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Abstract: The two approaches to solving nonlinear Caputo time-fractional wave-like equations with
variable coefficients are examined in this study. The Homotopy perturbation transform method and
the Yang transform decomposition method are the names of these two techniques. Three separate
numerical examples are provided to demonstrate the effectiveness and precision of the suggested
methods. The results were acquired to demonstrate the effectiveness and power of the two approaches,
providing estimates with better precision and closed form solutions. The solutions to these kinds of
equations can be found using the suggested methods as infinite series, and when these series are in
closed form, they provide the exact solution. The suggested techniques have been demonstrated to be
effective and efficient in their application. Three numerical examples are used to examine the methods
accuracy and effectiveness.
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1. Introduction

Today, fractional calculus (FC) is widely acknowledged as a vital technique for describing real life
events [1–5]. The presence of fractional formulations is discussed in a range of contexts, despite
the fact that scholars view FC as a useful tool in systematic investigation [6, 7]. In addition to
being consistent with the current stage, the dynamical properties of fractional differential equation
systems typically provide a sufficient justification for earlier stages [8, 9]. Due to the novelty of the
diversification process, which can result in a modest adjustment leading to significant output variability,
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the conversion of integer-order Differential equation (DE)-regulated systems to fractional DE-regulated
structures should be accurate. Fractional calculus has received a lot of attention, and various
applications in the fields of science have been presented [10–12]. Fractional differential equations are
widely used in domains including signal processing, system recognition, reaction diffusion processes,
control systems using dynamical systems, random walk models, and neural networks to simulate real-
world phenomena [13,14]. FC provides us with a useful tool for characterizing memory and hereditary
characteristics of various systems.

Differential equations with fractional derivatives offer effective methods for identifying memory
and heredity features that classical systems typically ignore. Fractional-order derivative modelling
is helpful for studying dynamical systems and accurately describes how real-world systems behave.
In applied mathematics and physics, fractional differential equations are frequently employed in
interpreting and modeling many realistic issues, including diffusion, fluid mechanics, chemistry,
viscoelasticity, damping laws, electrical circuits, mathematical biology, relaxation processes, and
so on [15–17]. Finding the numerical solution to fractional differential equations, linear and
nonlinear, is now receiving much more attention from mathematicians. Some of the methods are
Homotopy Analysis Method [18], Differential Transform Method [19], and Adomian Decomposition
Method [20]. Many researchers have suggested innovative integral transform techniques to discover
the analytical solution of linear and nonlinear FDEs. Some of them are Sumudu [21], Elzaki [22],
Laplace [23], Mahgoub [24] and Natural [25]. For solving the nonlinear system of FDEs, the Adomian
decomposition method was combined with Sumudu transform method [26], with Elzaki transform
method [27, 28], with Laplace transform method [29], with Mahgoub transform method [30] and with
Natural transform method [31, 32] and so on [33–35].

This study aims to solve the nonlinear Caputo time-fractional wave-like equation with variable
coefficients by combining two effective methods: The Yang transform decomposition method
(YTDM), which combines the Yang transform method and the Adomian decomposition method, and
the Homotopy perturbation transform method (HPTM), which combines the Yang transform method
and the Homotopy perturbation method. Xiao-Jun Yang presented the Yang transform, which can
solve various differential equations with constant coefficients. The Adomian decomposition technique
(ADM) [36, 37] is a well-known systematic method for solving deterministic or stochastic operator
equations, such as ordinary, partial, integral, and integro-differential equations. The ADM is a
sophisticated technique that provides fast algorithms for analytical solutions and numeric simulation in
engineering and applied sciences. On the other hand, He [38,39] presented the homotopy perturbation
approach in 1998. This method sees the solution as the sum of an infinite series, which usually
converges quickly to accurate solutions. This approach has been used for a wide range of mathematical
problems. The nonlinear Caputo time-fractional wave-like equations with variable coefficients are
presented as follows:

D℘ςU =
n∑

i, j=1

B1i j(χ, ς,U)
∂k+m

∂yk
i ∂y

m
j

B2i j(Uyi,Uy j)

+

n∑
i=1

C1i(χ, ς,U)
∂p

∂yp
i

C2i(Uyi) + D(χ, ς,U) + E(χ, ς), (1.1)

with initial values
U(χ, 0) = a0(χ) and Uς(χ, 0) = a1(χ), (1.2)
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where D℘ς is (Caputo) fractional operator having order ℘ and 1 < ℘ ≤ 2,U = U(χ, ς), χ =
(y1, y2, . . . , yn) ∈ Rn, ς ≥ 0, B1i j, C1ii, j ∈ 1, 2, . . . , n are nonlinear functions of χ, ς and
U, B2i j, C2ii, j ∈ 1, 2, . . . , n, are nonlinear functions of derivatives of U with respect to yi and
y ji, j ∈ 1, 2, . . . , n, respectively. In addition, D, E are nonlinear functions and k,m, p are integers.

