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1. Introduction 

Mathematical equations that contain two or more independent variables are called partial 

differential equations. They are found in various scientific applications, such as chemistry, physics, 

engineering and mathematics, which is why researchers have developed many techniques to solve such 

equations as homotopy perturbation method, variation iteration method, Adomian decomposition 

method and others [1–9]. 

Fractional calculus is a generalization of regular calculus, that calculates derivatives of functions 

of non-integer orders. Many definitions of fractional derivatives have been presented in the literature 

such as Riemann Louville, Caputo, conformable and others [10–15]. Furthermore, using each of these 

definitions can be viewed as a generalization of the normal calculus. For this reason, applying either 

of these definitions allows us to generalize our research to normal calculus, and since Caputo's 
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fractional derivative is one of the most popular definitions, we establish our new results in terms of 

Caputo's fractional definition in this article. There are a number of different methods that 

mathematicians have used to solve ordinary and partial differential equations and systems in fractional 

calculus. One of these methods is the power series method, because it can solve such problems. On the 

other hand, there are too many methods that depend on the idea of power series, such as residual power 

series method [16–26], and some other techniques that combine the power series idea with 

transformations just as Laplace transform, ARA-transform, formable transform and others [27–37] to 

construct new ones. However, all these methods, introduce the solution in a convergent series form, 

but the difference lies in the level of difficulty during the applications. 

The direct power series method (DPSM) used in this work was first introduced in [38], 

transformations are unnecessary, no limits or differentiations are required, this method only focuses on 

finding the nth coefficients of the series expansion of the analytic solution. 

In DPSM we find the solution by computing a general term of the nth coefficients without going 

back to the hole power series every time we want to compute new coefficients. For this reason, DPSM 

helps mathematicians to find the approximate solutions better and faster. This method only takes two 

steps to write the general solution of some equations or systems that can be solved with other power 

series methods. At the end of the second step, we have a general form of the solution, expressed as an 

infinite series, and this makes it easier to find too many new coefficients of the series solution with 

computer programs. Furthermore, some different illustrative examples are presented in the fourth 

chapter and solved with the proposed method. We show that DPSM could be used to solve different 

types of problems and systems. 

This paper is organized as follows, in the next section, we introduce some preparatory 

explanations on fractional operators, Section 3 introduces the methodology and the basic idea of DPSM 

and finally we consider some different examples on fractional partial differential equations and 

systems. 

2. Basics about fractional operators and power series 

In this section we introduce the definition of the fractional Caputo and some theorems about 

power series. 

Definition 2.1. If 𝜓(𝜒, 𝜏) is a function of two variables and 𝑛 is any natural number, then Caputo 

fractional partial derivative of order 𝛼 with respect to 𝜏 is denoted and defined as 

𝐷𝜏
𝛼𝜓(𝜒, 𝜏) = {

1

Γ(𝑛−𝛼)
∫ (𝜏 − 𝑡)𝑛−𝛼−1 𝜕𝑛

𝜕𝜏𝑛 𝜓(𝜒, 𝜏)𝑑𝑡
𝜏

0
,

 
𝑛 − 1 < 𝛼 < 𝑛,

𝜕𝑛

𝜕𝜏𝑛
𝜓(𝜒, 𝜏), 𝑛 = 𝛼,

   (2.1) 

where 𝑛 ∈ ℕ. 

It is worth noting here that Caputo fractional partial derivative has the memory property. For more 

details and properties, see [39–41]. 

Lemma 2.1. [10,11]. Let 𝜚(𝜒) be a real valued continuous function and 𝛼, 𝜏 > 0. Then the following 

properties of Caputo's derivative are hold: 

1) 𝐷𝜏
𝛼𝜚(𝜒) = 0. 
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2) 𝐷𝜏
𝛼 (𝜏𝛽𝜚(𝜒)) =

Γ(𝛽+1)

Γ(𝛽+1−𝛼)
𝜏𝛽−𝛼𝜚(𝜒). 

3) 𝐷𝜏
𝑘𝛼(𝜏𝑛𝛼𝜚(𝜒)) = {

Γ(𝑛𝛼+1)

Γ((𝑛−𝑘)𝛼+1)
𝜏(𝑛−𝑘)𝛼𝜚(𝜒), 𝑛 ≥ 𝑘,

0 𝑛 < 𝑘.
 

4) 𝐷𝜏
𝑘𝛼 (∑

𝜚𝑛(𝜒)(𝛾𝜏)𝑛𝛼

Γ(𝑛𝛼+1)
∞
𝑛=0 ) = ∑

𝛾(𝑛+𝑘)𝛼𝜚𝑛+𝑘(𝜒)𝜏𝑛𝛼

Γ(𝑛𝛼+1)
∞
𝑛=0 . 

Definition 2.2. [22] For any 𝛼 such that, 𝑟 − 1 < 𝛼 ≤ 𝑟, 𝑟 ∈ ℕ a power series of the form: 

∑
𝜚𝑛(𝜒)(𝜏−𝜏0)𝑛𝛼

Γ(𝑛𝛼+1)
∞
𝑛=0 = 𝜚0(𝜒) +

𝜚1(𝜒)(𝜏−𝜏0)𝛼

Γ(𝛼+1)
+

𝜚2(𝜒)(𝜏−𝜏0)2𝛼

Γ(2𝛼+1)
+ ⋯,   (2.2) 

is called the multiple fractional power series about 𝜏 = 𝜏0 , where 𝜏  is a variable and 𝜚𝑛(𝜒),

∀𝑛 = 0, 1, ⋯ are functions of 𝜒 called the coefficients of the series. 

Theorem 2.1. [22,23] Suppose that 𝜓(𝜒, 𝜏) has a fractional power series representation at 𝜏 = 0, of 

the form: 

𝜓(𝜒, 𝜏) = ∑
𝜚𝑛(𝜒)𝜏𝑛𝛼

Γ(𝑛𝛼+1)
∞
𝑛=0 , 𝛼 > 0, 𝜒 ∈ 𝐼,      (2.3) 

where 0 ≤ 𝜏 < 𝑅 and 𝑅 is the radius of convergence. If 𝐷𝜏
𝑛𝛼𝜓(𝜒, 𝜏) is continuous on (0, 𝑅), then, 

the coefficients 𝜚𝑛(𝜒); ∀𝑛 = 0, 1, ⋯, of the power series (2.3) are given by 

𝜚𝑛(𝜒) = 𝐷𝜏
𝑛𝛼𝜓(𝜒, 0).         (2.4) 

For the proof, see [22]. 

The convergence analysis of the presented power series are illustrated in the following theorem. 

We mention here, that these conditions are the required convergence conditions for DPSM [13]. 

Theorem 2.2. [35,36] Consider the fractional power series representation in (2.3), then we have the 

following cases: 

a) If 𝜏 = 0, the series representation (2.3) is convergent and the radius of convergence is 𝑅 = 0. 

b) If 𝜏 ≥ 0 , the series representation (2.3) is convergent and the radius of convergence is 𝑅 = ∞. 

c) If 𝜏 ∈ [0, 𝑅], the series representation (2.3) is convergent for some positive real number 𝑅 

and is divergent for 𝜏 > 𝑅, where 𝑅 is the radius of convergence. 

