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1. Introduction

For r0 ∈ R consider the function f from {r0, r0 + 1, r0 + 2, . . . } to R. Recall that the nabla first order
difference operator is defined by

(∇ f )(t) := f (t) − f (t − 1), t ∈ {r0 + 1, a + 2, . . . }.

It is then almost a triviality that the following implication holds:

f is increasing on {r0, r0 + 1, r0 + 2, . . . } ⇐⇒ (∇ f )(t) ≧ 0 for t ∈ {r0 + 1, r0 + 2, . . . }. (1.1)

Consequently, in this instance there exists a clear connection between the sign of the difference and
the monotone behavior (decreasing or increasing) of the function on which the difference acts. Note
that in view of (1.1), there is a relationship between the positivity and monotonicity of the function f
as (∇ f )(t) ≧ 0, we have that f is increasing. Moreover, there is a relationship between the positivity
and convexity of the function f as

(
∇2 f

)
(t) ≧ 0, we have that f is convex. However, there is no such

a relationship between the monotonicity and convexity of a function because monotonicity is defined
based on ∇ whereas convexity is defined based on ∇2. For more details please see the article [1].

In 2007, Atici and Eloe [2–4] as well as the subsequent work of Abdeljawad et al. [5], Abdeljawad
and Atici [6], Abdeljawad and Baleanu [7], Mohammed et al. [8], Chen et al. [9], Ferreira [10],
Holm [11], and Wu and Baleanu [12] employed difference operators to develop the concept of
discrete fractional calculus. In particular, there has been increasing interest in a nonlocal version of
the difference calculus, that is, “discrete fractional calculus”. For this reason and a wealth of
additional information on a variety of nonlocal discrete operators and their properties, we refer to the
great monograph in [13] by Goodrich and Peterson.

A particularly curious and mathematically nontrivial aspect of this theory is that there is not a
clean correlation between the sign of a discrete fractional operator and the monotone (or positive or
convex) behavior of the function on which the operator acts. In fact, as has been shown time and time
again, there is a highly complex and subtle relationship. This mathematically rich behavior was first
documented in the monotonicity case by Dahal and Goodrich [14] in 2014. Since their initial work,
numerous other studies have been published, including those by Atici and Uyanik [15], Jia et al. [16],
Bravo et al. [17, 18], Dahal and Goodrich [19], Ahrendt et al. [20], Erbe et al. [21], Goodrich [22, 23],
Goodrich et al. [24], Goodrich and Lizama [25,26], Goodrich et al. [27], Goodrich and Muellner [28],
Mohammed et al. [29, 30], Liu et al. [31] and Guirao et al. [32]. These papers investigate a variety of
questions surrounding the qualitative properties inferred from the sign of a fractional difference acting
on a function.

Above and beyond the pure mathematical interest in this type of problem, there exists a compelling
practical reason to care. In the application of both the continuous and the discrete calculus, the ability
of the difference (or derivative) to detect when a function is increasing or decreasing is of paramount
importance. Specifically, discrete operators have favorable shape-preserving properties and studying
them is crucial for applications in monotonicity analysis. Thus, clarifying this aspect of the theory of
fractional difference operators is important. This is particularly the case since there have been some
initial attempts to apply discrete fractional calculus to biological modeling; see, for example, Atici and
Şengül in [33], Atici et al. in [34], and Atici et al. in [35].
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The aim of the present work is to analyse the discrete nabla fractional difference operators of
Riemann-Liouville type and to obtain the monotone increasing and decreasing as outcome of the
analyses. These allow us to establish the relative minimum and maximum of the functions at certain
points. Furthermore, we will modify the main lemmas by finding a new stronger and simpler
condition, and then we will rearrange the relative minimum and maximum results by considering the
new lemmas. Later, we will discuss our main results with two examples presented via tables and
figures.