It should be noted that (1.1) simplifies to the standard wave-like equations with variable coefficients
when ℘ = 2. Numerous applied sciences, including nonlinear hydrodynamics, mathematical physics,
physics, plasma physics, astrophysics, human movement sciences, and engineering biophysics, all
highly depend on these kinds of equations. These equations explain the development of microscopic
particles moving erratically when submerged in fluids, variations in laser light intensity, and velocity
distributions of fluid particles in turbulent flows [40].

The rest of the paper is organized as follows: Introduction is included in Section 1. The fundamental
definitions of FC, the Yang transform, and its properties are given in Section 2. The notion of HPTM
is presented in Section 3, whereas the idea of YTDM is presented in Section 4. Its application to
the nonlinear time-fractional wave-like equations is demonstrated in Section 5. We summarise the
conclusion in Section 6.

2. Preliminaries

This part clearly explains certain key facts about the fractional derivatives and Yang transform along
with their properties.

Definition 2.1. [1] The Caputo fractional derivative is given as

D℘ςU(y, ς) =
1

Γ(k − ℘)

∫ ς

0
(ς − ℘)k−℘−1U(k)(y, ℘)d℘, (2.1)

where k − 1 < ℘ ≤ k and k ∈ N.

Definition 2.2. [41] Yang transform of a function U(ς) is given as:

Y{U(ς)} = M(u) =
∫ ∞

0
e
−ς
u U(ς)dς, ς > 0, u ∈ (−ς1, ς2), (2.2)

with Yang inverse transform as
Y−1{M(u)} = U(ς). (2.3)

Definition 2.3. [41] Yang transform of a function with derivative of nth order as

Y{Un(ς)} =
M(u)

un −

n−1∑
k=0

Uk(0)
un−k−1 , (2.4)

for all n ∈ N.

Definition 2.4. [41] Yang transform of the function with derivative having fractional-order as

Y {U℘(ς)} =
M(u)

u℘
−

n−1∑
k=0

Uk(0)
u℘−(k+1) , 0 < ℘ ≤ n. (2.5)

AIMS Mathematics Volume 8, Issue 3, 5281–5302.



5284

3. Construction of Homotopy perturbation transform method for solving FDEs

To illustrate the process of solution of the HPTM, we take FDEs of the form to show the general
implementation of the proposed method as stated in [42, 43]

D℘ςU(y, ς) = P1[y]U(y, ς) + Q1[y]U(y, ς), 1 < ℘ ≤ 2, (3.1)

having initial values

U(y, 0) = ξ(y),
∂

∂ς
U(y, 0) = ζ(y), (3.2)

where D℘ς = ∂℘

∂ς℘
is (Caputo) fractional operator, P1[y], Q1[y] are operators, linear and nonlinear,

respectively.
Proceeds the YT and using (2.5), we have

Y
{
D℘ςU(y, ς)

}
= Y {P1[y]U(y, ς) + Q1[y]U(y, ς)} ,

that is
1
u℘

{
M(u) − uU(0) − u2U

′

(0)
}
= Y {P1[y]U(y, ς) + Q1[y]U(y, ς)} .

After that, we get

M(U) = uU(0) + u2U
′

(0) + u℘Y{P1[y]U(y, ς) + Q1[y]U(y, ς)}.

Let us take Yang inverse transform on both sides, we have

U(y, ς) = U(0) + U
′

(0) + Y−1 {u℘Y {P1[y]U(y, ς) + Q1[y]U(y, ς)}} . (3.3)

Applying HPM

U(y, ς) =
∞∑

k=0

ϵkUk(y, ς), (3.4)

with homotopy parameter ϵ ∈ [0, 1].
Ultimately, the nonlinear factors are discarded as:

Q1[y]U(y, ς) =
∞∑

k=0

ϵkHn(U), (3.5)

where Hk(U) is He‘s polynomials

Hn(U0,U1, . . . ,Un) =
1

Γ(n + 1)
Dk
ϵ

Q1

 ∞∑
k=0

ϵ iUi


ϵ=0

,

with Dk
ϵ =

∂k

∂ϵk
.