In the following arguments, we state some properties of the fractional power series (2.3): 

1) The 𝑘th derivative of the fractional power series representation (2.3) is given by 

𝐷𝜒
𝑘𝜓(𝜒, 𝜏) = ∑

𝜚𝑛
(𝑘)

(𝜒)𝜏𝑛𝛼

Γ(𝑛𝛼+1)
∞
𝑛=0 ,        (2.5) 

and the coefficients of the equation 𝜚𝑛
(𝑚)(𝜒); ∀𝑛 = 0, 1, … are given by 

𝜚𝑛
(𝑘)(𝜒) = 𝐷𝜒

𝑘(𝐷𝜏
𝑛𝛼𝜓(𝜒, 0)).       (2.6) 

2) If we have {𝜓𝑖(𝜒, 𝜏)}𝑖=1
𝑚  a sequence of functions of two variables, that has a power series 

expansion as follows: 

𝜓𝑖(𝜒, 𝜏) = ∑
𝜚𝑖𝑛

(𝜒)𝜏𝑛𝛼

Γ(𝑛𝛼+1)
∞
𝑛=0 ,        (2.7) 
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then the coefficients of 
𝜏𝑛𝛼

Γ(𝑛𝛼+1)
 of ∏ 𝜓𝑖(𝜒, 𝜏)𝑚

𝑖=1  can be written by the following summation: 

∏ 𝜓𝑖(𝜒, 𝜏)𝑚
𝑖=1 = ∑

𝜚1𝑗1
(𝜒)𝜚2𝑗2

(𝜒)…𝜚𝑚𝑗𝑚
(𝜒)Γ(𝑛𝛼+1)

Γ(𝑗1𝛼+1)Γ(𝑗2𝛼+1)…Γ(𝑗𝑚𝛼+1)𝑗1 ,𝑗2,… 𝑗𝑚;
  

𝑗1+𝑗2+⋯+𝑗𝑚=𝑛

𝜏𝑛𝛼

Γ(𝑛𝛼+1)
.   (2.8) 

3. The methodology of DPSM 

In this section we present the main idea of the DPSM for solving time fractional partial differential 

equations (TFPDEs). We illustrate the technique of using DPSM to solve TFPDEs. 

3.1. Construction of DPSM solution of TFPDEs 

Assume that 𝜓(𝜒, 𝜏) can be presented in the series representation (2.3). Consider the FPDE, 

ℒ[𝜓(𝜒, 𝜏)] + 𝒩[𝜓(𝜒, 𝜏)] = 0,       (3.1) 

where ℒ  and 𝒩  denote linear and nonlinear operators respectively of fractional or integer 

orders derivatives. Using DPSM we can get the solution of some cases-that will be considered 

in Theorem 3.1, below-of Eq (3.1) in a series representation which means, to find the values of 

the coefficients 𝜚𝑛(𝜒) of the series expansion (2.3). The Caputo fractional derivative affects the 

series formula and changes the summation, so we need to illustrate the following theorem tha t 

study the effects of the fractional derivatives on the power series representations.  

Theorem 3.1. [32] Suppose that 𝜓(𝜒, 𝜏) and 𝜑(𝜒, 𝜏) have fractional power series representations 

such as: 

𝜓(𝜒, 𝜏) = ∑
𝜚𝑛(𝜒)𝜏𝑛𝛼

Γ(𝑛𝛼+1)
∞
𝑛=0  and 𝜑(𝜒, 𝜏) = ∑

𝜌𝑚(𝜒)𝜏𝑚𝛼

Γ(𝑚𝛼+1)
∞
𝑚=0 ,    (3.2) 

where 𝜓(𝜒, 𝜏)  and 𝜑(𝜒, 𝜏)  are analytical functions, then we have 𝜚𝑛(𝜒)  and 𝜌𝑚(𝜒)  are the 

coefficients of 
𝜏𝑛𝛼

Γ(𝑛𝛼+1)
 and 

𝜏𝑚𝛼

Γ(𝑚𝛼+1)
 in 𝜓(𝜒, 𝜏)  and 𝜑(𝜒, 𝜏)  respectively , ∀𝑚 = 0,1, …,  and 𝑛 =

0, 1, ⋯. Then we have: 

a) 𝜚𝑛+𝑘(𝜒) is the coefficient for 
𝜏𝑛𝛼

Γ(𝑛𝛼+1)
 in the series expansion of 𝐷𝜏

𝑘𝛼𝜓(𝜒, 𝜏) for any 𝑘 =

0, 1, ⋯. 

b) 𝛾(𝑛+𝑘)𝛼𝜚𝑛+𝑘(𝜒) is the coefficient for 
𝜏𝑛𝛼

Γ(𝑛𝛼+1)
 in the series expansion of 𝐷𝜏

𝑘𝛼𝜓(𝜒, 𝛾𝜏) for 

any 𝑘 = 0, 1, …, where 𝛾 ∈ ℝ. 

c) ∑
𝜚𝑖(𝜒)𝜌𝑛−𝑖(𝜒)Γ(𝑛𝛼+1)

Γ(𝑖𝛼+1)𝛤((𝑛−𝑖)𝛼+1)

𝑛
𝑖=0   is the coefficient for 

𝜏𝑛𝛼

Γ(𝑛𝛼+1)
  in the series expansion of 

𝜓(𝜒, 𝜏)𝜑(𝜒, 𝜏). 

d) ∑
𝛽𝑖𝛼𝛾(𝑛−𝑖)𝛼𝜚𝑖(𝜒)𝜌𝑛−𝑖(𝜒)Γ(𝑛𝛼+1)

Γ(𝑖𝛼+1)Γ((𝑛−𝑖)𝛼+1)

𝑛
𝑖=0   is the coefficient for  

𝜏𝑛𝛼

Γ(𝑛𝛼+1)
  in the series expansion of 

𝜓(𝜒, 𝛽𝜏)𝜑(𝜒, 𝛾𝜏), where 𝛽 and 𝛾 ∈ ℝ. 
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e) ∑
𝛽(𝑖+𝑘)𝛼𝛾(𝑛−𝑖+𝑚)𝛼𝜚𝑖+𝑘(𝜒)𝜌𝑛−𝑖+𝑚(𝜒)Γ(𝑛𝛼+1)

Γ(𝑖𝛼+1)Γ((𝑛−𝑖)𝛼+1)

𝑛
𝑖=0   is the coefficient for 

𝜏𝑛𝛼

Γ(𝑛𝛼+1)
  in the series 

expansion of 𝐷𝜏
𝑘𝛼𝜓(𝜒, 𝛽𝜏) 𝐷𝜏

𝑠𝛼𝜑(𝜒, 𝛾𝜏), where 𝛽, 𝛾 ∈ ℝ and 𝑘, s = 0, 1, …. 

Proof. Substituting the series expansion of 𝜓(𝜒, 𝜏) in 𝐷𝜏
𝑘𝛼𝜓(𝜒, 𝜏), 

𝐷𝜏
𝑘𝛼𝜓(𝜒, 𝜏) = 𝐷𝜏

𝑘𝛼 (∑
𝜚𝑛(𝜒)𝜏𝑛𝛼

Γ(𝑛𝛼+1)
∞
𝑛=0 ).       (3.3) 

Using part (4) of Lemma 2.1, we get 

𝐷𝜏
𝑘𝛼𝜓(𝜒, 𝜏) = ∑

𝜚𝑛(𝜒)𝜏(𝑛−𝑘)𝛼

Γ((𝑛−𝑘)𝛼+1)

∞
𝑛=𝑗 .        (3.4) 

Thus, the series expansion can be written as 

𝐷𝜏
𝑘𝛼𝜓(𝜒, 𝜏) = ∑

𝜚𝑛+𝑘(𝜒)𝜏𝑛𝛼

Γ(𝑛𝛼+1)
.∞

𝑛=0         (3.5) 

Proof. Substituting the series expansion of 𝜓(𝜒, 𝛾𝜏) in 𝐷𝜏
𝑘𝛼𝜓(𝜒, 𝛾𝜏), we get 

𝐷𝜏
𝑘𝛼𝜓(𝜒, 𝛾𝜏) = 𝐷𝜏

𝑘𝛼 (∑
𝜚𝑛(𝜒)(𝛾𝜏)𝑛𝛼

Γ(𝑛𝛼+1)
∞
𝑛=0 ).      (3.6) 

Using part (4) of Lemma 2.1, we get 

𝐷𝜏
𝑘𝛼𝜓(𝜒, 𝛾𝜏) = ∑

𝛾𝑛𝛼𝜚𝑛(𝜒)𝜏(𝑛−𝑘)𝛼

Γ((𝑛−𝑘)𝛼+1)

∞
𝑛=𝑗 .       (3.7) 

Thus, Eq (3.7), can be written as 

𝐷𝜏
𝑘𝛼𝜓(𝜒, 𝛾𝜏) = ∑

𝛾(𝑛+𝑘)𝛼𝜚𝑛+𝑘(𝜒)𝜏𝑛𝛼

Γ(𝑛𝛼+1)
∞
𝑛=0 .       (3.8) 

