
− λcεcm−

5 ‖u‖
m−−αp+

)
As αp+ < m−, the functional g : [0, 1]→ R defined by

g (t) =
m1

2α (p+)α
− λcεcm−

5 tm−−αp+

is positive on neighborhood of the origin. It follows that there exist two positive real numbers η and r
such that Jλ (u) ≥ r > 0, u ∈ X with ‖u‖ = η ∈ (0, 1).

(ii) From (AR) , we obtain that there exist positive constant c6 such that

F(x, t) ≥ c6 |t|θ , |t| ≥ t∗, for all (x, t) ∈ ∂Ω × R. (3.9)

On the other hand, from (M1) and t > 1, we have

M̂ (t) ≤
m2

α
tα ≤

m2

α
t

m2
m1

p+α. (3.10)

Moreover, we use the inequalities (3.9) and (3.10) together with Lemma 3.3, we obtain

Jλ (tφ) = M̂
(∫

Ω

A (x,∇tφ) dx
)

+

∫
Ω

1
p (x)

|tφ|p(x)dx − λ
∫
∂Ω

F(x, tφ)dσ
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≤
m2

α (p−)
m2
m1
α

t
m2
m1
αp+

∫
Ω

A (x,∇φ) dx +
tp+

p−

∫
Ω

|φ|p(x)dx − λc6tθ
∫
∂Ω

|φ|θ dσ.

From (AR) , we show that Jλ (tφ)→ −∞ as t → +∞. Then, we can take u1 = tφ such that ‖u1‖ > η and
Jλ (u1) < 0. The proof of Lemma 3.6 is complete.

Proof of Theorem 2.8. By (A3), we obtain Jλ (0) = 0. If we also take into account Lemma 3.5 and
Lemma 3.6, Jλ satisfies the Mountain Pass theorem [33]. Hence, Jλ has at least one nontrivial critical
point, i.e., problem (P) has a nontrivial weak solution.

Proof of Theorem 2.9. To prove this theorem, it is sufficient to show that the conditions of Theorem
2.7 are satisfied. Since X is continuous embedding Lm+ (∂Ω) from Proposition 2.4, there exist positive
constant c7 such that

|u|Lm+ (∂Ω) ≤ c7 ‖u‖ (3.11)

Also, consider the case ‖u‖ > 1 for u ∈ X . Then, using (M1) and Proposition 2.1, we get that

Φ (u) = M̂
(∫

Ω

A (x,∇u) dx
)

+

∫
Ω

1
p (x)

|u|p(x)dx

≥
m1

α (p+)α
‖u‖αp− +

1
p+
‖u‖p−

≥
m1

α (p+)α
‖u‖αp− (3.12)

If we use the inequalities (2.1) and (3.11) together with the conditional (f3), we can write

λΨ (u) = −λ

∫
∂Ω

F (x, u) dσ = −λ

∫
∂Ω

(∫ u(x)

0
f (x, t) dt

)
dσ

≥ −λ

∫
∂Ω

(
n (x) |u (x)| +

k
β(x)

|u (x)|β(x)
)

dσ

≥ −λc8 ‖n (x)‖ β(x)
β(x)−1 ,∂Ω

‖u (x)‖β(x),∂Ω −
λc9

β−
‖u‖β

+

, (3.13)

where c8 and c9 are positive constants. Combining (3.12) and (3.13), we obtain

Jλ (u) ≥
m1

α (p+)α
‖u‖p−

− λc8 ‖n (x)‖ β(x)
β(x)−1 ,∂Ω

‖u (x)‖β(x),∂Ω −
λc9

β−
‖u‖β

+

From p− > β+, it follows that

lim
‖u‖→∞

Jλ (u) = lim
‖u‖→∞

(Φ (u) + λΨ (u)) = ∞.

So, condition (i) of Theorem 2.7 is satisfied.
Now, we show the condition (ii) of Theorem 2.7. By f (x, t) =

∂F(x,t)
∂t and from the condition (f3), it

is obtained that F(x, t) is increasing for t ∈ (t0,∞) and decreasing for t ∈ (0, 1) uniformly for x ∈ ∂Ω.
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Also, F(x, 0) = 0 is obvious and F(x, t)→ ∞ when t → ∞ because F(x, t) ≥ $t uniformly on x. Then,
there exists a real number γ > t0 such that

F(x, t) ≥ 0 = F(x, 0) ≥ F(x, τ),∀u ∈ X, t > γ, τ ∈ (0, 1) . (3.14)

Let κ, δ be two real numbers such that 0 < κ < min {1, c} where c is a constant which satisfies

‖u‖C
(
Ω
) = sup

x∈Ω

|u (x)| , (3.15)

‖u‖C
(
Ω
) ≤ c ‖u‖ for all u ∈ X.