Utilizing (3.4) and (3.5) in (3.3), we have

∞∑
k=0

ϵkUk(y, ς) = U(0) + U
′

(0) + ϵ

Y−1

u℘Y

P1

∞∑
k=0

ϵkUk(y, ς) +
∞∑

k=0

ϵkHk(U)



 . (3.6)
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Equating the ϵ coefficients, we get

ϵ0 : U0(y, ς) = U(0) + U
′

(0),
ϵ1 : U1(y, ς) = Y−1 {u℘Y{P1[y]U0(y, ς) + H0(U)}} ,
ϵ2 : U2(y, ς) = Y−1 {u℘Y{P1[y]U1(y, ς) + H1(U)}} ,

...

ϵk : Uk(y, ς) = Y−1 {u℘Y{P1[y]Uk−1(y, ς) + Hk−1(U)}} ,

(3.7)

where k ∈ N.
At last, the analytical solution is approximated by the series,

U(y, ς) = lim
M→∞

M∑
k=1

Uk(y, ς). (3.8)

4. Construction of Yang transform decomposition method for solving FDEs

To illustrate the process of solution of the YTDM, we take FDEs of the form to show the general
implementation of the proposed method as stated in [42, 43]

D℘ςU(y, ς) = P1(y, ς) + Q1(y, ς), 1 < ℘ ≤ 2, (4.1)

having initial values

U(y, 0) = ξ(y) and
∂

∂ς
U(y, 0) = ζ(y), (4.2)

where D℘ς = ∂℘

∂ς℘
is (Caputo) fractional operator, P1, Q1 are operators, linear and nonlinear, respectively.

Proceeds the YT and using (2.5), we have

Y
{
D℘ςU(y, ς)

}
= Y {P1(y, ς) + Q1(y, ς)} ,

that is
1
u℘

{
M(u) − uU(0) − u2U

′

(0)
}
= Y{P1(y, ς) + Q1(y, ς)}.

After that, we get
M(U) = uU(0) + u2U

′

(0) + u℘Y {P1(y, ς) + Q1(y, ς)} .

Let us take Yang inverse transform on both sides, we have

U(y, ς) = U(0) + U
′

(0) + Y−1 {u℘Y {P1(y, ς) + Q1(y, ς)}} . (4.3)

Now, we assume an infinite series solution as

U(y, ς) =
∞∑

m=0

Um(y, ς), (4.4)

and the nonlinear terms Q1 are calculated by operate the formula

Q1(y, ς) =
∞∑

m=0

Am, (4.5)

AIMS Mathematics Volume 8, Issue 3, 5281–5302.



5286

where

Am =
1

m!

 ∂m

∂ℓm

Q1

 ∞∑
k=0

ℓkyk,

∞∑
k=0

ℓkςk




ℓ=0

.

Utilizing (4.4) and (4.5) into (4.3), we have

∞∑
m=0

Um(y, ς) = U(0) + U
′

(0) + Y−1

u℘Y

P1

 ∞∑
m=0

ym,

∞∑
m=0

ςm

 + ∞∑
m=0

Am


 . (4.6)

By equating both sides, we have

U0(y, ς) = U(0) + ςU
′

(0),
U1(y, ς) = Y−1 {

u℘Y+{P1(y0, ς0) +A0}
}
.

Continuing in this manner to get the general recursive relation,

Um+1(y, ς) = Y−1 {
u℘Y+{P1(ym, ςm) +Am}

}
. (4.7)

5. Examples

In this section, we present some Illustrative examples.

Example 1. Consider the 2-dimensional nonlinear time-fractional wave-like equation with variable
coefficients:

∂℘U(y, z, ς)
∂ς℘

=
∂2

∂y∂z
(
UyyUzz

)
−
∂2

∂y∂z
(
yzUyUz

)
− U, ς > 0, 1 < ℘ ≤ 2, (5.1)

having initial values

U(y, z, 0) = eyz and
∂

∂ς
U(y, z, 0) = eyz, (y, z) ∈ R2. (5.2)

Proceeds the YT, we have

Y
{
∂℘U

∂ς℘

}
= Y

{
∂2

∂y∂z
(
UyyUzz

)
−
∂2

∂y∂z
(
yzUyUz

)
− U

}
,

and using (2.5), we have

1
u℘

{
M(u) − uU(0) − u2U

′

(0)
}
= Y

{
∂2

∂y∂z
(
UyyUzz

)
−
∂2

∂y∂z
(
yzUyUz

)
− U

}
,

that is

M(u) = uU(0) + u2U
′

(0) + u℘Y
{
∂2

∂y∂z
(
UyyUzz

)
−
∂2

∂y∂z
(
yzUyUz

)
− U

}
.