Proof. Multiplying the series expansion of 𝜓(𝜒, 𝜏) and 𝜑(𝜒, 𝜏), 

𝜓(𝜒, 𝜏)𝜑(𝜒, 𝜏) = ∑
𝜚𝑛(𝜒)𝜏𝑛𝛼

Γ(𝑛𝛼+1)
∞
𝑛=0 ∑

𝜌𝑚(𝜒)𝜏𝑚𝛼

Γ(𝑚𝛼+1)
∞
𝑚=0 .      (3.9) 

Equation (3.9), can be simplified as 

𝜓(𝜒, 𝜏)𝜑(𝜒, 𝜏) = ∑ ∑
𝜚𝑛(𝜒)𝜌𝑚(𝜒)𝜏(𝑛+𝑚)𝛼

Γ(𝑛𝛼+1)Γ(𝑚𝛼+1)
∞
𝑚=0

∞
𝑛=0 ,      (3.10) 

which can be rewritten as 

𝜓(𝜒, 𝜏)𝜑(𝜒, 𝜏) = ∑ (∑
𝜚𝑖(𝜒)𝜌𝑛−𝑖(𝜒)Γ(𝑛𝛼+1)

Γ(𝑖𝛼+1)Γ((𝑛−𝑖)𝛼+1)

𝑛
𝑖=0 )

𝜏𝑛𝛼

Γ(𝑛𝛼+1)
∞
𝑛=0 .   (3.11) 

Proof. Multiplying the series expansion of 𝜓(𝜒, 𝛽𝜏) and 𝜑(𝜒, 𝛾𝜏), 

𝜓(𝜒, 𝛽𝜏)𝜑(𝜒, 𝛾𝜏) = (∑
𝜚𝑛(𝜒)(𝛽𝜏)𝑛𝛼

Γ(𝑛𝛼+1)
∞
𝑛=0 ) (∑

𝜌𝑚(𝜒)(𝛾𝜏)𝑚𝛼

Γ(𝑚𝛼+1)
∞
𝑚=0 ).   (3.12) 

Equation (3.12), can be written as 
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𝜓(𝜒, 𝛽𝜏)𝜑(𝜒, 𝛾𝜏) = ∑ ∑
𝜚𝑛(𝜒)𝜌𝑚(𝜒)𝛽𝑛𝛼𝛾𝑚𝛼𝜏(𝑛+𝑚)𝛼

Γ(𝑛𝛼+1)Γ(𝑚𝛼+1)
∞
𝑚=0

∞
𝑛=0 ,   (3.13) 

which can be simplified as 

𝜓(𝜒, 𝛽𝜏)𝜑(𝜒, 𝛾𝜏) = ∑ (∑
𝛽𝑖𝛼𝛾(𝑛−𝑖)𝛼𝜚𝑖(𝜒)𝜌𝑛−𝑖(𝜒)Γ(𝑛𝛼+1)

Γ(𝑖𝛼+1)Γ((𝑛−𝑖)𝛼+1)

𝑛
𝑖=0 )

𝜏𝑛𝛼

Γ(𝑛𝛼+1)
∞
𝑛=0 .   (3.14) 

Proof. Substituting the series expansion of 𝜓(𝜒, 𝛾𝜏) and 𝜑(𝜒, 𝛾𝜏) in 𝐷𝜏
𝑘𝛼𝜓(𝜒, 𝛽𝜏) 𝐷𝜏

𝑠𝛼𝜑(𝜒, 𝛾𝜏), we 

get: 

𝐷𝜏
𝑘𝛼𝜓(𝜒, 𝛽𝜏) 𝐷𝜏

𝑠𝛼𝜑(𝜒, 𝛾𝜏), = 𝐷𝑡
𝑗𝛼

(∑
𝜚𝑖(𝜒)(𝛽𝜏)𝑖𝛼

Γ(𝑖𝛼+1)
∞
𝑖=0 ) 𝐷𝑡

𝑚𝛼 (∑
𝜌𝑗(𝜒)(𝛾𝜏)𝑘𝛼

Γ(𝑘𝛼+1)
∞
𝑗=0 ).  (3.15) 

Using part (2) of Lemma 2.1, Eq (3.15) can be written as 

𝐷𝜏
𝑘𝛼𝜓(𝜒, 𝛽𝜏)𝐷𝜏

𝑠𝛼𝜑(𝜒, 𝛾𝜏) = (∑
𝛽(𝑛+𝑘)𝛼𝜚𝑛+𝑘(𝜒)𝜏𝑛𝛼

Γ(𝑛𝛼+1)
∞
𝑛=0 ) (∑

𝛾(𝑚+𝑠)𝛼𝜌𝑚+𝑠(𝜒)𝜏𝑚𝛼

Γ(𝑚𝛼+1)
∞
𝑚=0 ),  (3.16) 

which can be simplified as 

𝐷𝜏
𝑘𝛼𝜓(𝜒, 𝛽𝜏)𝐷𝜏

𝑠𝛼𝜑(𝜒, 𝛾𝜏) = ∑ ∑
𝛽(𝑛+𝑘)𝛼𝛾(𝑚+𝑠)𝛼𝜚𝑛+𝑘(𝜒)𝜌𝑚+𝑠(𝜒)𝜏(𝑛+𝑚)𝛼

Γ(𝑛𝛼+1)Γ(𝑚𝛼+1)
∞
𝑚=0 .∞

𝑛=0   (3.17) 

Equation (3.17) can be written as 

𝐷𝜏
𝑘𝛼𝜓(𝜒, 𝛽𝜏)𝐷𝜏

𝑠𝛼𝜑(𝜒, 𝛾𝜏) = ∑ (∑
𝛽(𝑖+𝑘)𝛼𝛾(𝑛−𝑖+𝑚)𝛼𝜚𝑖+𝑘(𝜒)𝜌𝑛−𝑖+𝑚(𝜒)Γ(𝑛𝛼+1)

Γ(𝑖𝛼+1)Γ((𝑛−𝑖)𝛼+1)

𝑛
𝑖=0 )

𝜏𝑛𝛼

Γ(𝑛𝛼+1)
.∞

𝑛=0  (3.18) 

The proof is complete. 

The main idea of DPSM depends on replacing each part of the target equation or system with its 
𝜏𝑛𝛼

𝛤(𝑛𝛼+1)
 coefficients, in any equation that contains similar terms in Theorem 3.1, these replacements 

can be applied separately for each additive part, or if each part is multiplied by a real number. The 

main idea of the method is to do some replacements in the target equation and simplify the obtained 

series expansions in one series after simple computations, to get a general term of the coefficients in 

the series expansion (2.3) and hence, we get the analytic series solution of the equation by substituting 

𝑛 = 1,2, … in the series form and so on. 

3.2. Algorithm of DPSM for solving TFPDEs 

Our goal in this section, is to explain the usage of DPSM in solving some TFPDEs and get 

numerical solutions for them. The method is basically, depends on assuming the series 

representation (2.3) of the solution and then find a general term of the series coefficients, that 

allows researchers to get better approximate solutions by getting many terms of the numerical 

solution they study. 

The following steps illustrate the algorithm of DPSM in solving TFPDEs: 

Step 3.1. Apply the replacements from Theorem 3.1 that is, replace each term of the target equation 

by its suitable similar coefficient 𝜚𝑛(𝜒) of 
𝜏𝑛𝛼

Γ(𝑛𝛼+1)
. 

Step 3.2. Simplify the obtained series representations from Step 3.1, and define a general form of the 
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series solution by putting the higher index 𝜚𝑛+𝑘(𝜒) to the left-hand side and the rest of the coefficients 

into the right, to get a formula of the shape: 

𝜚𝑛+𝑘(𝜒) = 𝜌(𝑎𝑛+𝑘−1, 𝑎𝑛+𝑘−2, … , 𝑎0).       (3.19) 

Step 3.3. Substitute the values of 𝑛 , recursively from 𝑛 = 1,2, … as much as you need terms of the 

series solution. 

4. Numerical examples 

In this section, some interesting examples on TFPDEs are solved, we clarify the steps of DPSM 

by solving fractional partial differential equations and system of fractional partial differential equations, 

each example is of different kind. 