The layout of this paper is as follows. We recall in Section 2 the main principles to make the paper
self-contained and we also divide the main results of this article into two subsections. Subsection 2.1
explores the monotone decreasing and relative minimum of the discrete operators and studies main
lemmas. In Subsection 2.2 we examine the monotone increasing and relative maximum of the discrete
operators. We discuss the application of the main lemmas in Section 3 including two examples. Our
final section is dedicated to the concluding remarks on the main results, and we state an open problem
for the interested readers.

2. Preliminaries and main results

Let us start with recalling some definitions and facts whose applications and further detailed
accounts can be found in [13, 31, 36, 37].

Let f be a discrete function on Nr0 B {r0, r0 + 1, r0 + 2, . . .}, 0 < α be the order of discrete nabla
operators, and a be a real number. Then, the nabla fractional sum operator is defined by the following
identity:

(
r0
∇−α f

)
(t) :=

t∑
r=r0+1

(
t − r + 1

)α−1

Γ(α)
f (r), for t ∈ Nr0+1, (2.1)

respectively, where tα is defined by

tα := Γ (t + α) /Γ (t) ,

for those values of t and α such that Γ (t + α) /Γ (t) is well defined.
Furthermore, for ℓ − 1 < α < ℓ, the nabla fractional differences of Riemann-Liouville type of order

α can be expressed as follows (see [31, Lemma 2.1]):

(
RL
r0
∇α f

)
(t) =

1
Γ(−α)

t∑
r=r0+1

(t − r + 1)−α−1 f (r), (2.2)

for t ∈ Nr0+ℓ.
Next, we have our main results for the monotone decreasing and monotone increasing functions.

2.1. Decreasing part

Lemma 2.1. For 0 < α < 1 and a nonnegative function f on Nr0 , let the following conditions hold:

(i)
(

RL
r0
∇α f

)
(r0 + 2) ≤ 0,
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(ii)
(

RL
r0
∇α f

)
(r0 + t) ≤

 t−2∑
k=1

Γ(k + 1 − α)
Γ(−α)(k + 1)!

 f (r0 + 1), t ∈ N3.

Then,
(
∇ f

)
(t) ≤ 0 for each t ∈ Nr0+2, i.e., f is decreasing on Nr0+2.

Proof. Firstly, we see that
∑t−2

k=1
Γ(k+1−α)
Γ(−α)(k+1)! is negative for each t ∈ N3, as follows:

Γ(k + 1 − α)
(k + 1)!Γ(−α)

=

>0︷ ︸︸ ︷
(k − α)

>0︷       ︸︸       ︷
(k − 1 − α) · · ·

>0︷ ︸︸ ︷
(1 − α)

<0︷︸︸︷
(−α)

(k + 1)!
< 0. (2.3)

Compute the first condition to have

(
RL
r0
∇α f

)
(r0 + 2) =

1
Γ(−α)

r0+2∑
r=r0+1

(r0 + 3 − r)−α−1 f (r)

= f (r0 + 2) − α f (r0 + 1).

From this we conclude that(
RL
r0
∇α f

)
(r0 + 2) −

(
∇ f

)
(r0 + 2) = (1 − α) f (r0 + 1) ≥ 0,

and this leads to (
∇ f

)
(r0 + 2) ≤

(
RL
r0
∇α f

)
(r0 + 2)

by
≤

condition (i)
0. (2.4)

Assume that (∇ f
)
(r0 + t) ≤ 0 for all t ∈ NK0+1

2 , when K0 ∈ N1. Then we are planning to show that(
∇ f

)
(r0 + K0 + 2) ≤ 0. To do this, we consider the definition (2.2) to have

(
RL
r0
∇α f

)
(r0 + K0 + 2) =

1
Γ(−α)

r0+K0+2∑
r=r0+1

(r0 + K0 + 3 − r)−α−1 f (r)

=
Γ(K0 + 1 − α)
Γ(−α)(K0 + 1)!

f (r0 + 1) +
Γ(K0 − α)
Γ(−α)K0!

f (r0 + 2)

+ · · · +
(−α)(1 − α)

2
f (r0 + K0) + (−α) f (r0 + K0 + 1) + f (r0 + K0 + 2).

