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Abstract: The indirect effect of predation due to fear has proven to have adverse effects on the
reproductive rate of the prey population. Here, we present a deterministic two-species predator-prey
model with prey herd behavior, mutual interference, and the effect of fear. We give conditions for the
existence of some local and global bifurcations at the coexistence equilibrium. We also show that fear
can induce extinction of the prey population from a coexistence zone in finite time. Our numerical
simulations reveal that varying the strength of fear of predators with suitable choice of parameters can
stabilize and destabilize the coexistence equilibrium solutions of the model. Further, we discuss the
outcome of introducing a constant harvesting effort to the predator population in terms of changing the
dynamics of the system, in particular, from finite time extinction to stable coexistence.
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1. Introduction

Interactions among predator and prey population species are modeled by systems of differential
equations, and the functional response (number of prey consumed per predator per unit of time) of
predators toward the prey is one of the important ecological components, which provides a bedrock
for predator-prey dynamics. Mathematical models incorporating a functional response originated from
the investigation of chemical reactions and biological interactions [1, 2]. A large body of scholarly
literature has shown that the functional response of predator can have profound impacts on the
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dynamics in natural predator-prey communities [3–11]. Thus, to make mathematical models more
realistic, an appropriate choice of functional response is needed.

Herd behavior refers to the phenomenon in which individuals in a group act collectively for a
given period without coordination by a central authority [12–14]. This behavioral phenomenon has
been widely researched across several disciplines. For example, in early economics, Veblen studied
herd behavior in sudden shifts in consumer behavior, such as fads and fashions [15]. Again, such
phenomenon is seen in the Cobb-Douglas production function in the econometrics literature [16]. Its
effect on population dynamics can be modeled using a functional response. Prey herd behavior is a
form of anti-predator behavior and provides protection for the prey species against predators [17, 18].
One way of modeling prey heard behavior is by using the functional response, ϕ(u) = cup, with
0 < p < 1 introduced by Rosenzweig [19], where u = u(t) is the population density of the herd and c
is the predation rate. Symbiotic, competition and predator-prey models in which the interaction terms
use square root of the density of one population was considered by Ajraldi et al. [17]. Furthermore,
Braza [20] studied a predator-prey model with the square root functional response ϕ(u) = cu1/2,

proposed by Gauss [3], implying a strong herd behavior where the predator interacts with the prey
along the outskirts of the herd. An ecoepidemic predator-prey model with feeding satiation showing
prey herd behavior and abandoned infected prey was investigated by Kooi and Venturino [21]. For
other ways of modeling prey herd behavior, see [6, 10] and references therein.

In addition, finite time extinction (FTE) of species exists in ecosystems and it is a significant issue
for the management of natural resources [19, 22]. The functional response ϕ(u) = cup, for p < 1 is
non-smooth for u = 0 and therefore possess interesting complex dynamics. This response function
allows for the extinction of the prey species in finite time, after which the predator population species
exponentially decay to zero in infinite time [18,20,23–25]. Non-smooth functional responses (or power
incidence functions) have been analyzed in susceptible-infective models, where the host species can
potentially go extinct in finite time [26].

The need to consider intra-specific behavioral interactions among predators when searching for
prey is a vital question for ecologists and conservationist trying to ascertain the dynamics that inform
ecosystem balance. These behavioral effects, also known as mutual/predator interference impede
the predators’ searching efficiency as the density of the predators increases [27–30]. Several studies
have concluded that mutual interference has a stabilizing effect on population dynamics, see [31] and
references therein. Freedman and Wolkowicz [32] investigated the survival or extinction of predators in
a deterministic predator-prey system exhibiting prey group defence. In this study, they determined that
extinction due to group defence combined with enrichment can be prevented by introducing mutual
interference of predators. For further discussions of mutual interference with other types of functional
response, see [33–38].

Recently, the non-consumptive effects of predation due to fear of predators has become the subject
of interest for ecologists and mathematical biologists. Experiments on terrestrial vertebrates showed
that the presence of a predator may play an important role by changing the behavior of the prey
demography [39]. Zanette et al. [39] manipulated predation risk of song sparrows for the duration
of an entire breeding season. This experiment was conducted to ascertain whether perceived predation
risk alone could have an impact on the reproduction of the song sparrows. Suraci et al. [40] observed
from experimentation that the effect of the manipulation of fear of large carnivores causes a tropic
cascade. Hua et al. [41] studied how increased perception of predation risk to adults and offspring
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alters reproductive strategy and performance. In Wirsing and Ripple [42], a comparison of shark and
wolf research revealed similar behavioral responses by prey. Bauman et al. [43] investigated how the
effects of fear associated with predator presence and habitat structure interact to change the removal
of macroalgal biomass (i.e herbivory) on coral reefs. They observed that the effects of fear due to
the presence of predators were highest at low macroalgal density, but lost at higher densities due to
increased background risk.