Example 4.1.[26] Consider the following temporal-fractional Burger equation of the form: 

𝐷𝜏
𝛼𝜓(𝜒, 𝜏) − 𝜓𝜒𝜒(𝜒, 𝜏) + 𝜓(𝜒, 𝜏)𝜓𝜒(𝜒, 𝜏) = 0, 0 < 𝛼 ≤ 1,    (4.1) 

subject to the initial condition, 

𝜓(𝜒, 0) = 2𝜒.          (4.2) 

Note that, when 𝛼 = 1 the exact solution of Eq (4.1) the integer case is 

𝜓(𝜒, 𝜏) =
2𝜒

1+2𝜏
.          (4.3) 

Solution 4.1. Applying the replacements of Theorem 3.1 on Eq (4.1), we get 

𝐷𝜏
𝛼𝜓(𝜒, 𝜏) ↔ 𝜚𝑛+1(𝜒),          

𝜓𝜒𝜒(𝜒, 𝜏) ⟷ 𝜚𝑛
′′(𝜒),           

and 

𝜓(𝜒, 𝜏)𝜓𝜒(𝜒, 𝜏) ⟷ ∑
𝜚𝑖(𝜒)𝜚𝑛−𝑖

′ (𝜒)Γ(𝑛𝛼+1)

Γ(𝑖𝛼+1)Γ((𝑛−𝑖)𝛼+1)

𝑛
𝑖=0 .        

Substituting the new terms from the replacements into Eq (4.1), we get 

𝜚𝑛+1(𝜒) − 𝜚𝑛
′′(𝜒) + ∑

𝜚𝑖(𝜒)𝜚𝑛−𝑖
′ (𝜒)Γ(𝑛𝛼+1)

Γ(𝑖𝛼+1)Γ((𝑛−𝑖)𝛼+1)

𝑛
𝑖=0 = 0.     (4.4) 

Then the Eq (4.1) can be expressed as 

𝜚𝑛+1 (𝜒) = 𝜚𝑛
′′(𝜒) − ∑

𝜚𝑖(𝜒)𝜚𝑛−𝑖
′ (𝜒)Γ(𝑛𝛼+1)

Γ(𝑖𝛼+1)Γ((𝑛−𝑖)𝛼+1)

𝑛
𝑖=0 .      (4.5) 

From the initial condition in (4.2), 

for 𝑛 = 0, 𝜚1(𝜒) = −4𝜒, 

for 𝑛 = 1, 𝜚2(𝜒) = 16𝜒, 

for 𝑛 = 2, 𝜚3(𝜒) = −16𝜒 (4 +
Γ(2𝛼+1)

Γ2(𝛼+1)
), 

for 𝑛 = 3, 𝜚4(𝜒) = 64𝜒 (4 +
Γ(2𝛼+1)

Γ2(𝛼+1)
+

2Γ(3𝛼+1)

Γ(2𝛼+1)Γ(𝛼+1)
), 
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for 𝑛 = 4,  𝜚5(𝜒) = −256𝜒 (4 +
Γ(2𝛼+1)

Γ2(𝛼+1)
+

2Γ(3𝛼+1)

Γ(2𝛼+1)Γ(𝛼+1)
+

Γ(4𝛼+1)

Γ2(2𝛼+1)
) − 128𝜒 (4 +

Γ(2𝛼+1)

Γ2(𝛼+1)
)

Γ(4𝛼+1)

Γ(3𝛼+1)Γ(𝛼+1)
, 

which are the same results obtained in [26]. DPSM save a lot of time in calculating the coefficients 

and the steps here are written completely. 

Thus, the solution of Eqs (4.1) and (4.2), can be expressed as 

𝜓(𝜒, 𝜏) = 𝜚0(𝜒) +
𝜏𝛼𝜚1(𝜒)

Γ(1+𝛼)
+

𝜏2𝛼𝜚2(𝜒)

Γ(1+2𝛼)
+

𝜏3𝛼𝜚3(𝜒)

Γ(1+3𝛼)
+

𝜏4𝛼𝜚4(𝜒)

Γ(1+4𝛼)
+

𝜏5𝛼𝜚5(𝜒)

Γ(1+5𝛼)
      

= 2𝜒 − 4𝜒
 𝜏𝛼

Γ(1+𝛼)
+ 16𝜒

 𝜏2𝛼

Γ(1+2𝛼)
− 16𝜒 (4 +

Γ(2𝛼+1)

Γ2(𝛼+1)
)

𝜏3𝛼

Γ(1+3𝛼)
     

+64𝜒 (4 +
Γ(2𝛼+1)

Γ2(𝛼+1)
+

2Γ(3𝛼+1)

Γ(2𝛼+1)Γ(𝛼+1)
)

𝜏4𝛼

Γ(1+4𝛼)
         

+ (
−256𝜒 (4 +

Γ(2𝛼+1)

Γ2(𝛼+1)
+

2Γ(3𝛼+1)

Γ(2𝛼+1)Γ(𝛼+1)
+

Γ(4𝛼+1)

Γ2(2𝛼+1)
)

−128𝜒 (4 +
Γ(2𝛼+1)

Γ2(𝛼+1)
)

Γ(4𝛼+1)

Γ(3𝛼+1)Γ(𝛼+1)

)
𝜏5𝛼

Γ(1+5𝛼)
+ ⋯.  (4.6) 

Substituting 𝛼 = 1 we get 

𝜓(𝜒, 𝜏) = 2𝜒 − 4𝜏𝜒 + 8𝜏2𝜒 − 16𝜏3𝜒 + 32𝜏4𝜒 − 64𝜏5𝜒 + 128𝜏6𝜒 − ⋯     

= 2𝜒(1 − 2𝜏 + 4𝜏2 − 8𝜏3 + 16𝜏4 − 32𝜏5𝜒 + 64𝜏6𝜒 − ⋯ ),   (4.7) 

this result agrees, with the Maclaurin series of the exact solution of Eq (4.1) in the integer case, which 

is 

𝜓(𝜒, 𝜏) =
2𝜒

1+2𝜏
.          (4.8) 

The following figures illustrate some simulations of Example 4.1. 

In Figure 1, we sketch the solution of Example 4.1 in 3D space with 𝛼 = 1. We compare the 

exact solution of the integer order case of Example 4.1 with the fifth approximate solution from DPSM 

and sketch the error in Figure 2. Figure 3 present the contour graphs of the solution with different 

values of 𝛼. 

Figure 1. The 3D surface plot of the solution 𝜓(𝜒, 𝜏) for Example 4.1 with 𝛼 = 1, −2 ≤

𝜒 ≤ 2 and −2 ≤ 𝜏 ≤ 2. 



5326 

AIMS Mathematics  Volume 8, Issue 3, 5318–5337. 

Figure 2. The 3D surface plot of (𝑎)  exact solution 𝜓(𝜒, 𝜏) , (𝑏)  the fifth 

approximation solution 𝜓5(𝜒, 𝜏)  and (𝑐)  the absolute error of the exact solution and 

approximation solution, with 𝛼 = 1, 0 ≤ 𝜒 ≤1 and 0 ≤ 𝜏 ≤ 0.2. 

Figure 3. The contour graph of the solution 𝜓(𝜒, 𝜏) of the fractional Burger equation at 

several values of 𝛼 in Example 4.1. 

Example 4.2. [28] Consider the following time-fractional Phi-4 equation of the form: 

𝐷𝜏
2𝛼𝜓(𝜒, 𝜏) = 𝜓𝜒𝜒(𝜒, 𝜏) − 𝜇2𝜓(𝜒, 𝜏) − 𝜆𝜓3(𝜒, 𝜏),     (4.9) 
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with initial conditions, 

𝜓(𝜒, 0) = √
−𝜇2

𝜆
tanh (𝜇𝜒√

1

2(𝜈2−1)
),        (4.10) 

𝐷𝜏
𝛼𝜓(𝜒, 0) = −𝜇𝜈√

−𝜇

2𝜆(𝜈2−1)
sech2 (𝜇𝜒√

1

2(𝜈2−1)
),     (4.11) 

where 𝜈 is the speed of the traveling wave 𝛼𝜖(0,1). The exact solution for 𝛼 = 1 is given by [28], 

𝜓(𝜒, 𝜏) = √
−𝜇2

𝜆
tanh (𝜇(𝜒 − 𝑣𝜏)√

1

2(𝜈2−1)
).      (4.12) 

Solution 4.2. The solution by DPSM can be obtained replacing each part of Eq (4.9) with its suitable 

coefficient of 
𝜏𝑛𝛼

Γ(𝑛𝛼+1)
 as in Theorem 3.1 to get the following: 

𝜚𝑛+2(𝜒) = 𝜚𝑛
′′(𝜒) − 𝜇2𝜚𝑛(𝜒) − 𝜆 ∑

𝜚𝑖(𝜒)𝜚𝑗(𝜒)𝜚𝑘(𝜒)Γ((𝑖+𝑗+𝑘)𝛼+1)

Γ(𝑖𝛼+1)Γ(𝑗𝛼+1)Γ(𝑘𝛼+1)
𝑖,𝑗,𝑘

𝑖+𝑗+𝑘=𝑛
,  (4.13) 

from the initial conditions we have that 𝜚0(𝜒) = 𝜓(𝜒, 0) and 𝜚1(𝜒) = 𝐷𝜏
𝛼𝜓(𝜒, 0). 