Let us take Yang inverse transform on both sides, we have

U(y, z, ς) = Y−1{uU(0) + u2U
′

(0)} + Y−1
{

u℘Y
{
∂2

∂y∂z
(
UyyUzz

)
−
∂2

∂y∂z
(
yzUyUz

)
− U

}}
,
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that is

U(y, z, ς) = (eyz + eyzς) + Y−1
{

u℘Y
{
∂2

∂y∂z
(
UyyUzz

)
−
∂2

∂y∂z
(
yzUyUz

)
− U

}}
.

Applying HPM

∞∑
k=0

ϵkUk(y, z, ς) = (eyz + eyzς) + ϵ

Y−1

u℘Y


 ∞∑

k=0

ϵkH1
k (U)

 −  ∞∑
k=0

ϵkH2
k (U)

 +  ∞∑
k=0

ϵkUk(y, ς)



 .

Ultimately, the nonlinear factors by He’s polynomial Hk(U) are given as:

∞∑
k=0

ϵkH1
k (U) =

∂2

∂y∂z
(
UyyUzz

)
,

and
∞∑

k=0

ϵkH2
k (U) =

∂2

∂y∂z
(
yzUyUz

)
.

Few components are calculated as:

H1
0(U) = U0yyU0zz,

H1
1(U) = U0yyU1zz + U1yyU0zz,

...

H2
0(U) = yzU0yU0z,

H2
1(U) = yzU0yU1z + yzU1yU0z.

Equating the ϵ coefficients, we get

ϵ0 : U0(y, z, ς) = (eyz + eyzς),

ϵ1 : U1(y, z, ς) = −
(
ς℘

Γ(℘ + 1)
+
ς℘+1

Γ(℘ + 2)

)
eyz,

ϵ2 : U2(y, z, ς) =
(
ς2℘

Γ(2℘ + 1)
+
ς2℘+1

Γ(2℘ + 2)

)
eyz,

...

At last, the analytical solution is approximated by the series as:

U(y, z, ς) = U0(y, z, ς) + U1(y, z, ς) + U2(y, z, ς) + · · · ,

that is

U(y, z, ς) =
(
1 + ς −

ς℘

Γ(℘ + 1)
−
ς℘+1

Γ(℘ + 2)
+

ς2℘

Γ(2℘ + 1)
+
ς2℘+1

Γ(2℘ + 2)
+ · · ·

)
eyz.
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Application of the YTDM

Proceeds the YT, we have

Y
{
∂℘U

∂ς℘

}
= Y

{
∂2

∂y∂z
(
UyyUzz

)
−
∂2

∂y∂z
(
yzUyUz

)
− U

}
,

and using (2.5), we have

1
u℘

{
M(u) − uU(0) − u2U

′

(0)
}
= Y

{
∂2

∂y∂z
(
UyyUzz

)
−
∂2

∂y∂z
(
yzUyUz

)
− U

}
,

equivalently

M(u) = uU(0) + u2U
′

(0) + u℘Y
{
∂2

∂y∂z
(
UyyUzz

)
−
∂2

∂y∂z
(
yzUyUz

)
− U

}
.

Let us take Yang inverse transform on both sides, we have

U(y, z, ς) = Y−1
{
uU(0) + u2U

′

(0)
}
+ Y−1

{
u℘Y

{
∂2

∂y∂z
(
UyyUzz

)
−
∂2

∂y∂z
(
yzUyUz

)
− U

}}
= (eyz + eyzς) + Y−1

{
u℘Y

{
∂2

∂y∂z
(
UyyUzz

)
−
∂2

∂y∂z
(
yzUyUz

)
− U

}}
.

Now, we assume an infinite series solution as:

U(y, z, ς) =
∞∑

m=0

Um(y, z, ς),

where
∂2

∂y∂z
(
UyyUzz

)
=

∞∑
m=0

Am

and
∂2

∂y∂z
(
yzUyUz

)
=

∞∑
m=0

Bm

are the Adomian polynomials that represents the nonlinear terms and

∞∑
m=0

Um(y, z, ς) = U(y, z, 0) + Y−1

u℘Y

 ∞∑
m=0

Am −

∞∑
m=0

Bm − U




= (eyz + eyzς) + Y−1

u℘Y

 ∞∑
m=0

Am −

∞∑
m=0

Bm − U


 .

The first few nonlinear terms are as follows:

A0 = U0yyU0zz,
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A1 = yzU0yU0z,

...

B0 = U0yyU1zz + U1yyU0zz,

B1 = yzU0yU1z − yzU1yU0z.

By equating both sides, we have

U0(y, z, ς) = (eyz + eyzς).

For m = 0, we have

U1(y, z, ς) = −
(
ς℘

Γ(℘ + 1)
+
ς℘+1

Γ(℘ + 2)

)
eyz,

and for m = 1, we have

U2(y, z, ς) =
(
ς2℘

Γ(2℘ + 1)
+
ς2℘+1

Γ(2℘ + 2)

)
eyz.

