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Abstract: This paper investigates fractional-order partial differential equations analytically by
applying a modified technique called the Laplace residual power series method. The analytical solution
was utilized to test the accuracy and precision of the proposed methodologies and shown by tables and
graphs. The solution is a convergent series established on Taylor’s new form. When determining the
series coefficients like RPSM, the fractional derivatives must be calculated every time. We only need
to perform a few computations to obtain the coefficients because LRPSM only requires the concept
of an infinite limit. The advantage of this method is that it does not require Adomian polynomials or
he’s polynomials to solve nonlinear problems. As a result, the method’s reduced computation size is a
strength. The outcome we got supports the idea that the suggested method is the best one for handling
any non-linear models that appear in technology and science.
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1. Introduction

Due to its well-established applications in various scientific and technical fields, fractional calculus
has gained prominence during the last three decades. Many pioneers have shown that when adjusted
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by integer-order models, fractional-order models may accurately represent complex events [1, 2].
The Caputo fractional derivatives are nonlocal in contrast to the integer-order derivatives, which are
local in nature [3]. In other words, the integer-order derivative may be used to analyze changes in
the area around a point, but the Caputo fractional derivative can be used to analyze changes in the
whole interval. Senior mathematicians including Riemann [4], Caputo [5], Podlubny [6], Ross [7],
Liouville [8], Miller and others, collaborated to create the fundamental foundation for fractional order
integrals and derivatives. The theory of fractional-order calculus has been related to real-world projects,
and it has been applied to chaos theory [9], signal processing [10], electrodynamics [11], human
diseases [12, 13], and other areas [14–16].

Due to the numerous applications of fractional differential equations in engineering and science
such as electrodynamics [17], chaos ideas [18], accounting [19], continuum and fluid mechanics [20],
digital signal [21] and biological population designs [22] fractional differential equations are now
more widely known. For such issues to be resolved, efficient tools are needed [23–25]. Because
of this, we will attempt to apply an efficient analytical technique to solve nonlinear arbitrary order
differential equations in this article. Many strategies in collaboration fields may be delightfully
and even more accurately analyzed using fractional differential equations. Various strategies have
been developed in this regard, some of them are as follows, such as the fractional Reduced
differential transformation technique [26], Adomian decomposition technique [27], the fractional
Variational iteration technique [28], Elzaki decomposition technique [29, 30], iterative transformation
technique [31], the fractional natural decomposition method (FNDM) [32], and the fractional
homotopy perturbation method [33].

The power series solution is used to solve some classes of the differential and integral equations
of fractional or non-fractional order, and it is based on assuming that the solution of the equation can
be expanded as a power series. RPS is an easy and fast technique for determining the coefficients
of the power series solution. The Jordanian mathematician Omar Abu Arqub created the residual
power series method in 2013, as a technique for quickly calculating the coefficients of the power series
solutions for 1st and 2nd-order fuzzy differential equations [34]. Without perturbation, linearization,
or discretization, the residual power series method provides a powerful and straightforward power
series solution for highly linear and nonlinear equations [35–38]. The residual power series method
has been used to solve an increasing variety of nonlinear ordinary and partial differential equations
of various sorts, orders, and classes during the past several years. It has been used to make non-
linear fractional dispersive partial differential equation have solitary pattern results and to predict
them [39], to solve the highly nonlinear singular differential equation known as the generalized
Lane-Emden equation [40], to solve higher-order ordinary differential equations numerically [41], to
approximate solve the fractional nonlinear KdV-Burger equations, to predict and represent the RPSM
differs from several other analytical and numerical approaches in some crucial ways [42]. First, there
is no requirement for a recursion connection or for the RPSM to compare the coefficients of the
related terms. Second, by reducing the associated residual error, the RPSM offers a straightforward
method to guarantee the convergence of the series solution. Thirdly, the RPSM doesn’t suffer from
computational rounding mistakes and doesn’t use a lot of time or memory. Fourth, the approach may
be used immediately to the provided issue by selecting an acceptable starting guess approximation
since the residual power series method does not need any converting when transitionary from low-
order to higher-order and from simple linearity to complicated nonlinearity [43–45]. The process of

AIMS Mathematics Volume 8, Issue 3, 5266–5280.