For 𝑛 = 0, 

𝜚2(𝜒) = 𝜚0
′′(𝜒) − 𝜇2𝜚0(𝜒) − 𝜆𝜚0

3(𝜒)          

=

𝜆(−
𝜇2

𝜆
)

3 2⁄

𝜈2Sech2(
𝜇√

1

−1+𝜈2𝜒

√2
) Tanh(

𝜇√
1

−1+𝜈2𝜒

√2
)

−1+𝜈2 .     (4.14) 

For 𝑛 = 1, 

𝜚3(𝜒) = 𝜚1
′′(𝜒) − 𝜇2𝜚1(𝜒) − 3𝜆𝜚1(𝜒)𝜚0

2(𝜒)         

=

𝜇3𝜈3(−2+cosh(√2𝜇√
1

−1+𝜈2𝜒))sech4(
𝜇√

1

−1+𝜈2𝜒

√2
)√−

𝜇

𝜆(−1+𝜈2)

√2(−1+𝜈2)
.  (4.15) 

For 𝑛 = 2, 

𝜚4(𝜒) = 𝜚2
′′(𝜒) − 𝜇2 𝜚2(𝜒) − 3𝜆𝜚1

2(𝜒)𝜚0(𝜒) − 3𝜆𝜚2(𝜒)𝜚0
2(𝜒)       

=
1

2(𝜈2−1)2 𝜆(𝜈2−1)
𝜆𝜇𝜈2 (−

𝜇2

𝜆
)

3 2⁄

tanh (
𝜇√

1

𝜈2−1
𝜒

√2
) sech4 (

𝜇√
1

𝜈2−1
𝜒

√2
)    

(2𝜇 𝜆(𝜈2 − 1) (𝜈2 cosh (√2𝜇√
1

𝜈2−1
𝜒) − 2𝜈2 − 3) − 3𝜆(𝜈2 − 1)2).(4.16) 

For 𝑛 = 3, 

𝜚5(𝜒) = 𝜚3
′′(𝜒) − 𝜇2 𝜚3(𝜒) − 𝜆𝜚1

3(𝜒) − 6𝜆𝜚0(𝜒)𝜚1(𝜒)𝜚2(𝜒) − 3𝜆𝜚3(𝜒)𝜚0
3(𝜒)      

=
1

8√2(𝜈2−1)2 𝜇3𝜈3 (−
𝜇

𝜆(𝜈2−1)
)

3 2⁄

[𝑠𝑒𝑐ℎ7 (
𝜇√

1

𝜈2−1
𝜒

√2
) 𝜇 𝜆(𝜈2 − 1) 48𝜈2√−

𝜇2

𝜆
𝑠𝑖𝑛ℎ (

𝜇√
1

𝜈2−1
𝜒

√2
)  

−21𝜈2√−
𝜇2

𝜆
𝑠𝑖𝑛ℎ (

3𝜇√
1

𝜈2−1
𝜒

√2
) + 3𝜈2√−

𝜇2

𝜆
𝑠𝑖𝑛ℎ (

5𝜇√
1

𝜈2−1
𝜒

√2
) − 48√−

𝜇2

𝜆
𝑠𝑖𝑛ℎ (

𝜇√
1

𝜈2−1
𝜒

√2
)  
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+21√−
𝜇2

𝜆
𝑠𝑖𝑛ℎ (

3𝜇√
1

𝜈2−1
𝜒

√2
) − 3√−

𝜇2

𝜆
𝑠𝑖𝑛ℎ (

5𝜇√
1

𝜈2−1
𝜒

√2
) + 𝜈2 (− 𝑐𝑜𝑠ℎ (

5𝜇√
1

𝜈2−1
𝜒

√2
))   

+20(𝜈2 + 3) 𝑐𝑜𝑠ℎ (
𝜇√

1

𝜈2−1
𝜒

√2
) − (11𝜈2 + 39) 𝑐𝑜𝑠ℎ (

3𝜇√
1

𝜈2−1
𝜒

√2
)        

+3 𝑐𝑜𝑠ℎ (
5𝜇√

1

𝜈2−1
𝜒

√2
) + 4𝜆(𝜈2 − 1)2 𝑐𝑜𝑠ℎ (

𝜇√
1

𝜈2−1
𝜒

√2
)],        (4.17) 

and then the 5th truncated series for 𝜓(𝜒, 𝜏) can be expressed as, 

𝜓5(𝜒, 𝜏) = 𝜚0(𝜒) +
𝜚1(𝜒)(𝜏−𝜏0)

𝛤(𝛼+1)
+ ∑

𝜚𝑖(𝜒)(𝑡−𝑡0)𝑖𝛼

𝛤(𝑖𝛼+1)
5
𝑖=2             

= √−
𝜇2

𝜆
𝑡𝑎𝑛ℎ (

𝜇√
1

𝜈2−1
𝜒

√2
) −

𝜇𝜈𝑠𝑒𝑐ℎ2(
𝜇√

1

𝜈2−1
𝜒

√2
)√−

𝜇

𝜆(𝜈2−1)
(𝜏−𝜏0)

√2𝛤(𝛼+1)
          

+

𝜆(−
𝜇2

𝜆
)

3 2⁄

𝜈2𝑠𝑒𝑐ℎ2(
𝜇√

1

𝜈2−1
𝜒

√2
) 𝑡𝑎𝑛ℎ(

𝜇√
1

𝜈2−1
𝜒

√2
)(𝜏−𝜏0)2𝛼

(𝜈2−1) 𝛤(2𝛼+1)
             

−

𝜇3𝜈3(𝑐𝑜𝑠ℎ(√2𝜇√
1

𝜈2−1
𝜒)−2)𝑠𝑒𝑐ℎ4(

𝜇√
1

𝜈2−1
𝜒

√2
)√−

𝜇

𝜆(𝜈2−1)
(𝜏−𝜏0)3𝛼

√2(𝜈2−1) 𝛤(3𝛼+1)
           

+

𝜆𝜇(−
𝜇2

𝜆
)

3 2⁄

𝜈2𝑠𝑒𝑐ℎ4(
𝜇√

1

𝜈2−1
𝜒

√2
) 𝑡𝑎𝑛ℎ(

𝜇√
1

𝜈2−1
𝜒

√2
)(2𝜇(𝑐𝑜𝑠ℎ(√2𝜇√

1

𝜈2−1
𝜒)𝜈2−2𝜈2−3) 𝜆(𝜈2−1)−3𝜆(𝜈2−1)

2
)(𝜏−𝜏0)4𝛼

2(𝜈2−1)2 𝛤(4𝛼+1) 𝜆(𝜈2−1)
  

+
1

8√2(𝜈2−1)2 𝛤(5𝛼+1)
𝜇3𝜈3𝑠𝑒𝑐ℎ7 (

𝜇√
1

𝜈2−1
𝜒

√2
) (−

𝜇

𝜆(𝜈2−1)
)

3 2⁄

[4𝜆 𝑐𝑜𝑠ℎ (
𝜇√

1

𝜈2−1
𝜒

√2
) (𝜈2 − 1)2    

+𝜇 [− 𝑐𝑜𝑠ℎ (
5𝜇√

1

𝜈2−1
𝜒

√2
) 𝜈2 + 48√−

𝜇2

𝜆
𝑠𝑖𝑛ℎ (

𝜇√
1

𝜈2−1
𝜒

√2
) 𝜈2 − 21√−

𝜇2

𝜆
𝑠𝑖𝑛ℎ (

3𝜇√
1

𝜈2−1
𝜒

√2
) 𝜈2   

+3√−
𝜇2

𝜆
𝑠𝑖𝑛ℎ (

5𝜇√
1

𝜈2−1
𝜒

√2
) 𝜈2 + 20(𝜈2 + 3) 𝑐𝑜𝑠ℎ (

𝜇√
1

𝜈2−1
𝜒

√2
) − (11𝜈2 + 39) 𝑐𝑜𝑠ℎ (

3𝜇√
1

𝜈2−1
𝜒

√2
)  