The YTDM solution is

U(y, z, ς) =
∞∑

m=0

Um(y, z, ς) = U0(y, z, ς) + U1(y, z, ς) + U2(y, z, ς) + · · ·

=

(
1 + ς −

ς℘

Γ(℘ + 1)
−
ς℘+1

Γ(℘ + 2)
+

ς2℘

Γ(2℘ + 1)
+
ς2℘+1

Γ(2℘ + 2)
+ · · ·

)
eyz.

In the special case ℘ = 2, we get exact solution as

U(y, z, ς) = (cos ς + sin ς)eyz. (5.3)

The graphs in Figures 1(a) and 1(b) show the behavior of the exact and proposed methods solution
in Caputo manner at ℘ = 1. Figure 1(c) shows our methods solution at different fractional-orders
of ℘ = 2, 1.9, 1.8, 1.7, and −1 ≤ y, z ≤ 1 for Example 1 and Figure 1(d), respectively, at ς = 0.1
and −1 ≤ y, z ≤ 1. In Table 1, we computed the absolute errors of the Shehu variational iteration
method (SVIM) and suggested methods that confirm that our solution converges quickly compared to
SVIM. The graphical representation shows that the exact solution and proposed methods solution are
in good agreement.
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Figure 1. The nature of U(y, z, ς) in terms of y, z and ς at various values of ℘ for Example 1.

Table 1. Comparison of the Shehu variational iteration method (SVIM) and suggested
solutions absolute errors at different orders of ℘ for Example 1.

ς/y, z S VIM(℘ = 0.5) Proposed methods (℘ = 0.5) S VIM(℘ = 0.7) Proposed methods (℘ = 0.7)

0.1 3.2196 E-13 2.5111E-14 4.0929E-13 0.01010032E-14

0.3 2.1569 E-09 2.32229E-11 2.7420E-09 0.02040261E-11

0.5 1.3095 E-07 2.0335E-09 1.6647E-07 0.03090871E-09

0.7 1.9680 E-06 1.1448E-07 2.5019E-06 0.04162043E-07

0.9 1.4947 E-05 2.05640176E-06 1.9001E-05 0.05253943E-06
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Example 2. Consider the following nonlinear time-fractional wave-like equation with variable
coefficients:

∂℘U(y, ς)
∂ς℘

= U2 ∂
2

∂y2

(
UyUyyUyyy

)
+ U2

y
∂2

∂y2

(
U3

yy

)
− 18U5 + U ς > 0, 1 < ℘ ≤ 2, (5.4)

having initial values

U(y, 0) = ey and
∂

∂ς
U(y, 0) = ey. (5.5)

Proceeds the YT, we have

Y
{
∂℘U

∂ς℘

}
= Y

{
U2 ∂

2

∂y2 (UyUyyUyyy) + U2
y
∂2

∂y2 (U3
yy) − 18U5 + U

}
,

and using (2.5), we have

1
u℘
{M(u) − uU(0) − u2U

′

(0)} = Y
{
U2 ∂

2

∂y2

(
UyUyyUyyy

)
+ U2

y
∂2

∂y2

(
U3

yy

)
− 18U5 + U

}
,

that is

M(u) = uU(0) + u2U
′

(0) + u℘Y
{
U2 ∂

2

∂y2

(
UyUyyUyyy

)
+ U2

y
∂2

∂y2

(
U3

yy

)
− 18U5 + U

}
.

Let us take Yang inverse transform on both sides, we have

U(y, ς) = Y−1
{
uU(0) + u2U

′

(0)
}
+ Y−1

{
u℘Y

{
U2 ∂

2

∂y2

(
UyUyyUyyy

)
+ U2

y
∂2

∂y2

(
U3

yy

)
− 18U5 + U

}}
= (eyz + eyzς) + Y−1

{
u℘Y

{
U2 ∂

2

∂y2

(
UyUyyUyyy

)
+ U2

y
∂2

∂y2

(
U3

yy

)
− 18U5 + U

}}
.

By applying HPM, we have

∞∑
k=0

ϵkUk(y, ς) = (ey + eyς) + ϵ

Y−1

u℘Y


 ∞∑

k=0

ϵkH1
k (U)

 +  ∞∑
k=0

ϵkH2
k (U)


−18

 ∞∑
k=0

ϵkH3
k (U)

 +  ∞∑
k=0

ϵkUk(y, ς)



 .