Motivated by these ecological and biological findings, Wang et al. [44] introduced a mathematical
model incorporating fear. The authors demonstrated that strong fear responses can have a stabilizing
effect on a predator-prey model with Holling type II response by excluding periodic solutions
to the system, resulting in a locally stable point of coexistence between the predator and prey
populations [44]. Subsequent studies investigated the dynamics of fear in models incorporating hunting
cooperation, prey refuge, Leslie-Gower type and a variety of functional responses, such as Beddington-
DeAngelis, Holling type I, II, III and IV [45–50]. A recent work considering the effect of mutual
interference and fear on a predator-prey model with a Holling type I functional response established
that the inclusion of mutual interference promotes system stability [51].

The qualitative effect of predator harvesting on the stability of the ecosystem has been investigated
extensively [52–57]. Chakraborty et al. [58] explored a mathematical study with biological
ramifications of a predator-prey model with predator effort harvesting. Their result suggests that
harvesting of predator may be one of several ways to observe coexistence of prey and predator
population species in the laboratory study and possibly nature. The ratio-dependent predator-prey
model where the predator population is harvested at catch-per-unit-effort hypothesis is investigated by
Gao et al. [59]. Therein, they studied the temporal, spatial and spatiotemporal rich dynamics due to the
non-smoothness of the origin.

Our primary contributions in the present manuscript are:

1. We formulate a mathematical model (i.e. model (2.2)) incorporating the combined effects of fear
of predator, prey herd behavior and mutual interference.

2. We study the effect of fear of predators on the dynamics of the model (2.2). We note that when
there is no fear (i.e. k = 0), there is some initial data that converges uniformly to a stable
coexistence equilibrium point. With the introduction of fear of predator (i.e. k > 0), that
same initial data will converge to the predator axis in finite time. This phenomenon is shown
analytically via Theorem 5.1 and presented numerically in Figure 6.

3. We analyze the impact of predator harvesting on the dynamics of the modified Lotka-Volterra
model with fear effect. Our mathematical conjecture (see Conjecture 4) and numerical simulation
(see Figure 8) reveal that, harvesting of predators can prevent finite time extinction of the prey
species.

This paper is arranged as follows: In Section 2, we propose a mathematical model of systems
of differential equations to incorporate the combined effects of fear of predators, prey herd behavior
and mutual interference. Guidelines to dynamical analysis are presented in Section 3, where we
investigated the possible existence of biologically feasible equilibrium points and the stability of the
coexistence equilibrium. In Section 4, we derive conditions for the existence of local and global
bifurcations including saddle-node, Hopf, Bautin, and homoclinic bifurcations. Finite time extinction
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of the prey species driven by fear of predators were analyzed in Section 5. In Section 6, we investigate
the effect of effort harvesting of predators. To illustrate the feasibility of our mathematical analysis and
conjectures, extensive numerical solutions are presented in Section 7. The paper ends with concluding
remarks in Section 8.

2. The mathematical model

Consider a modified Lotka-Volterra predator-prey model with predation intensity and mutual
interference of predators. Let u(t) and v(t), respectively, denote the prey and predator population
densities at any time t. The model is given by the following systems of equations

du
dt

= au − bu2 − cupvm, u(0) ≥ 0,
dv
dt

= −dv + eupvm, v(0) ≥ 0,
(2.1)

where 0 < m, p ≤ 1. Let m denote mutual interference parameter introduced by Hassell [28], 1/p is
the intensity of predation and p determines the slope of the functional response at the origin, a denotes
the birth rate of prey, d denotes the death rate of predator, b reflects the intraspecific competition of
the prey, c denotes the rate of predation, and e measures efficiency of biomass conversion from prey to
predator. When p = m = 1, the model (2.1) degenerates to the classical Lotka-Volterra model [1,2]. All
parameters are assumed to be positive. The underlying assumptions of the model (2.1) are as follows:

(i) The first equation in model (2.1) describes the change in prey population with respect to time, and
it is separated into three parts, namely birth rate, effect of the density of one species on the rate of
growth of the other and functional response of the predator towards the prey.

(ii) The second equation in model (2.1) describes the change in predator population with respect to
time and it is separated into two parts, namely death rate, d, the predators die out in the absence
of its only food source, prey and biomass conversion from prey to predator with rate e.

(iii) The term vm models the intra-specific behavioral interactions among predators when searching
for prey. For m < 1, there is predator interference, where larger predator densities leads to less
consumption per capita. Furthermore, this leads to a nonvertical predator nullcline.

(iv) The predator is consuming the prey with the functional response ϕ(u) = up, for 0 < p < 1
(see [10] for assumptions of ϕ).