+3 𝑐𝑜𝑠ℎ (
5𝜇√

1

𝜈2−1
𝜒 

√2
) − 48√−

𝜇2

𝜆
𝑠𝑖𝑛ℎ (

𝜇√
1

𝜈2−1
𝜒

√2
) + 21√−

𝜇2

𝜆
𝑠𝑖𝑛ℎ (

3𝜇√
1

𝜈2−1
𝜒

√2
)      

−3√−
𝜇2

𝜆
𝑠𝑖𝑛ℎ (

5𝜇√
1

𝜈2−1
𝜒

√2
)] 𝜆(𝜈2 − 1)] (𝜏 − 𝜏0)5𝛼.          (4.18) 

We mention, that it's hard to find the fifth term by other analytical methods. By DPSM we can 

get many terms of the series solution by computer software. 
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In the following Figures 4 and 5, we sketch the exact solution of Example 4.2 in the integer 

case and compare it with approximate solution of fifth order in 2D and 3D. Also, we sketch the 

application solution in the 2D plane with different values of 𝛼 to show how the approximation 

solution converges to the exact solution of integer order. 

Figure 4. The 3D surface plot of (𝑎)  exact solution 𝜓(𝜒, 𝜏) , (𝑏)  the fifth 

approximation solution 𝜓5(𝜒, 𝜏)  and (𝑐)  the absolute error of the exact solution and 

approximation solution, for time-fractional Phi-4 at 𝜏 ∈ (0,1) , 𝜒 ∈ (−10,10) , 𝛼 =

1, 𝜇 = 1, 𝜆 = −1, 𝜐 = 3. 

Figure 5. The 2D plot of (𝑎)  approximation solution 𝜓5(𝜒, 𝜏)  and exact solution 

𝜓(𝜒, 𝜏) for time-fractional Phi-4 at 𝜏 ∈ (0,1) , 𝜒 =  0.6,  𝛼 = 1, 𝜇 = 1, 𝜆 = −1, 𝜐 = 3 , 

(𝑏) the DPSM solutions of different values of 𝛼 in Example 4.2. 

Example 4.3. [22] The following form is considered: 

𝐷𝜏
𝛼𝜓(𝜒, 𝜏) + 𝜑𝜒𝜒(𝜒, 𝜏) + 2(𝜓2(𝜒, 𝜏) + 𝜑2(𝜒, 𝜏))𝜑(𝜒, 𝜏) = 0,   (4.19) 

𝐷𝜏
𝛼𝜑(𝜒, 𝜏) − 𝜓𝜒𝜒(𝜒, 𝜏) − 2(𝜓2(𝜒, 𝜏) + 𝜑2(𝜒, 𝜏))𝜓(𝜒, 𝜏) = 0,   (4.20) 

with initial conditions, 
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𝜓(𝜒, 0) = cos(𝜒),         (4.21) 

𝜑(𝜒, 0) = sin(𝜒).         (4.22) 

To find the general form of solutions by DPSM just do the replacements in Theorem 3.1 which 

could be directly written by, 

𝜚𝑛+1(𝜒) = −𝜌𝑛
′′(𝜒) − 2 ∑

(𝜚𝑖(𝜒)𝜚𝑗(𝜒)𝜌𝑘(𝜒)+𝜌𝑖(𝜒)𝜌𝑗(𝜒)𝜌𝑘(𝜒))𝛤(𝑛𝛼+1)

Γ(𝑖𝛼+1)Γ(𝑗𝛼+1)Γ(𝑘𝛼+1)𝑖,𝑗,𝑘
𝑖+𝑗+𝑘=𝑛

,  (4.23) 

𝜌𝑛+1(𝜒) = 𝜚𝑛
′′(𝜒) + 2 ∑

(𝜚𝑖(𝜒)𝜚𝑗(𝜒)𝜚𝑘(𝜒)+𝜌𝑖(𝜒)𝜌𝑗(𝜒)𝜚𝑘(𝜒))Γ(𝑛𝛼+1)

Γ(𝑖𝛼+1)Γ(𝑗𝛼+1)Γ(𝑘𝛼+1)𝑖,𝑗,𝑘
𝑖+𝑗+𝑘=𝑛

.   (4.24) 

For 𝑛 = 0, 

𝜚1(𝜒) = −𝛿𝜌0
′′(𝜒) − 𝛾(𝜚0(𝜒)𝜚0(𝜒)𝜌0(𝜒) + 𝜌0(𝜒)𝜌0(𝜒)𝜌0(𝜒)) −  𝜙(𝜒)𝜌0(𝜒) = − sin 𝑥,  

𝜌1(𝜒) = 𝛿𝜚0
′′(𝜒) + 𝛾(𝜚0(𝜒)𝜚0(𝜒)𝜚0(𝜒) + 𝜌0(𝜒)𝜌0(𝜒)𝜚0(𝜒)) +  𝜙(𝜒)𝜚0(𝜒) = cos 𝑥.   

For 𝑛 = 1, 

𝜚2(𝜒) = − cos 𝑥,           

𝜌2(𝜒) = − sin 𝑥.           

For 𝑛 = 2, 

𝜚3(𝜒) = (5 − 2
Γ(1+2𝛼)

Γ(1+𝛼)2) sin 𝑥,          

𝜌3(𝜒) = − (5 − 2
Γ(1+2𝛼)

Γ(1+𝛼)2) cos 𝑥.         

For 𝑛 = 3, 

𝜚4(𝜒) = (5 − 2
Γ(1+2𝛼)

Γ(1+𝛼)2
+

4Γ(1+3𝛼)

Γ(1+𝛼)Γ(1+2𝛼)
−

2Γ(1+3𝛼)

Γ(1+𝛼)3
) cos 𝑥,      

𝜌4(𝜒) = (5 − 2
Γ(1+2𝛼)

Γ(1+𝛼)2 +
4Γ(1+3𝛼)

Γ(1+𝛼)Γ(1+2𝛼)
−

2Γ(1+3𝛼)

Γ(1+𝛼)3 ) sin 𝑥,      

which is the same general form of the solutions obtained in [22]. 

Example 4.4. [37] Consider the following time-fractional 3-dimentional Navier Stokes equation: 

𝐷𝜏
𝛼𝜓1(𝜒, 𝜍, 𝜁, 𝜏) + 𝜓1(𝜒, 𝜍, 𝜁, 𝜏)

𝜕𝜓1(𝜒,𝜍,𝜁,𝜏)

𝜕𝜒
+ 𝜓2(𝜒, 𝜍, 𝜁, 𝜏)

𝜕𝜓1(𝜒,𝜍,𝜁,𝜏)

𝜕𝜍
+ 𝜓3(𝜒, 𝜍, 𝜁, 𝜏)

𝜕𝜓1(𝜒,𝜍,𝜁,𝜏)

𝜕𝜁
  

= 𝜐 (
𝜕2𝜓1(𝜒,𝜍,𝜁,𝜏)

𝜕𝜒2 +
𝜕2𝜓1(𝜒,𝜍,𝜁,𝜏)

𝜕𝜍2 +
𝜕2𝜓1(𝜒,𝜍,𝜁,𝜏)

𝜕𝜁2 ),           (4.25) 
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𝐷𝜏
𝛼𝜓2(𝜒, 𝜍, 𝜁, 𝜏) + 𝜓1(𝜒, 𝜍, 𝜁, 𝜏)

𝜕𝜓2(𝜒,𝜍,𝜁,𝜏)

𝜕𝜒
+ 𝜓2(𝜒, 𝜍, 𝜁, 𝜏)

𝜕𝜓2(𝜒,𝜍,𝜁,𝜏)

𝜕𝜍
+ 𝜓3(𝜒, 𝜍, 𝜁, 𝜏)