Ultimately, the nonlinear factors by He’s polynomial Hk(U) are given as:

∞∑
k=0

ϵkH1
k (U) = U2 ∂

2

∂y2

(
UyUyyUyyy

)
,

∞∑
k=0

ϵkH2
k (U) = U2

y
∂2

∂y2

(
U3

yy

)
,

∞∑
k=0

ϵkH3
k (U) = U5.
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Few components are calculated as:

H1
0(U) = U2

0
∂2

∂y2

(
U0yU0yyU0yyy

)
,

H1
1(U) = 2U0U1

∂2

∂y2

(
U0yU0yyU0yyy

)
+ U2

0
∂2

∂y2

(
U1yU0yyU0yyy + U0yU1yyU0yyy + U0yU0yyU1yyy

)
,

...

H2
0(U) = U2

0y
∂2

∂y2

(
U3

0yy

)
,

H2
1(U) = 2U0yU1y

∂2

∂y2

(
U3

0yy

)
+ 3U2

0y
∂2

∂y2

(
U2

0yyU1yy
)
,

...

H3
0(U) = U5

0,

H3
1(U) = 5U4

0U1.

Equating the ϵ coefficients, we get

ϵ0 : U0(y, ς) = (ey + eyς),

ϵ1 : U1(y, ς) =
(
ς℘

Γ(℘ + 1)
+
ς℘+1

Γ(℘ + 2)

)
ey,

ϵ2 : U2(y, ς) =
(
ς2℘

Γ(2℘ + 1)
+
ς2℘+1

Γ(2℘ + 2)

)
ey,

...

At last, the analytical solution is approximated by the series as:

U(y, ς) = U0(y, ς) + U1(y, ς) + U2(y, ς) + · · ·

=

(
1 + ς +

ς℘

Γ(℘ + 1)
+
ς℘+1

Γ(℘ + 2)
+

ς2℘

Γ(2℘ + 1)
+
ς2℘+1

Γ(2℘ + 2)
+ · · ·

)
ey.

Application of the YTDM

Proceeds the YT, we have

Y
{
∂℘U

∂ς℘

}
= Y

{
U2 ∂

2

∂y2

(
UyUyyUyyy

)
+ U2

y
∂2

∂y2

(
U3

yy

)
− 18U5 + U

}
,

and using (2.5), we have

1
u℘

{
M(u) − uU(0) − u2U

′

(0)
}
= Y

{
U2 ∂

2

∂y2

(
UyUyyUyyy

)
+ U2

y
∂2

∂y2

(
U3

yy

)
− 18U5 + U

}
,

that is

M(u) = uU(0) + u2U
′

(0) + u℘Y
{
U2 ∂

2

∂y2

(
UyUyyUyyy

)
+ U2

y
∂2

∂y2

(
U3

yy

)
− 18U5 + U

}
.
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Let us take Yang inverse transform on both sides, we have

U(y, z, ς) = Y−1
{
uU(0) + u2U

′

(0)
}
+ Y−1

{
u℘Y

{
U2 ∂

2

∂y2

(
UyUyyUyyy

)
+ U2

y
∂2

∂y2

(
U3

yy

)
− 18U5 + U

}}
= (ey + eyς) + Y−1

{
u℘Y

{
U2 ∂

2

∂y2

(
UyUyyUyyy

)
+ U2

y
∂2

∂y2

(
U3

yy

)
− 18U5 + U

}}
.

Now, we assume an infinite series solution as:

U(y, z, ς) =
∞∑

m=0

Um(y, z, ς), (5.6)

where

U2 ∂
2

∂y2

(
UyUyyUyyy

)
=

∞∑
m=0

Am,

U2
y
∂2

∂y2

(
U3

yy

)
=

∞∑
m=0

Bm

and
U5 =

∞∑
m=0

Cm

are the Adomian polynomials that represents the nonlinear terms and

∞∑
m=0

Um(y, z, ς) = U(y, z, 0) + Y−1

u℘Y

 ∞∑
m=0

Am +

∞∑
m=0

Bm − 18
∞∑

m=0

Cm + U




= (ey + eyς) + Y−1

u℘Y

 ∞∑
m=0

Am +

∞∑
m=0

Bm − 18
∞∑

m=0

Cm + U


 .

The first few nonlinear terms are as follows:

A0 = U
2
0
∂2

∂y2

(
U0yU0yyU0yyy

)
,

A1 = 2U0U1
∂2

∂y2

(
U0yU0yyU0yyy

)
+ U2

0
∂2

∂y2

(
U1yU0yyU0yyy + U0yU1yyU0yyy + U0yU0yyU1yyy

)
,

...