Model (2.1) has been well investigated in infectious disease modeling, where u represents the density
of susceptible populations, v represents the density of infective populations and the term upvm (i.e.
modified Lotka-Volterra interaction term) represents power incidence function [26]. As we have seen,
the model considered in [26] reveals some significant and interesting results due to the power incidence
function. A natural question that arises is: how does the effect of fear of predators affect the dynamical
behaviors of the model (2.1)? Does it stabilize, destabilize or have no influence?
Now, based on experimental evidence [39], we assume fear of predators decreases the birth rate of
the prey species. To account for the decrease in the prey population due to fear of predators, the birth
rate of the prey is multiplied by the term φ(k, v) = 1

1+kv , introduced by Wang et al. [44], which is
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monotonically decreasing in both k and v. Here k denotes the strength of fear of predator. Biologically,
it is appropriate to assume the following:

φ(k, 0) = 1, φ(0, v) = 1, lim
v→∞

φ(k, v) = 0,

lim
k→∞

φ(k, v) = 0,
∂φ(k, v)
∂v

< 0,
∂φ(k, v)
∂k

< 0.

To the best of our knowledge, there does not exist any scholarly literature that investigates the
combined influence of fear of predators on predator-prey interactions with prey herd behavior and
mutual interference. This motivates us to formulate the following model

du
dt

=
au

1 + kv
− bu2 − cupvm B F(u, v), u(0) ≥ 0,

dv
dt

= −dv + eupvm B G(u, v), v(0) ≥ 0.
(2.2)

When p = m = 1, we recover the results from Wang et al. [44]. Moreover, for p = 1 and 0 < m ≤ 1,
we recover results from Xiao and Li [51]. Recently, Fakhry and Naji [60] investigated the model (2.2),
where the fear function was multiplied to the logistic growth term i.e. (au − bu2)φ(k, v) with square
root functional response (i.e. p = 0.5) and no predator interference (i.e. m = 1). Huang and Li [61]
disproved and also provided an alternative proof for some of the results obtained by Fakhry and Naji.
Our model provides a generalization of the models mentioned above, and we will focus on the case
where 0 < m, p < 1.

3. Dynamical analysis

The dynamical analysis of the model (2.2) is investigated in this section.

Lemma 3.1. Consider the first quadrant R2
+ = {(u, v) : u ≥ 0, v ≥ 0}, then the solutions (u(t), v(t)) of

model the (2.2) which initiate in R2
++ are nonnegative for all t ≥ 0. Here, R2

++ = {(u, v) : u > 0, v > 0}.

Proof. The right hand side of model (2.2) is continuous and locally non-smooth in R2
+. Also, the

solution (u(t), v(t)) which initiate in R2
++ of model (2.2) exists and is non-unique. From model (2.2),

we obtain

u(t) =u(0) exp
[∫ t

0

( a
1 + kv

− bu − cup−1vm
)

ds
]
≥ 0,

v(t) =v(0) exp
[∫ t

0

(
−d + eupvm−1

)
ds

]
≥ 0.

However, v stays positive for all t > 0. �

In theoretical biology and ecology, nonnegativity of the model (2.2) implies survival of the populations
over some temporal domain.

Lemma 3.2. The solutions (u(t), v(t)) of model the (2.2) which initiate in R2
++ are uniformly bounded

and dissipative.
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The proof of Lemma 3.2 is standard and therefore omitted in this work.

The boundedness of a system limits total population growth of the interacting species, ensuring that
neither population experiences exponential growth over a long time interval. As a condition of this
property, total population values will not reach impracticable quantities in a period of time. Also, in a
dissipative model, the population of each species is bounded from above for all time. This guarantees
that the individual populations of the predator or the prey do not exceed a finite upper limit.

3.1. Existence of equilibria

We present analytic guidelines in this subsection to analyze the model (2.2) and to investigate its
equilibria. Consider the solutions to the steady state equations:

F(u, v) = 0 and G(u, v) = 0.

The above equations contain the following non-negative equilibrium points.

(i) The trivial (extinction) equilibrium point E0(0, 0), always exist. Here, neither the prey nor
predator population survives in the ecosystem.

(ii) An axial (predator free) equilibrium point E1(a/b, 0), always exist. Here, the predator population
goes into extinction and only the prey population survives.

(iii) The coexistence equilibrium point(s) E2(u∗, v∗). Ecologically, this equilibrium point is important
since both prey and predator populations coexist.

The existence of a coexistence equilibrium point is ascertained by finding the intersection(s) of the
prey and predator nullclines.
First, the prey nullcline is determined by the equation

g1(u, v) =
a

1 + kv
− bu − cup−1vm = 0. (3.1)

If u = 0, we obtain
0 =

a
1 + kv

B σ(v).