5268

solving linear differential equations using the LT method consists of three steps. The first step depends
on transforming the original differential equation into a new space, called the Laplace space. In the
second step, the new equation is solved algebraically in the Laplace space. In the last step, the solution
in the second step is transformed back into the original space, resulting in the solution of the given
problem.

In this article, we apply the Laplace residual power series method to achieve the definitive solution
of the fractional-order nonlinear partial differential equations. The Laplace transformation efficiently
integrates the residual power series method for the renewability algorithmic technique. This proposed
technique produces interpretive findings in the sense of a convergent series. The Caputo fractional
derivative operator explains quantitative categorizations of the partial differential equations. The
offered methodology is well demonstrated in modelling and enumeration investigations. The exact-
analytical findings are a valuable way to analyze the problematic dynamics of systems, notably for
computational fractional partial differential equations.

2. Preliminaries

Definition 2.1. The fractional Caputo derivative of a function u(ζ, t) of order α is given as [46]

CDα
t u(ζ, t) = Jm−α

t um(ζ, t), m − 1 < α ≤ m, t > 0, (2.1)

where m ∈ N and Jαt is the fractional integral Riemann-Liouville (RL) of u(ζ, t) of order α is given as

Jσt u(ζ, t) =
1

Γ(α)

∫ t

0
(t − τ)α−1u(ϕ, τ)dτ (2.2)

Definition 2.2. The Laplace transformation (LT) of u(ζ, t) is given as [46]

u(ζ, s) = Lt[u(ζ, t)] =

∫ ∞

0
e−stu(ζ, t)dt, s > α, (2.3)

where the Laplace transform inverse is defined as

u(ζ, t) = L−1
t [u(ζ, s)] =

∫ l+i∞

l−i∞
estu(ζ, s)ds, l = Re(s) > l0. (2.4)

Lemma 2.1. Suppose that u(ζ, t) is piecewise continue term and U(ζ, s) = Lt[u(ζ, t)], we get

(1) Lt[Jαt u(ζ, t)] =
U(ζ,s)

sα , α > 0.
(2) Lt[Dα

t u(ζ, t)] = sσU(ζ, s) −
∑m−1

k=0 sα−k−1uk(ζ, 0), m − 1 < α ≤ m.
(3) Lt[Dnα

t u(ζ, t)] = snαU(ζ, s) −
∑n−1

k=0 s(n−k)α−1Dkα
t u(ζ, 0), 0 < α ≤ 1.

Proof. For proof see Refs. [46]. �

Theorem 2.1. Let u(ζ, t) be a piecewise continuous function on I × [0,∞) with exponential order ζ.
Assume that the fractional expansion of the function U(ζ, s) = Lt[u(ζ, t)] is as follows:

U(ζ, s) =

∞∑
n=0

fn(ζ)
s1+nα , 0 < α ≤ 1, ζ ∈ I, s > ζ. (2.5)

Then, fn(ζ) = Dnσ
t u(ζ, 0).
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Proof. For proof see Refs. [46]. �

Remark 2.1. The inverse Laplace transform of the Eq (2.5) is represented as [46]

u(ζ, t) =

∞∑
i=0

Dα
t u(ζ, 0)

Γ(1 + iα)
ti(ζ), 0 < ζ ≤ 1, t ≥ 0. (2.6)

3. Road map of the proposed method

Consider the fractional order partial differential equation,

Dα
t U(ζ, t) +

∂3U(ζ, t)
∂t∂ζ2 −

∂4U(ζ, t)
∂t2∂ζ2 +

∂4U(ζ, t)
∂ζ4 + a

(
∂2U(ζ, t)
∂ζ2

)2

− b
(
∂2U(ζ, t)
∂t2

)3

+ cU(ζ, t) = 0. (3.1)