B0 = U
2
0y
∂2

∂y2

(
U3

0yy

)
,

B1 = 2U0yU1y
∂2

∂y2

(
U3

0yy

)
+ 3U2

0y
∂2

∂y2

(
U2

0yyU1yy
)
,

...

C0 = U
5
0,

C1 = 5U4
0U1.
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By equating both sides, we have

U0(y, ς) = (ey + eyς).

For m = 0, we have

U1(y, ς) =
(
ς℘

Γ(℘ + 1)
+
ς℘+1

Γ(℘ + 2)

)
ey,

and for m = 1, we have

U2(y, ς) =
(
ς2℘

Γ(2℘ + 1)
+
ς2℘+1

Γ(2℘ + 2)

)
ey.

The YTDM solution is

U(y, ς) =
∞∑

m=0

Um(y, ς) = U0(y, ς) + U1(y, ς) + U2(y, ς) + · · ·

=

(
1 + ς +

ς℘

Γ(℘ + 1)
+
ς℘+1

Γ(℘ + 2)
+

ς2℘

Γ(2℘ + 1)
+
ς2℘+1

Γ(2℘ + 2)
+ · · ·

)
ey.

In the special case ℘ = 2, we get exact solution as:

U(y, ς) = ey+ς. (5.7)

The graphs in Figures 2(a) and 2(b) show the behavior of the exact and proposed methods solution
in Caputo manner at ℘ = 1. Figure 2(c) shows our methods solution at different fractional-orders
of ℘ = 2, 1.9, 1.8, 1.7, and −1 ≤ y, ς ≤ 1 for Example 2 and Figure 2(d), respectively, at ς = 0.5
and −1 ≤ y ≤ 1. The graphical representation shows that the exact solution and proposed methods
solution are in good agreement.
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Figure 2. The nature of U(y, ς) in terms of y and ς at various values of ℘ for Example 2.

Example 3. Consider the following nonlinear time-fractional wave-like equation with variable
coefficients:

∂℘U(y, ς)
∂ς℘

= y2 ∂

∂y
(
UyUyy

)
− y2

(
Uyy

)2
− U, ς > 0, 1 < ℘ ≤ 2, (5.8)

having initial values

U(y, 0) = 0 and
∂

∂ς
U(y, 0) = y2. (5.9)

Proceeds the YT, we have

Y
{
∂℘U

∂ς℘

}
= Y

{
y2 ∂

∂y
(UyUyy) − y2(Uyy)2 − U

}
,

and using (2.5), we have

1
u℘

{
M(u) − uU(0) − u2U

′

(0)
}
= Y

{
y2 ∂

∂y
(
UyUyy

)
− y2

(
Uyy

)2
− U

}
,

that is

M(u) = uU(0) + u2U
′

(0) + u℘Y
{

y2 ∂

∂y
(
UyUyy

)
− y2

(
Uyy

)2
− U

}
.
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Let us take Yang inverse transform on both sides, we have

U(y, ς) = Y−1
{
uU(0) + u2U

′

(0)
}
+ Y−1

{
u℘Y

{
y2 ∂

∂y
(
UyUyy

)
− y2

(
Uyy

)2
− U

}}
= (eyς) + Y−1

{
u℘Y

{
y2 ∂

∂y
(
UyUyy

)
− y2

(
Uyy

)2
− U

}}
.

By applying HPM, we obtain
∞∑

k=0

ϵkUk(y, ς) = eyς + ϵ

Y−1

u℘Y


 ∞∑

k=0

ϵkH1
k (U)

 −  ∞∑
k=0

ϵkH2
k (U)

 −  ∞∑
k=0

ϵkUk(y, ς)



 .

Ultimately, the nonlinear factors by He’s polynomial Hk(U) are given as
∞∑

k=0

ϵkH1
k (U) = y2 ∂

∂y
(
UyUyy

)
,

∞∑
k=0

ϵkH2
k (U) = y2

(
Uyy

)2
.

Few components are calculated as:

H1
0(U) = U0yU0yy,

H1
1(U) = U0yU1yy + U1yU0yy,

H1
2(U) = U0yU2yy + U1yU1yy + U2yU0yy,

...

H2
0(U) = U2

0yy,

H2
1(U) = 2U0yyU1yy,

H2
2(U) = 2U0yyU2yy + U

2
1yy.

Equating the ϵ coefficients, we get

ϵ0 : U0(y, ς) = y2ς,

ϵ1 : U1(y, ς) = −
ς℘+1

Γ(℘ + 2)
y2,

ϵ2 : U2(y, ς) =
ς2℘+1

Γ(2℘ + 2)
y2,

ϵ3 : U3(y, ς) = −
ς3℘+1

Γ(3℘ + 2)
y2,

...