It follows that (
RL
r0
∇α f

)
(r0 + K0 + 2) −

(
∇ f

)
(r0 + K0 + 2)

=
Γ(K0 + 1 − α)
Γ(−α)(K0 + 1)!

f (r0 + 1) +
Γ(K0 − α)
Γ(−α)K0!

f (r0 + 2) + · · ·

+
(−α)(1 − α)

2
f (r0 + K0) + (1 − α) f (r0 + K0 + 1), (2.5)

and consequently,
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(
∇ f

)
(r0 + K0 + 2) ≤

(
RL
r0
∇α f

)
(r0 + K0 + 2) −

Γ(K0 + 1 − α)
Γ(−α)(K0 + 1)!

f (r0 + 1) −
Γ(K0 − α)
Γ(−α)K0!

f (r0 + 1) + · · ·

−
(−α)(1 − α)

2
f (r0 + 1)−(1 − α) f (r0 + 1)︸                ︷︷                ︸

≤0

≤
(

RL
r0
∇α f

)
(r0 + K0 + 2) −

(K0+2)−2∑
k=1

Γ(k + 1 − α)
Γ(−α)(k + 1)!

 f (r0 + 1)

≤0, (2.6)

where we have used condition (ii), (2.3), t = K0 + 2 ∈ N3, and the hypothesis nonnegativity of f :

f (r0 + K0 + 1) ≤ f (r0 + K0) ≤ · · · ≤ f (r0 + 1).

Hence, the inequality (2.4) combined with (2.6) gives us the required result. □

As a consequence of Lemma 2.1, we obtain the following relativity (min) result.

Theorem 2.1. For 0 < α < 1 and a nonnegative function f on Nr0 , let the following conditions hold:

(i)
(

RL
r0
∇α f

)
(r0 + 2) ≤ 0,

(ii)
(

RL
r0
∇α f

)
(r0 + t) ≤

 t−2∑
k=1

Γ(k + 1 − α)
Γ(−α)(k + 1)!

 f (r0 + 1), t ∈ NK0
3 ,

(iii)
(

RL
r0
∇α f

)
(r0 + K0 + 2) ≥ (1 − α) f (r0 + K0 + 1),

for a fixed K0 ∈ N4. Then f is a relative minimum at r0 + K0 + 1.

Proof. The conditions (i) and (ii) tell us that
(
∇ f

)
(t) ≤ 0 for each t ∈ Nr0+K0+1

r0+2 when K0 ≥ 1, as
according to Lemma 2.1. Particularly, we have

(
∇ f

)
(r0 + K0 + 1) ≤ 0. To achieve our required result,

we claim that
(
∇ f

)
(r0 + K0 + 2) ≥ 0, i.e., f is a relative minimum at r0 + K0 + 1. Rearrange (2.5) again

to have (
∇ f

)
(r0 + K0 + 2) −

(
RL
r0
∇α f

)
(r0 + K0 + 2)

= −
Γ(K0 + 1 − α)
Γ(−α)(K0 + 1)!

f (r0 + 1) −
Γ(K0 − α)
Γ(−α)K0!

f (r0 + 2) − · · ·

−
(−α)(1 − α)

2
f (r0 + K0) − (1 − α) f (r0 + K0 + 1)

≥ − (1 − α) f (r0 + K0 + 1), (2.7)

where we have used

−
Γ(K0 + 1 − α)
Γ(−α)(K0 + 1)!

f (r0 + 1) −
Γ(K0 − α)
Γ(−α)K0!

f (r0 + 2) − · · · −
(−α)(1 − α)

2
f (r0 + K0) ≥ 0,

by using (2.3) and the nonnegativity of f . In other words, we can write (2.7) as follows:(
∇ f

)
(r0 + K0 + 2) ≥

(
RL
r0
∇α f

)
(r0 + K0 + 2) − (1 − α) f (r0 + K0 + 1)

by
≥

(iii)
0,

which is the result as claimed. Hence, f is a relative minimum at r0 + K0 + 1. □
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We always look for a stronger condition than the existing one. For this reason, in the lemma below,
we use another condition instead of condition (ii) of Lemma 2.1, which is simpler than (ii) as well.