Applying LT of Eq (3.1), we get

U(ζ, s) +
f0(ζ, s)

s
+

1
sα

[
−
∂3U(ζ, s)
∂t∂ζ2 −

∂4U(ζ, s)
∂t2∂ζ2 +

∂4U(ζ, s)
∂ζ4

+ aL
(
L−1

t

(
∂2U(ζ, s)
∂ζ2

))2

− bL
(
L−1

t

(
∂2U(ζ, s)

∂t2

))3

+ cU(ζ, s)
]

= 0.

(3.2)

Suppose that the result of Eq (3.2), we get

U(ζ, s) =

∞∑
n=0

fn(ζ, s)
snα+1 . (3.3)

The kth-truncated term series are

U(ζ, s) =
f0(ζ, s)

s
+

k∑
n=1

fn(ζ, s)
snα+1 , k = 1, 2, 3, 4 · · · . (3.4)

Residual Laplace function (RLF) is given as

LtResu(ζ, s) = U(ζ, s) +
f0(ζ, s)

s
+

1
sα

[
∂3U(ζ, s)
∂t∂ζ2 −

∂4U(ζ, s)
∂t2∂ζ2 +

∂4U(ζ, s)
∂ζ4

+ aL
(
L−1

t

(
∂2U(ζ, s)
∂ζ2

))2

− bL
(
L−1

t

(
∂2U(ζ, s)

∂t2

))3

+ cU(ζ, s)
]
.

(3.5)

And the kth-LRFs as

LtResk(ζ, s) = Uk(ζ, s) +
f0(ζ, s)

s
+

1
sσ

[
∂3Uk(ζ, s)
∂t∂ζ2 −

∂4Uk(ζ, s)
∂t2∂ζ2 +

∂4U(ζ, s)
∂ζ4

+ aL
(
L−1

t

(
∂2Uk(ζ, s)

∂ζ2

))2

− bL
(
L−1

t

(
∂2Uk(ζ, s)

∂t2

))3

+ cUk(ζ, s)
]
.

(3.6)

To illustrate a few facts, the following LRPSM features are provided:
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(1) LtRes(ζ, s) = 0 and lim j→∞LtResk(ζ, s) = LtResu(ζ, s) for each s > 0.
(2) lims→∞ sLtResu(ζ, s) = 0⇒ lims→∞ sLtResu,k(ζ, s) = 0.
(3) lims→∞ skα+1LtResu,k(ζ, s) = lims→∞ skα+1LtResu,k(ζ, s) = 0, 0 < α ≤ 1, k = 1, 2, 3, · · · .

To calculate the coefficients using fn(ζ, s), gn(ζ, s), hn(ζ, s) and ln(ζ, s), the following system is
recursively solved:

lim
s→∞

skα+1LtResu,k(α, s) = 0, k = 1, 2, · · · . (3.7)

In finally inverse Laplace transform to Eq (3.4), to get the kth analytical result of uk(ζ, t).

4. Applications

Example 4.1. Consider the fractional partial differential equations [47],

Dα
t u(ζ, t) −

∂3u(ζ, t)
∂t∂ζ2 −

∂4u(ζ, t)
∂t2∂ζ2 +

∂4u(ζ, t)
∂ζ4 +

1
9

(
∂2u(ζ, t)
∂ζ2

)2

−
1

216

(
∂2u(ζ, t)
∂t2

)3

+ 16u(ζ, t) = 0, where 2 < α ≤ 3,

(4.1)

with the following IC’s:

u(x, 0) = −ζ4,
∂

∂t
u(ζ, 0) = 0,

∂2

∂t2 u(ζ, 0) = 0. (4.2)