At last, the analytical solution is approximated by the series as:

U(y, ς) = U0(y, ς) + U1(y, ς) + U2(y, ς) + · · ·

= y2
(
ς −

ς℘+1

Γ(℘ + 2)
+
ς2℘+1

Γ(2℘ + 2)
−
ς3℘+1

Γ(3℘ + 2)
+ · · ·

)
.
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Application of the YTDM

Proceeds the YT, we have

Y
{
∂℘U

∂ς℘

}
= Y

{
y2 ∂

∂y
(
UyUyy

)
− y2

(
Uyy

)2
− U

}
,

and using the Def.(2.5), we have

1
u℘

{
M(u) − uU(0) − u2U

′

(0)
}
= Y

{
y2 ∂

∂y
(
UyUyy

)
− y2

(
Uyy

)2
− U

}
,

that is

M(u) = uU(0) + u2U
′

(0) + u℘Y
{

y2 ∂

∂y
(
UyUyy

)
− y2

(
Uyy

)2
− U

}
.

Let us take Yang inverse transform on both sides, we have

U(y, ς) = Y−1
{
uU(0) + u2U

′

(0)]
}
+ Y−1

{
u℘Y

{
y2 ∂

∂y
(
UyUyy

)
− y2

(
Uyy

)2
− U

}}
,

= y2ς + Y−1
{

u℘Y
{

y2 ∂

∂y
(UyUyy) − y2(Uyy)2 − U

}}
.

Now, we assume an infinite series solution as

U(y, ς) =
∞∑

m=0

Um(y, ς),

where

UyUyy =

∞∑
m=0

Am

and (
Uyy

)2
=

∞∑
m=0

Bm

are the Adomian polynomials that represents the nonlinear terms and

∞∑
m=0

Um(y, ς) = U(y, z, 0) + Y−1

u℘Y

 ∞∑
m=0

Am −

∞∑
m=0

Bm − U




= y2ς + Y−1

u℘Y

 ∞∑
m=0

Am −

∞∑
m=0

Bm − U


 .

The first few nonlinear terms are as follows:

A0 = U0yU0yy,

A1 = U0yU1yy + U1yU0yy,

A2 = U0yU2yy + U1yU1yy + U2yU0yy,
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...

B0 = U
2
0yy,

B1 = 2U0yyU1yy,

B2 = 2U0yyU2yy + U
2
1yy.

By equating both sides, we have

U0(y, ς) = y2ς.

For m = 0, we have

U1(y, ς) = −
ς℘+1

Γ(℘ + 2)
y2,

for m = 1, we have

U2(y, ς) =
ς2℘+1

Γ(2℘ + 2)
y2,

and for m = 2, we have

U3(y, ς) = −
ς3℘+1

Γ(3℘ + 2)
y2.

The YTDM solution is

U(y, ς) =
∞∑

m=0

Um(y, ς) = U0(y, ς) + U1(y, ς) + U2(y, ς) + U3(y, ς) + · · ·

= y2
(
ς −

ς℘+1

Γ(℘ + 2)
+
ς2℘+1

Γ(2℘ + 2)
−
ς3℘+1

Γ(3℘ + 2)
+ · · ·

)
.

In the special case ℘ = 2, we get exact solution as

U(y, ς) = y2 sin ς. (5.10)

The graphs in Figures 3(a) and 3(b) show the behavior of the exact and proposed methods solution
in Caputo manner at ℘ = 1. Figure 3(c) shows our methods solution at different fractional-orders
of ℘ = 2, 1.9, 1.8, 1.7, and 0 ≤ y, ς ≤ 3 for Example 3 and Figure 3(d), respectively, at ς = 0.5
and 0 ≤ y ≤ 3. The analysis reveals that the fractional-order solutions are strongly convergent to the
integer-order solution. The convergence of the solution can be observed in the 2-D and 3-D graphs,
respectively.
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Figure 3. The nature of U(y, ς) in terms of y and ς at various values of ℘ for Example 3.

6. Conclusions

This article compares two approaches to tackling nonlinear Caputo time-fractional wave-like
problems. Three numerical examples are used to examine the accuracy and effectiveness of the
suggested method. This research used the Yang transform decomposition method and the Homotopy
perturbation transform method to give a new representation of exact solutions for nonlinear time-
fractional wave-like equations with variable coefficients. In three numerical cases, the techniques
were used. In the numerical cases, our methods provided us with the results as infinite series, and
when this series is in closed form, it provides the exact results to the related equations. In comparison
to other analytical and numerical techniques, the current methods have proven to be an effective and
simple procedure. Furthermore, the proposed methods needed fewer calculations and can thus be used
to solve other fractional-order problems.
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