𝜕𝜓2(𝜒,𝜍,𝜁,𝜏)

𝜕𝜁
  

= 𝜐 (
𝜕2𝜓2(𝜒,𝜍,𝜁,𝜏)

𝜕𝜒2
+

𝜕2𝜓2(𝜒,𝜍,𝜁,𝜏)

𝜕𝜍2
+

𝜕2𝜓2(𝜒,𝜍,𝜁,𝜏)

𝜕𝜁2
),           (4.26) 

𝐷𝜏
𝛼𝜓3(𝜒, 𝜍, 𝜁, 𝜏) + 𝜓1(𝜒, 𝜍, 𝜁, 𝜏)

𝜕𝜓3(𝜒,𝜍,𝜁,𝜏)

𝜕𝜒
+ 𝜓2(𝜒, 𝜍, 𝜁, 𝜏)

𝜕𝜓3(𝜒,𝜍,𝜁,𝜏)

𝜕𝜍
+ 𝜓3(𝜒, 𝜍, 𝜁, 𝜏)

𝜕𝜓3(𝜒,𝜍,𝜁,𝜏)

𝜕𝜁
  

= 𝜐 (
𝜕2𝜓3(𝜒,𝜍,𝜁,𝜏)

𝜕𝜒2 +
𝜕2𝜓3(𝜒,𝜍,𝜁,𝜏)

𝜕𝜍2 +
𝜕2𝜓3(𝜒,𝜍,𝜁,𝜏)

𝜕𝜁2 ),           (4.27) 

where 𝜑 ∈ ℝ, and with the ICs, 

𝜓1(𝜒, 𝜍, 𝜁, 0) = −0.5𝜒 + 𝜍 + 𝜁,       (4.28) 

𝜓2(𝜒, 𝜍, 𝜁, 0) = 𝜒 − 0.5𝜍 + 𝜁,       (4.29) 

𝜓3(𝜒, 𝜍, 𝜁, 0) = 𝜒 + 𝜍 − 0.5𝜁.       (4.30) 

The exact solution, when 𝛼 = 1, of the integer case is 

𝜓1(𝜒, 𝜍, 𝜁, 𝜏) =
−0.5𝜒+𝜍+𝜁−2.25 𝜒𝜏

1−2.25 𝜏2
,         

𝜓2(𝜒, 𝜍, 𝜁, 𝜏) =
𝜒−0.5𝜍+𝜁−2.25𝜍𝜏

1−2.25 𝜏2 ,         

𝜓3(𝜒, 𝜍, 𝜁, 𝜏) =
𝜒+𝜍−0.5𝜁−2.25𝜁𝜏

1−2.25 𝜏2 .         

Solution 4.3. The solution by DPSM can be obtained by replacing each part of Eqs (4.25)–(4.27) with 

its suitable coefficient of 
𝜏𝑛𝛼

Γ(𝑛𝛼+1)
 as in Theorem 3.1 to get the following relations: 

𝜚𝑛+1(𝜒, 𝜍, 𝜁) = − ∑
(𝜚𝑖(𝜒,𝜍,𝜁)

𝜕𝜚𝑛−𝑖(𝜒,𝜍,𝜁)

𝜕𝜒
+𝜌𝑖(𝜒,𝜍,𝜁)

𝜕𝜚𝑛−𝑖(𝜒,𝜍,𝜁)

𝜕𝜍
+𝜎𝑖(𝜒,𝜍,𝜁)

𝜕𝜚𝑛−𝑖(𝜒,𝜍,𝜁)

𝜕𝜁
)𝛤(𝑛𝛼+1)

Γ(𝑖𝛼+1)Γ((𝑛−𝑖)𝛼+1)

𝑛
𝑖=0    

+𝜐 (
𝜕2𝜚𝑛(𝜒,𝜍,𝜁)

𝜕𝜒2
+

𝜕2𝜚𝑛(𝜒,𝜍,𝜁)

𝜕𝜍2
+

𝜕2𝜚𝑛(𝜒,𝜍,𝜁)

𝜕𝜁2
),          

𝜌𝑛+1(𝜒, 𝜍, 𝜁) = − ∑
(𝜚𝑖(𝜒,𝜍,𝜁)

𝜕𝜌𝑛−𝑖(𝜒,𝜍,𝜁)

𝜕𝜒
+𝜌𝑖

𝜕𝜌𝑛−𝑖(𝜒,𝜍,𝜁)

𝜍
+𝜎𝑖

𝜕𝜌𝑛−𝑖(𝜒,𝜍,𝜁)

𝜕𝜁
)𝛤(𝑛𝛼+1)

Γ(𝑖𝛼+1)Γ((𝑛−𝑖)𝛼+1)

𝑛
𝑖=0       

+𝜐 (
𝜕2𝜌𝑛(𝜒,𝜍,𝜁)

𝜕𝜒2 +
𝜕2𝜌𝑛(𝜒,𝜍,𝜁)

𝜕𝜍2 +
𝜕2𝜌𝑛(𝜒,𝜍,𝜁)

𝜕𝜁2 ),          

𝜎𝑛+1(𝜒, 𝜍, 𝜁) = − ∑
(𝜚𝑖(𝜒,𝜍,𝜁)

𝜕𝜎𝑛−𝑖(𝜒,𝜍,𝜁)

𝜕𝜒
+𝜎𝑖

𝜕𝜎𝑛−𝑖(𝜒,𝜍,𝜁)

𝜕𝜍
+𝜎𝑖

𝜕𝜎𝑛−𝑖(𝜒,𝜍,𝜁)

𝜕𝜁
)𝛤(𝑛𝛼+1)

Γ(𝑖𝛼+1)Γ((𝑛−𝑖)𝛼+1)

𝑛
𝑖=0       

+𝜐 (
𝜕2𝜎𝑛(𝜒,𝜍,𝜁)

𝜕𝜒2 +
𝜕2𝜎𝑛(𝜒,𝜍,𝜁)

𝜕𝜍2 +
𝜕2𝜎𝑛

𝜕𝜁2 ).           

For 𝑛 = 0, 
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𝜚1 = −𝜚0
𝜕𝜚0

𝜕𝜒
− 𝜌0

𝜕𝜚0

𝜕𝜍
− 𝜎0

𝜕𝜚0

𝜕𝜁
+ 𝜐 (

𝜕2𝜚0

𝜕𝜒2 +
𝜕2𝜚0

𝜕𝜍2 +
𝜕2𝜚0

𝜕𝜁2 )         

= −(−0.5𝜒 + 𝜍 + 𝜁)(−0.5) − (𝜒 − 0.5𝜍 + 𝜁)(1) − (𝜒 + 𝜍 − 0.5𝜁)(1) = −2.25𝜒,  

𝜌1 = −𝜚0
𝜕𝜌0

𝜕𝜒
− 𝜌0

𝜕𝜌0

𝜕𝜍
− 𝜎0

𝜕𝜌0

𝜕𝜁
+ 𝜐 (

𝜕2𝜌0

𝜕𝜒2 +
𝜕2𝜌0

𝜕𝜍2 +
𝜕2𝜌0

𝜕𝜁2 )         

= −(−0.5𝜒 + 𝜍 + 𝜁)(1) − (𝜒 − 0.5𝜍 + 𝜁)(−0.5) − (𝜒 + 𝜍 − 0.5𝜁)(1) = −2.25𝜍,  

𝜎1 = −𝜚0
𝜕𝜎0

𝜕𝜒
− 𝜌0

𝜕𝜎0

𝜕𝜍
− 𝜎0

𝜕𝜎0

𝜕𝜁
+ 𝜐 (

𝜕2𝜎0

𝜕𝜒2 +
𝜕2𝜎0

𝜕𝜍2 +
𝜕2𝜎0

𝜕𝜁2 )         

= −(−0.5𝜒 + 𝜍 + 𝜁)(1) − (𝜒 − 0.5𝜍 + 𝜁)(1) − (𝜒 + 𝜍 − 0.5𝜁)(−0.5) = −2.25𝜁.  