Using Laplace transform to Eq (4.1), we get

U(ζ, s) +
ζ4

s
+

1
sα

[
−
∂3U(ζ, s)
∂t∂ζ2 −

∂4U(ζ, s)
∂t2∂ζ2 +

∂4U(ζ, s)
∂ζ4

+
1
9
L

(
L−1

t

(
∂2U(ζ, s)
∂ζ2

))2

−
1

216
L

(
L−1

t

(
∂2U(ζ, s)

∂t2

))3

+ 16U(ζ, s)
]

= 0,

(4.3)

and so the kth-truncated term series are

ζu(ζ, s) =
−ζ4

s
+

k∑
n=1

fn(ζ, s)
snα+1 , k = 1, 2, 3, 4 · · · . (4.4)

Residual Laplace function is given as

LtResu(ζ, s) = U(ζ, s) +
ζ4

s
+

1
sα

[
∂3U(ζ, s)
∂t∂ζ2 −

∂4U(ζ, s)
∂t2∂ζ2 +

∂4U(ζ, s)
∂ζ4

+
1
9
L

(
L−1

t

(
∂2U(ζ, s)
∂ζ2

))2

−
1

216
L

(
L−1

t

(
∂2U(ζ, s)

∂t2

))3

+ 16U(ζ, s)
]
,

(4.5)

and the kth-LRFs as:

LtResk(ζ, s) = Uk(ζ, s) +
ζ4

s
+

1
sσ

[
∂3Uk(ζ, s)
∂t∂ζ2 −

∂4Uk(ζ, s)
∂t2∂ζ2 +

∂4U(ζ, s)
∂ζ4

+
1
9
L

(
L−1

t

(
∂2Uk(ζ, s)

∂ζ2

))2

−
1

216
L

(
L−1

t

(
∂2Uk(ζ, s)

∂t2

))3

+ 16Uk(ζ, s)
]
.

(4.6)
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Table 1. Comparison of the exact and proposed technique solution and various fractional-
orders α and t = 0.25 for Example 4.1.

ζ α = 2.5 α = 2.7 α = 2.9 α = 3 HPM [47] Exact
0 0.0222397 0.0111683 0.00553658 0.00388069 0.00388069 0.0038812
0.2 0.0206397 0.00956834 0.00393658 0.00228069 0.00228069 0.0022812
0.4 -0.00336028 -0.0144317 -0.0200634 -0.0217193 -0.0217193 -0.0217188
0.6 -0.10736 -0.118432 -0.124063 -0.125719 -0.125719 -0.125719
0.8 -0.38736 -0.398432 -0.404063 -0.405719 -0.405719 -0.405719
1.0 -0.97776 -0.988832 -0.994463 -0.996119 -0.996119 -0.996119

Now, we calculate fk(ζ, s), k = 1, 2, 3, · · · , substituting the kth-truncate series of Eq (4.4) into the
kth residual Laplace term Eq (4.6), multiply the solution equation by skα+1, and then solve recursively
the link lims→∞(skα+1LtResu,k(ζ, s)) = 0, k = 1, 2, 3, · · · . Following are the first some term:

f1(ζ, s) = 24, f2(ζ, s) = −384, f3(ζ, s) = 6144. (4.7)

Putting the value of fk(ζ, s), k = 1, 2, 3, · · · , in Eq (4.4), we get

U(ζ, s) = −
ζ4

s
+

24
sα+1 −

384
s2α+1 +

6144
s3α+1 + · · · . (4.8)

Using inverse LT, we get

u(ζ, t) = −ζ4 +
24tα

Γ(α + 1)
−

384t2α

Γ(2α + 1)
+

6144t3α

Γ(3α + 1)
+ · · · , (4.9)

and the exact solution are

u = −ζ4 + 4t3. (4.10)

In Figure 1, the exact and LRPSM solutions for u(ζ, t) at α = 3 at ζ and t = 0.3 of Example 4.1.
In Figure 2, analytical solution for u(ζ, t) at different value of α = 2.8 and 2.6 at ζ and t = 0.3. In
Figure 3, analytical solution for u(ζ, t) at various value of α at t = 0.3 of Example 4.1.