Since N < p−,we have from Remark 2.5 that compact embedding from X to C
(
Ω
)
. If we choose δ > γ

satisfying δp− |Ω| > 1 and using (3.14) , we obtain

F(x, t) ≤ F(x, 0) = 0, for t ∈ [0, κ] .

Then, we have ∫
∂Ω

sup
0<t<κ

F(x, t)dσ ≤
∫
∂Ω

F(x, 0)dσ = 0. (3.16)

On the other hand, we can write from δ > γ,∫
∂Ω

F(x, δ)dσ > 0

and
1

cp+ .
κp+

δp−

∫
∂Ω

F(x, δ)dσ > 0. (3.17)

So, combining (3.16) and (3.17), we show that∫
∂Ω

sup
0<t<κ

F(x, t) ≤ 0 <
1

cp+ .
κp+

δp−

∫
∂Ω

F(x, δ)dσ. (3.18)

Let u0, u1 ∈ X, u0 (x) = 0 and u1 (x) = δ for any x ∈ Ω. If we define µ = 1
α(p+)α .

(
κ
c

)p+

, then we have
µ ∈ (0, 1) ,Φ (u0) = Ψ (u0) = 0,

Φ (u1) = M̂
(∫

Ω

A (x,∇δ) dx
)

+

∫
Ω

1
p (x)

δp(x)dx

≥
m1

α (p+)α
‖δ‖αp− +

1
p+
‖δ‖p−

≥
1

α (p+)α
.δp− |Ω| >

1
α (p+)α

.1 >
1

α (p+)α
.
(
κ

c

)p+

= µ

and from (3.18) we obtain

Ψ (u1) = −

∫
∂Ω

F (x, u1 (x)) dσ = −

∫
∂Ω

F (x, δ) dσ < 0.
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Thus we deduce that Φ (u0) < r < Φ (u1) , that is, condition (ii) of Theorem 2.7 is satisfied.
Finally, we show the condition (iii) of Theorem 2.7. we have

(Φ (u1) − r) Ψ(u0) + (r − Φ (u0)) Ψ (u1)
Φ (u1) − Φ (u0)

= −
µ Ψ (u1)
Φ (u1)

= µ

∫
∂Ω

F(x, δ)dσ

M̂
(∫

Ω
A (x,∇δ) dx

)
+

∫
Ω

1
p(x)δ

p(x)dx
> 0. (3.19)

Let u ∈ X such that Φ (u) ≤ µ < 1. Since 1
α(p+)αψ (u) ≤ Φ (u) ≤ µ for u ∈ X , we obtain

ψ (u) ≤ α
(
p+)α µ =

(
κ

c

)p+

< 1. (3.20)

So, by Proposition 2.1 for ‖u‖ < 1, we have

1
α (p+)α

‖u‖p+

≤
1

α (p+)α
ψ (u) ≤ Φ (u) ≤ µ. (3.21)

On the other hand, from (3.15), (3.20) and (3.21) we show that

‖u‖C
(
Ω
) = sup

x∈Ω

|u (x)| ≤ c ‖u‖ ≤ c
(
α
(
p+)α µ) 1

p+ = κ, (3.22)

for all u ∈ X and x ∈ Ω with Φ (u) ≤ µ.
From (3.22) ,we obtain

− inf
u∈Φ−1((−∞,µ])

Ψ(u) = sup
u∈Φ−1((−∞,µ])

−Ψ(u) =

∫
∂Ω

sup
0<t<κ

F(x, t)dσ ≤ 0.

Thus, by (3.19) we have

− inf
u∈Φ−1((−∞,µ])

Ψ(u) < µ

∫
∂Ω

F(x, δ)dσ

M̂
(∫

Ω
A (x,∇δ) dx

)
+

∫
Ω

1
p(x)δ

p(x)dx

or

inf
u∈Φ−1((−∞,µ])

Ψ(u) >
(Φ (u1) − r) Ψ(u0) + (r − Φ (u0)) Ψ (u1)

Φ (u1) − Φ (u0)
.

So, condition (iii) of Theorem 2.7 is obtained. Since all conditions of Theorem 2.7 are verified, there
exists an open interval Θ ⊂ (0,∞) and a positive real number ρ such that for each λ ∈ Θ the equation

Φ′ (u) + λΨ′ (u) = 0,

has at least three solutions in X whose norms are lees than ρ. The proof of Theorem 2.9 is complete.
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4. Conclusions

In this paper, we studied a non-linear elliptic equation involving p(x)-growth conditions and
satisfying Steklov boundary condition on a bounded domain Ω. The study was carried out the existence
of at least three solutions and a nontrivial weak solution of the problem under appropriate conditions.
Our basic approach is to use Ricceri’s three critical point theorem and Mountain Pass theorem together
with the variational approach to investigate the existence of a multiplicity of solutions.
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