For 𝑛 = 1, 

𝜚2 = −𝜚1
𝜕𝜚0

𝜕𝜒
− 𝜚0

𝜕𝜚1

𝜕𝜒
− 𝜌1

𝜕𝜚0

𝜕𝜍
− 𝜌0

𝜕𝜚1

𝜕𝜍
− 𝜎1

𝜕𝜚0

𝜕𝜁
− 𝜎0

𝜕𝜚1

𝜕𝜁
+ 𝜐 (

𝜕2𝜚1

𝜕𝜒2 +
𝜕2𝜚1

𝜕𝜍2 +
𝜕2𝜚1

𝜕𝜁2 )   

= −(−2.25𝜒)(−0.5) − (−0.5𝜒 + 𝜍 + 𝜁)(−2.25) − (−2.25𝜍)(1) − (−2.25𝜁)(1)   

= −2(0.5)(2.25)𝜒 + 2(2.25)𝜍 + 2(2.25)𝜁 = 2(2.25)(−0.5𝜒 + 𝜍 + 𝜁) = 4.5𝜚0,   

𝜌2 = −𝜚1
𝜕𝜌0

𝜕𝜒
− 𝜚0

𝜕𝜌1

𝜕𝜒
− 𝜌1

𝜕𝜌0

𝜕𝜍
− 𝜌0

𝜕𝜌1

𝜕𝜍
− 𝜎1

𝜕𝜌0

𝜕𝜁
− 𝜎0

𝜕𝜌1

𝜕𝜁
+ 𝜐 (

𝜕2𝜌1

𝜕𝜒2 +
𝜕2𝜌1

𝜕𝜍2 +
𝜕2𝜌1

𝜕𝜁2 )   

= 2(2.25)𝜒 − 2(0.5)(2.25)𝜍 + 2(2.25)𝜁 = 2(2.25)(𝜒 − 0.5𝜍 + 𝜁) = 4.5𝜌0,    

𝜎2 = −𝜚1
𝜕𝜎0

𝜕𝜒
− 𝜚0

𝜕𝜎1

𝜕𝜒
− 𝜌1

𝜕𝜎0

𝜕𝜍
− 𝜌0

𝜕𝜎1

𝜕𝜍
− 𝜎1

𝜕𝜎0

𝜕𝜁
− 𝜎0

𝜕𝜎1

𝜕𝜁
+ 𝜐 (

𝜕2𝜎1

𝜕𝜒2 +
𝜕2𝜎1

𝜕𝜍2 +
𝜕2𝜎1

𝜕𝜁2 )   

= 2(2.25)𝜒 + 2(2.25)𝜍 − 2(0.5)(2.25)𝜁 = 2(2.25)(𝜒 + 𝜍 − 0.5𝜁) = 4.5𝜎0,    

For 𝑛 = 2, 

𝜚3 = − (20.25 + 5.0625
𝛤(2𝛼+1)

Γ2(𝛼+1)
) 𝜒,         

𝜌3 = − (20.25 + 5.0625
𝛤(2𝛼+1)

Γ2(𝛼+1)
) 𝜍,         

𝜎3 = − (20.25 + 5.0625
Γ(2𝛼+1)

Γ2(𝛼+1)
) 𝜁.         

For 𝑛 = 3, 

𝜚4 = (40.5 + 10.125
Γ(2𝛼+1)

Γ2(𝛼+1)
+

20.25Γ(3𝛼+1)

Γ(2𝛼+1)Γ(𝛼+1)
) (−0.5𝜒 + 𝜍 + 𝜁),     

𝜌4 = (40.5 + 10.125
Γ(2𝛼+1)

Γ2(𝛼+1)
+

20.25Γ(3𝛼+1)

Γ(2𝛼+1)Γ(𝛼+1)
) (𝜒 − 0.5𝜍 + 𝜁),      

𝜎4 = (40.5 + 10.125
Γ(2𝛼+1)

Γ2(𝛼+1)
+

20.25 Γ(3𝛼+1)

Γ(2𝛼+1)Γ(𝛼+1)
) (𝜒 + 𝜍 − 0.5𝜁).      

So, the solution of systems (4.25)–(4.27) and (4.28)–(4.30) has the following series form: 

𝜓1(𝜒, 𝜍, 𝜁, 𝜏) = −0.5𝜒 + 𝜍 + 𝜁 −
2.25

𝛤(1+𝛼)
𝜒 𝜏𝛼             

+
2(2.25)

𝛤(1+2𝛼)
(−0.5𝜒 + 𝜍 + 𝜁)𝜏2𝛼 −

(2.25)2

𝛤(1+3𝛼)
(4 +

𝛤(1+2𝛼)

𝛤2(1+𝛼)
) 𝜒 𝜏3𝛼      
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+
(2.25)2

𝛤(1+4𝛼)
(8 +

2𝛤(1+2𝛼)

𝛤2(1+𝛼)
+

4𝛤(1+3𝛼)

𝛤(1+𝛼)𝛤(1+2𝛼)
 ) (−0.5𝜒 + 𝜍 + 𝜁)𝜏4𝛼 + ⋯ , (4.31) 

𝜓2(𝜒, 𝜍, 𝜁, 𝜏) = 𝜒 − 0.5𝜍 + 𝜁 −
2.25

𝛤(1+𝛼)
𝜍 𝜏𝛼            

+
2(2.25)

𝛤(1+2𝛼)
(𝜒 − 0.5𝜍 + 𝜁)𝜏2𝛼 −

(2.25)2

𝛤(1+3𝛼)
(4 +

𝛤(1+2𝛼)

𝛤2(1+𝛼)
) 𝜍 𝜏3𝛼     

+
(2.25)2

𝛤(1+4𝛼)
(8 +

2𝛤(1+2𝛼)

𝛤2(1+𝛼)
+

4𝛤(1+3𝛼)

𝛤(1+𝛼)𝛤(1+2𝛼)
 ) (𝜒 − 0.5𝜍 + 𝜁)𝜏4𝛼 + ⋯, (4.32) 

𝜓3(𝜒, 𝜍, 𝜁, 𝜏) = 𝜒 + 𝜍 − 0.5𝜁 −
2.25

𝛤(1+𝛼)
𝜁 𝜏𝛼            

+
2(2.25)

𝛤(1+2𝛼)
(𝜒 + 𝜍 − 0.5𝜁)𝜏2𝛼 −

(2.25)2

𝛤(1+3𝛼)
(4 +

𝛤(1+2𝛼)

𝛤2(1+𝛼)
) 𝜁 𝜏3𝛼     

+
(2.25)2

𝛤(1+4𝛼)
(8 +

2𝛤(1+2𝛼)

𝛤2(1+𝛼)
+

4𝛤(1+3𝛼)

𝛤(1+𝛼)𝛤(1+2𝛼)
 ) (𝜒 + 𝜍 − 0.5𝜁)𝜏4𝛼 + ⋯. (4.33) 

The following figure (Figure 6) illustrates the graph of the exact solution (𝛼 = 1) of Example 4.3 and 

the 10th approximation solutions. 

Figure 6. The 3D surface plot of the 10th approximate solutions of 𝜓1, 𝜓2, and 𝜓3 at 

various values of 𝛼 and 𝜏 = 0.5 & 𝜁 = 3 for the problem in Example 4.3. (a) 𝛼 = 0.6, 

(b) 𝛼 = 0.8, (c) 𝛼 = 1, (d) 𝛼 = 1 (exact solutions). 
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5. Conclusions 

In several types of science like mathematics, physics, engineering statics, etc., there are massive 

numbers of equations and systems that need solutions. Mathematicians created and developed many 

analytical and numerical methods to find the solution accurately or approximately. Power series 

methods like residual power series, Laplace residual power series, and many others give exact 

solutions or sometimes provide approximate solutions that converge to the exact one. However, these 

methods require a lot of steps each time, especially for solving nonlinear equations and systems. In 

this paper, a new technique has been presented for the first time called the DPSM for solving TFPDEs. 

In the following, we mention some remarks on the new method 

1) DPSM introduces an analytical series solution depending on the idea of power series 

representation. 

2) The method is simple and applicable in presenting series solutions. 

3) DPSM can obtain many terms of the series solution. 

4) The proposed method, need no discretization, transformation differentiation or taking limit. 

5) All numerical results obtained in this article by Mathematica 3.12. 

This method is a simple method among all analytical methods. It depends on the idea of the power 

series expansion for solving time-fractional differential equations or systems. In the future, we attend 

to expand the replacements and solve integral equations. 
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