Figure 1. The actual and LRPSM results for u(ζ, t) at α = 3 at ζ and t = 0.3.
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Figure 2. Analytical solution for u(ζ, t) at different value of α = 2.8 and 2.6 at ζ and t = 0.3.

Figure 3. Analytical solution for u(ζ, t) at various value of α at t = 0.3.

Example 4.2. Consider the fractional partial differential equations [47]:

Dα
t U(ζ, t) −

∂3U(ζ, t)
∂t∂ζ2 −

∂4U(ζ, t)
∂t2∂ζ2 +

∂4U(ζ, t)
∂ζ4 +

(
∂2U(ζ, t)
∂ζ2

)2

−

(
∂2U(ζ, t)
∂t2

)2

+ 2U2(ζ, t) = 0, where 2 < α ≤ 3,

(4.11)

with the following IC’s:

U(ζ, 0) = eζ ,
∂

∂t
U(ζ, 0) = eζ ,

∂2

∂t2 U(ζ, 0) = eζ . (4.12)
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Using Laplace transform to Eq (4.11), we get

U(ζ, s) −
eζ

s
−

eζ

s2 −
eζ

s3 +
1
sα

[
−
∂3U(ζ, s)
∂t∂ζ2 −

∂4U(ζ, s)
∂t2∂ζ2 +

∂4U(ζ, s)
∂ζ4

+Lt

(
L−1

t

(
∂2U(ζ, s)
∂ζ2

))2

− Lt

(
L−1

t

(
∂2U(ζ, s)

∂t2

))2

+ 2Lt

(
L−1

t (U(ζ, s))
)2

]
= 0.

(4.13)

Table 2. Comparison of the exact and proposed technique solution and various fractional-
orders α and t = 0.099 for Example 4.2.

ζ α = 2.5 α = 2.7 α = 2.9 α = 3 Exact
0 1.08911 1.09052 1.09122 1.09142 1.09199
0.2 1.32968 1.33169 1.33268 1.33297 1.33376
0.4 1.62325 1.62612 1.62754 1.62795 1.62905
0.6 1.98139 1.98553 1.98759 1.98818 1.98973
0.8 2.41823 2.42422 2.42721 2.42807 2.43026
1 2.95086 2.95959 2.96394 2.96519 2.96833

Residual Laplace function is given as

LtResu(ζ, s) = U(ζ, s) −
eζ

s
−

eζ

s2 −
eζ

s3 +
1
sα

[
∂3U(ζ, s)
∂t∂ζ2 −

∂4U(ζ, s)
∂t2∂ζ2 +

∂4U(ζ, s)
∂ζ4

+Lt

(
L−1

t

(
∂2U(ζ, s)
∂ζ2

))2

− Lt

(
L−1

t

(
∂2U(ζ, s)

∂t2

))2

+ 2Lt

(
L−1

t (U(ζ, s))
)2

]
,

(4.14)

and so the kth-truncated term series are

u(ζ, s) =
eζ

s
+

eζ

s2 +
eζ

s3 +

k∑
n=1

fn(ζ, s)
snα+1 , k = 1, 2, 3, 4 · · · , (4.15)

and the kth-LRFs as:

LtResk(ζ, s) = Uk(ζ, s) −
eζ

s
−

eζ

s2 −
eζ

s3 +
1
sσ

[
∂3Uk(ζ, s)
∂t∂ζ2 −

∂4Uk(ζ, s)
∂t2∂ζ2 +

∂4Uk(ζ, s)
∂ζ4

+Lt

(
L−1

t

(
∂2Uk(ζ, s)

∂ζ2

))2

− Lt

(
L−1

t

(
∂2Uk(ζ, s)

∂t2

))2

+ 2Lt

(
L−1

t (Uk(ζ, s))
)2

]
.