Lemma 2.2. Assume that 0 < α < 1 and f is a nonnegative function on Nr0 . Then, condition (ii) of
Lemma 2.1 leads to the following new condition:(

RL
r0
∇α f

)
(r0 + t) ≤

(−α)(1 − α)
2

(t − 2) f (r0 + 1),

for t ∈ N3.

Proof. First, for k = 2, we see that Γ(k+1−α)
Γ(−α)(k+1)! leads to

Γ(3 − α)
Γ(−α)(3!)

=
(−α)(1 − α)(2 − α)

6
>

(−α)(1 − α)
2

,

for α > −1. We proceed with it to show that

0 >
Γ(k + 1 − α)
Γ(−α)(k + 1)!

>
(−α)(1 − α)

2
, (2.8)

for all k ≥ 2. The first inequality is clear given (2.3). For the second one, we assume that

Γ(k0 + 1 − α)
Γ(−α)(k0 + 1)!

>
(−α)(1 − α)

2
,

for all k0 ≥ 2. Then, we see that

Γ(k0 + 2 − α)
Γ(−α)(k0 + 2)!

>
k0 + 1 − α

k0 + 2
·
Γ(k0 + 1 − α)
Γ(−α)(k0 + 1)!

≥
k0 + 1 − α

k0 + 2︸      ︷︷      ︸
0<↑<1

·
(−α)(1 − α)

2︸         ︷︷         ︸
<0

>
(−α)(1 − α)

2
.

Therefore, the inequalities expressed in (2.8) are valid for all k ≥ 2 as we claimed. We know that
f (r0 + 1) > 0, and hence,

0 >

 t−2∑
k=1

Γ(k + 1 − α)
Γ(−α)(k + 1)!

 f (r0 + 1)

>

 t−2∑
k=1

(−α)(1 − α)
2

 f (r0 + 1)

=
(−α)(1 − α)

2
(t − 2) f (r0 + 1).

Thus, we can deduce that if(
RL
r0
∇α f

)
(r0 + t) ≤

(−α)(1 − α)
2

(t − 2) f (r0 + 1), t ∈ N3,

then, condition (ii) of Lemma 2.1 will be satisfied. Hence, the proof is complete. □

AIMS Mathematics Volume 8, Issue 3, 5303–5317.



5309

Corollary 2.1. For 0 < α < 1 and a nonnegative function f on Nr0 , let the following conditions hold:

(i)
(

RL
r0
∇α f

)
(r0 + 2) ≤ 0,

(ii)
(

RL
r0
∇α f

)
(r0 + t) ≤

(−α)(1 − α)
2

(t − 2) f (r0 + 1), t ∈ NK0
3 ,

(iii)
(

RL
r0
∇α f

)
(r0 + K0 + 2) ≥ (1 − α) f (r0 + K0 + 1),

for a fixed K0 ∈ N4. Then, f is a relative minimum at r0 + K0 + 1.

Proof. The proof obviously follows from Theorem 2.1 and Lemma 2.2 since the condition (ii) of
Lemma 2.1 is implied by the condition (ii) of this corollary. □

2.2. Increasing part

Lemma 2.3. For 0 < α < 1 and a nonpositive function f on Nr0 , let the following conditions hold:

(i)
(

RL
r0
∇α f

)
(r0 + 2) ≥ 0,

(ii)
(

RL
r0
∇α f

)
(r0 + t) ≥

 t−2∑
k=1

Γ(k + 1 − α)
Γ(−α)(k + 1)!

 f (r0 + 1), t ∈ N3.

Then,
(
∇ f

)
(t) ≥ 0 for each t ∈ Nr0+2, i.e., f is increasing on Nr0+2.