(4.16)

Now, we calculate fk(ζ, s), k = 1, 2, 3, · · · , substituting the kth-truncate series of Eq (4.15) into the
kth residual Laplace term Eq (4.16), multiply the solution equation by skα+1, and then solve recursively
the link lims→∞(skα+1LtResu,k(ζ, s)) = 0, k = 1, 2, 3, · · · . Following are the first some term:

f1(ζ, s) = −(eζ + 3e2ζ),
f2(ζ, s) = eζ + 54e2ζ + 36e3ζ ,

f3(ζ, s) = −(eζ + 870e2ζ + 3564e3ζ + 792e4ζ).
(4.17)
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Putting the value of fk(ζ, s), k = 1, 2, 3, · · · , in Eq (4.15), we get

U(ζ, s) =
eζ

s
+

eζ

s2 +
eζ

s3 −
eζ + 3e2ζ

sα+1 −
eζ + 54e2ζ + 36e3ζ

s2α+1

−
eζ + 870e2ζ + 3564e3ζ + 792e4ζ

s3α+1 + · · · .

(4.18)

Using inverse LT, we get

u(ζ, t) = eζ + eζt +
eζt
2
−

(eζ + 3e2ζ)tα

Γ(α + 1)
+

(eζ + 54e2ζ + 36e3ζ)t2α

Γ(2α + 1)

+
(eζ + 870e2ζ + 3564e3ζ + 792e4ζ)t3α

Γ(3α + 1)
+ · · · ,

(4.19)

and the exact solution are

u = eζ+t. (4.20)

In Figure 4, the exact and LRPSM solutions for u(ζ, t) at α = 3 at ζ and t = 0.3 of Example 4.2. In
Figure 5, LRPSM solutions for u(ζ, t) at α = 2.5 and α = 2.8 and t = 0.3 of Example 4.2.

Figure 4. Exact and LRPSM solutions for u(ζ, t) at α = 3 at ζ and t = 0.3.

Figure 5. LRPSM solutions for u(ζ, t) at α = 2.5 and α = 2.8 and t = 0.3.
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Example 4.3. Consider the fractional partial differential equations [47]:

Dα
t u(ζ, t) −

∂3u(ζ, t)
∂t∂ζ2 −

∂4u(ζ, t)
∂t2∂x2 +

∂4u(ζ, t)
∂ζ4

−

(
∂2u(ζ, t)
∂t2

) (
∂u(ζ, t)
∂ζ

)
− u(ζ, t)(

∂u(ζ, t)
∂t

) = 0, where 2 < α ≤ 3,
(4.21)

with the following IC’s:

U(ζ, 0) = cos ζ,
∂

∂t
U(ζ, 0) = − sin ζ,

∂2

∂t2 U(ζ, 0) = − cos ζ. (4.22)

Table 3. Comparison of the exact and proposed technique solution and various fractional-
orders α and t = 0.22 for Example 4.3.

ζ α = 2.5 α = 2.7 α = 2.9 α = 3 Exact
0 0. 0.97178 0.973463 0.974025 0.975897
0.2 -0.04370738 0.908702 0.910351 0.910903 0.913089
0.4 -0.085672 0.809397 0.810946 0.811465 0.813878
0.6 -0.124221 0.677823 0.679212 0.679677 0.682221
0.8 -0.157818 0.519227 0.5204 0.520792 0.523366
1 -0.185124 0.339931 0.34084 0.341145 0.343646

Using Laplace transform to Eq (4.21), we get

U(ζ, s) −
cos ζ

s
+

sin ζ
s2 +

cos ζ
s3 +

1
sσ

[
−
∂3U(ζ, s)
∂t∂ζ2 −

∂4U(ζ, s)
∂t2∂ζ2 +

∂4U(ζ, s)
∂ζ4

+L

(
L−1

t

(
∂2u(ζ, s)
∂t2

)
L−1

t

(
∂u(ζ, s)
∂ζ

))
− L

(
L−1

t (U(ζ, s))L−1
t

(
∂U(ζ, s)

∂t

)) ]
= 0.

(4.23)

Residual Laplace function is given as

LtResu(ζ, s) = U(ζ, s) −
cos ζ

s
+

sin ζ
s2 +

cos ζ
s3 +

1
sσ

[
−
∂3U(ζ, s)
∂t∂ζ2 −

∂4U(ζ, s)
∂t2∂ζ2 +

∂4U(ζ, s)
∂ζ4

+L

(
L−1

t

(
∂2u(ζ, s)
∂t2

)
L−1

t

(
∂u(ζ, s)
∂ζ

))
− L

(
L−1

t (U(ζ, s))L−1
t

(
∂U(ζ, s)

∂t

)) ]
,

(4.24)

and so the kth-truncated term series are

u(ζ, s) =
cos ζ

s
+
− sin ζ

s2 +
− cos ζ

s3 +

k∑
n=1

fn(ζ, s)
snα+1 , k = 1, 2, 3, 4 · · · , (4.25)

and the kth-LRFs as:

LtResk(ζ, s) = Uk(ζ, s) −
cos ζ

s
+

sin ζ
s2 +

cos ζ
s3 +

1
sα

[
−
∂3Uk(ζ, s)
∂t∂ζ2 −

∂4Uk(ζ, s)
∂t2∂ζ2

+
∂4Uk(ζ, s)

∂ζ4 +Lt

(
L−1

t

(
∂2Uk(ζ, s)

∂t2

)
L−1

t

(
∂Uk(ζ, s)

∂ζ

))
− Lt

(
L−1

t

(
Uk(ζ, s)

)
L−1

t

(
∂Uk(ζ, s)

∂t

))]
.

(4.26)
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Now, we calculate fk(ζ, s), k = 1, 2, 3, · · · , substituting the kth-truncate series of Eq (4.25) into the
kth residual Laplace term Eq (4.26), multiply the solution equation by skα+1, and then solve recursively
the link lims→∞(skα+1LtResu,k(ζ, s)) = 0, k = 1, 2, 3, · · · . Following are the first some term:

f1(ζ, s) = − cos ζ, f2(ζ, s) = cos ζ, f3(ζ, s) = − cos ζ. (4.27)

Putting the value of fk(x, s), k = 1, 2, 3, · · · , in Eq (4.25), we get

U(ζ, s) =
cos ζ

s
−

sin ζ
s2 −

cos ζ
s3 −

cos ζ
sα+1 +

cos ζ
s2α+1 −

cos ζ
s3α+1 + · · · . (4.28)

Using inverse LT, we get

u(ζ, t) = cos ζ − t sin ζ −
t2 cos ζ

2
−

tα cos ζ
Γ(α + 1)

+
t2α cos ζ

Γ(2α + 1)
−

t3α cos ζ
Γ(3α + 1)

+ · · · , (4.29)

and the exact solution are

u = cos(ζ + t). (4.30)

In Figure 6, exact and LRPSM solutions for u(ζ, t) at α = 3 and t = 0.3 of Example 4.3. Figure 7,
LRPSM solutions for u(ζ, t) at α = 2.5, α = 2.8, and t = 0.3.

Figure 6. Exact and LRPSM solutions for u(ζ, t) at α = 3 at and t = 0.3.

Figure 7. LRPSM solutions for u(ζ, t) at α = 2.5 α = 2.8 , and t = 0.3.
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5. Conclusions

In this article, the fractional partial differential equation has been solved analytically by employing
the Laplace residual power series method in conjunction with the Caputo operator. To demonstrate the
validity of the recommended method, we analyzed three distinct partial differential equation problems.
The simulation results demonstrate that the outcomes of our method are in close accordance with the
exact answer. The new method is highly straightforward, efficient, and suitable for getting numerical
solutions to partial differential equations. The primary advantage of the proposed approach is the
series form solution, which rapidly converges to the exact answer. We can therefore conclude that the
suggested approach is quite methodical and efficient for a more thorough investigation of fractional-
order mathematical models.
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