Proof. First, we compute the first condition to get(
RL
r0
∇α f

)
(r0 + 2) = f (r0 + 2) − α f (r0 + 1).

This gives that (
RL
r0
∇α f

)
(r0 + 2) −

(
∇ f

)
(r0 + 2) = (1 − α) f (r0 + 1) ≤ 0,

and it follows that (
∇ f

)
(r0 + 2) ≥

(
RL
r0
∇α f

)
(r0 + 2)

by
≥

condition (i)
0. (2.9)

Now we assume that (∇ f
)
(r0 + t) ≥ 0 for all t ∈ NK0+1

2 when K0 ∈ N1. Then, we will try to show that(
∇ f

)
(r0 + K0 + 2) ≤ 0. To do this, we recall the identity (2.5), which leads to(

RL
r0
∇α f

)
(r0 + K0 + 2) −

(
∇ f

)
(r0 + K0 + 2)

=
Γ(K0 + 1 − α)
Γ(−α)(K0 + 1)!

f (r0 + 1) +
Γ(K0 − α)
Γ(−α)K0!

f (r0 + 2) + · · ·

+
(−α)(1 − α)

2
f (r0 + K0) + (1 − α) f (r0 + K0 + 1), (2.10)

and the nonpositivity of f , which leads to

f (r0 + K0 + 1) ≤ f (r0 + K0) ≤ · · · ≤ f (r0 + 1).
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Combining these we can deduce that(
∇ f

)
(r0 + K0 + 2) ≥

(
RL
r0
∇α f

)
(r0 + K0 + 2)

−
Γ(K0 + 1 − α)
Γ(−α)(K0 + 1)!

f (r0 + 1) −
Γ(K0 − α)
Γ(−α)K0!

f (r0 + 1) + · · ·

−
(−α)(1 − α)

2
f (r0 + 1)−(1 − α) f (r0 + 1)︸                ︷︷                ︸

≥0

≥
(

RL
r0
∇α f

)
(r0 + K0 + 2) −

(K0+2)−2∑
k=1

Γ(k + 1 − α)
Γ(−α)(k + 1)!

 f (r0 + 1)

≥0, (2.11)

where we have used condition (ii). Therefore, the inequality (2.9) combined with (2.11) when t =
K0 + 2 ∈ N3, proves the desired result. □

As a consequence of Lemma 2.3, we obtain the following relativity (max) result.

Theorem 2.2. For 0 < α < 1 and a nonpositive function f on Nr0 , let the following conditions hold:

(i)
(

RL
r0
∇α f

)
(r0 + 2) ≥ 0,

(ii)
(

RL
r0
∇α f

)
(r0 + t) ≥

 t−2∑
k=1

Γ(k + 1 − α)
Γ(−α)(k + 1)!

 f (r0 + 1), t ∈ NK0
3 ,

(iii)
(

RL
r0
∇α f

)
(r0 + K0 + 2) ≤ (1 − α) f (r0 + K0 + 1),

for a fixed K0 ∈ N4. Then, f is a relative max at r0 + K0 + 1.

Proof. The conditions (i) and (ii) enable us to have
(
∇ f

)
(t) ≥ 0 for each t ∈ Nr0+K0+1

r0+2 , when K0 ≥ 1,
according to Lemma 2.3. Therefore,

(
∇ f

)
(r0 + K0 + 1) ≥ 0. Let us claim that

(
∇ f

)
(r0 + K0 + 2) ≥ 0,

i.e., f is a relative max at r0 + K0 + 1. We rearrange (2.10); we have(
∇ f

)
(r0 + K0 + 2) −

(
RL
r0
∇α f

)
(r0 + K0 + 2)

= −
Γ(K0 + 1 − α)
Γ(−α)(K0 + 1)!

f (r0 + 1) −
Γ(K0 − α)
Γ(−α)K0!

f (r0 + 2) − · · ·

−
(−α)(1 − α)

2
f (r0 + K0) − (1 − α) f (r0 + K0 + 1)

≤ − (1 − α) f (r0 + K0 + 1), (2.12)

where by using (2.3) and the nonpositivity of f the following is used:

−
Γ(K0 + 1 − α)
Γ(−α)(K0 + 1)!

f (r0 + 1) −
Γ(K0 − α)
Γ(−α)K0!

f (r0 + 2) − · · · −
(−α)(1 − α)

2
f (r0 + K0) ≤ 0.

Then, we can express (2.12) as follows:(
∇ f

)
(r0 + K0 + 2) ≤

(
RL
r0
∇α f

)
(r0 + K0 + 2) − (1 − α) f (r0 + K0 + 1)

by
≤

(iii)
0,

which is our result as claimed. Therefore, f is a relative max at r0 + K0 + 1. □

AIMS Mathematics Volume 8, Issue 3, 5303–5317.



5311

As in Lemma 2.2, we obtain a simpler and stronger condition in the following lemma.

Lemma 2.4. Assume that 0 < α < 1 and f is a nonpositive function on Nr0 . Then, condition (ii) of
Lemma 2.2 enable the following condition:(

RL
r0
∇α f

)
(r0 + t) ≥

(−α)(1 − α)
2

(t − 2) f (r0 + 1),

for t ∈ N3.

Proof. From (2.8), the following inequalities are obvious:

0 >
Γ(k + 1 − α)

(k + 1)!Γ(−α)
>

(1 − α)(−α)
2

, (2.13)

for all k ≥ 2. The first inequality is given by (2.3). For the second one, we assume that

Γ(k0 + 1 − α)
Γ(−α)(k0 + 1)!

>
(−α)(1 − α)

2
,

for all k0 ≥ 2. We know that f (r0 + 1) < 0 from the hypothesis; thus,

0 <

 t−2∑
k=1

Γ(k + 1 − α)
Γ(−α)(k + 1)!

 f (r0 + 1)

<

 t−2∑
k=1

(−α)(1 − α)
2

 f (r0 + 1)

=
(−α)(1 − α)

2
(t − 2) f (r0 + 1).

Therefore, we can deduce that if(
RL
r0
∇α f

)
(r0 + t) ≥

(−α)(1 − α)
2

(t − 2) f (r0 + 1), t ∈ N3,

then condition (ii) of Lemma 2.2 holds true. This ends the proof. □

Corollary 2.2. For 0 < α < 1 and a nonpositive function f on Nr0 , let the following conditions hold:

(i)
(

RL
r0
∇α f

)
(r0 + 2) ≥ 0,

(ii)
(

RL
r0
∇α f

)
(r0 + t) ≥

(−α)(1 − α)
2

(t − 2) f (r0 + 1), t ∈ NK0
3 ,

(iii)
(

RL
r0
∇α f

)
(r0 + K0 + 2) ≤ (1 − α) f (r0 + K0 + 1),

for a fixed K0 ∈ N4. Then, f is a relative max at r0 + K0 + 1.

Proof. The proof follows from Theorem 2.2 and Lemma 2.4 immediately because the condition (ii) of
Lemma 2.3 is implied by the condition (ii) of this corollary. □
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3. Example explanations

In this section, we report the application results by using the main findings of Subsections 2.1
and 2.2. Throughout this section, we use the following notations:

A(t) :=
(

RL
r0
∇α f

)
(t + r0),

B(t) :=

 t−1∑
k=1

Γ(k + 1 − α)
Γ(−α)(k + 1)!

 f (r0 + 1).

Example 3.1. Let α = 0.9, r0 = 0, and f be defined by

f (t) =
(
1
2

)t−r0

, for t ∈ Nr0+2.

It is obvious that f (t) is nonnegative and(
RL
r0
∇α f

)
(2) =

1
Γ(−0.9)

2∑
r=1

(3 − r)−1.9 f (r) = −0.9 f (1) + f (2) =
−1
5
≤ 0.

Furthermore, according to the numerical results reported in Table 1 and Figure 1, we see that(
RL

0∇
α f

)
(t) ≤

 t−1∑
k=1

Γ(k + 1 − α)
Γ(−α)(k + 1)!

 f (1),

for t = 3, 4, 5. Thus, all conditions of the statement of Theorem 2.1 are verified; hence, the function
will be decreasing on {2, 3, 4, 5}.

Table 1. Comparison of A(t) and B(t) values.

t = r0 + 2 t = r0 + 3 t = r0 + 4 t = r0 + 5 · · ·

A(t) 0 − 49
400 − 139

2000 − 114
2917 · · ·

B(t) 0 − 3
400 − 123

4000 − 95
2708 · · ·

2.5 3 3.5 4 4.5

t

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

A(t)

B(t)

Figure 1. Graph of A(t) and B(t) for different values of t.
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Example 3.2. Let α = 0.85, r0 = 0, and f be defined by

f (t) =
(
−3
4

)t−r0

, for t ∈ Nr0+2.

It is obvious that f (t) is nonnegative and

(
RL
r0
∇α f

)
(2) =

1
Γ(−0.85)

2∑
r=1

(3 − r)−1.85 f (r)

= −0.85 f (1) + f (2) =
3

40
≥ 0.

Moreover, the numerical results reported in Table 2 and Figure 2 tell us that

(
RL

0∇
α f

)
(t) ≤

 t−1∑
k=1

Γ(k + 1 − α)
Γ(−α)(k + 1)!

 f (1),

for t = 3, 4, 5. Therefore, all conditions of the statement of Theorem 2.2 are verified. Hence, the
function will be decreasing on the set {2, 3, 4, 5}.

Table 2. Comparison of A(t) and B(t) values.

t = r0 + 2 t = r0 + 3 t = r0 + 4 t = r0 + 5 · · ·

A(t) 3
40

333
3200

771
8000

57
694 · · ·

B(t) 0 153
3200

285
4309

113
1487 · · ·

2.5 3 3.5 4 4.5

t

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

A(t)

B(t)

Figure 2. Graph of A(t) and B(t) for different values of t.

Remark 3.1. It is important to point out that the condition (i) in both Lemmas 2.1 and 2.3 is not a
sufficient condition to guarantee that f is monotone decreasing and increasing, respectively. We clarify
this point in the following examples.
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• Let f (1) = −1/8, f (2) = −1/15, a = 0 and α = 1/2. Then we see that(
RL

0∇
1
2 f

)
(2) = −0.0042 < 0.

However, f is not decreasing on N2 because
(
∇ f

)
(2) = 7

120 > 0.
• If f (1) = 1/8, f (2) = 1/15, a = 0 and α = 1/2, then we have(

RL
0∇

1
2 f

)
(2) = 0.0042 > 0.

But, f is not increasing on N2 since
(
∇ f

)
(2) = − 7

120 < 0.

4. Conclusions

Based on the nabla fractional differences for Riemann-Liouville operators including two necessary
conditions, we have proved the monotone decreasing behavior of a discrete nonpositive function f
defined on Nr0+1. At the same time, we have established the monotone increasing of a discrete
nonpositive function f defined on Nr0+1 under two different conditions. The increasing and decreasing
results together with extra conditions allow us to obtain the relative minimum and relative maximum
of the function f . Furthermore, we have found alternative conditions corresponding to the main
conditions (condition (ii)) of Lemmas 2.1 and 2.3 which are simpler and stronger than the existing
ones in both of the lemmas. For more clarification, we have expressed the relative minimum and
relative maximum results by using the new simple conditions. Also, we have explained that the
condition (i) in Lemmas 2.1 and 2.3 is solely not sufficient for the function to be monotone decreasing
or increasing.

There is interesting future work for the researchers after reading our article that we have left as an
open problem. This will be obtaining similar results for the nabla Caputo operators.
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