But v = 0 implies σ(v) = a , 0, since a is a positive constant. Furthermore,

σ′(v) = −
ak

(1 + kv)2 < 0,

and thus, there exist some v > 0 such that σ(v) = 0. Also, if v = 0 in equation (3.1), then u = a
b > 0.

Moreover, we assume that

b > c(1 − p)up−2vm (3.2)

and observe that u > 0, v > 0 and
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dv
du

= −

[
b − c(1 − p)up−2vm

cmup−1vm−1 − σ′(v)

]
< 0.

Now the graph of the prey nullcline is concave and intersects the prey axis at u = 0 and u = a
b .

Additionally, the predator nullcline is determined by the equation

g2(u, v) = −d + eupvm−1 = 0. (3.3)

Solving for v in equation (3.3) yields

v =

[ e
d

up
]1/(1−m)

(3.4)

Clearly, the point (0, 0) lies on the predator nullcline. By computing the first and second derivatives
with respect to u, we obtain

dv
du

=
pv

(1 − m)u
> 0,

d2v
du2 =

p(p + m − 1)v
[(1 − m)u]2 (> 0 or = 0 or < 0). (3.5)

From equation (3.5), the sign of the second derivative depends on p + m − 1.
Hence, the predator nullcline goes through (0, 0), and as u increases, the predator nullcline increases

monotonically. Now by the intermediate value theorem, the prey and predator nullclines will intersect
in R2

++ to produce a unique (i.e. E2(u∗, v∗)) or two (i.e. Ei
2(u∗i , v

∗
i ), for i = 1, 2 and 0 < u∗1 < u∗2 <

a
b )

coexistence equilibrium points.

Remark 1. Since 0 < p,m < 1, there is singularity in the Jacobian at E0 and E1. Hence we cannot
analyze the stability of E0 and E1 by linearizing the model (2.2).

3.2. Stability analysis at a coexistence equilibrium point

We discuss in this subsection the local stability at any coexistence equilibrium point.

Theorem 3.3. Consider the model given by (2.2).

(a) For p + m ≥ 1, there exists a unique coexistence equilibrium point E2(u∗, v∗) which is locally
asymptotically stable (LAS) by the Routh-Hurwitz criterion.

(b) For p + m < 1, either there exist two coexistence equilibrium points or none. However, if there
exist two coexistence equilibrium points, then E1

2(u∗1, v
∗
1) is a saddle and E2

2(u∗2, v
∗
2) is LAS.

Proof. The linearized model (2.2) at any coexistence equilibrium point (u∗, v∗) is given by the Jacobian
Matrix J

J =

[
J11 J12

J21 J22

]
, (3.6)
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where

J11 =
a

1 + kv∗
− 2bu∗ − cpu∗p−1v∗m

= −bu∗ + c(1 − p)u∗p−1v∗m

= −u∗
[
b − c(1 − p)u∗p−2v∗m

]
= u∗

∂g1

∂u∗
.

J12 = −
kau∗

(1 + kv∗)2 − cmu∗pv∗m−1 = u∗
∂g1

∂v∗
< 0,

J21 = epu∗p−1v∗m = v∗
∂g2

∂u∗
> 0,

J22 = −d + meu∗pv∗m−1 = −d(1 − m) = v∗
∂g2

∂v∗
< 0.

The characteristic equation at the coexistence equilibrium is

η2 − tr (J)η + det (J) = 0,

where

tr (J) = J11 + J22 = u∗
∂g1

∂u∗
+ v∗

∂g2

∂v∗
,

and

det (J) = J11J22 − J12J21 = u∗v∗
∂g1

∂u∗
∂g2

∂v∗
− u∗v∗

∂g1

∂v∗
∂g2

∂u∗
.

By using implicit function theorem as used in [62], we obtain

det (J) = u∗v∗
∂g1

∂v∗
∂g2

∂v∗

(
dv∗(g2)

du∗
−

dv∗(g1)

du∗

)
,

where dv∗(g2)

du∗ and dv∗(g1)

du∗ are the slopes of the tangents of the predator and prey nullclines at E2

respectively.

(a) Now we assume p + m ≥ 1. The two possibilities for the sign of the Jacobian matrix at E2 are:

sign(J) =

[
− −

+ −

]
(3.7)

or

sign(J) =

[
+ −

+ −

]
. (3.8)

If b > c(1− p)u∗p−2v∗m, then det (J) > 0 and tr (J) < 0. Thus in (3.7), E2 is LAS by Routh-Hurwitz
criterion. In (3.8), the det (J) > 0 since dv∗(g2)

du∗ > dv∗(g1)

du∗ . This is clearly seen in Figure 1[(a) and (b)].
Thus, E2 is LAS if the tr (J) < 0.
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(b) Assume p + m < 1 and there exist two coexistence equilibrium points. The sign of the Jacobian
matrix at E1

2 is given by

sign(J) =

[
+ −

+ −

]
(3.9)

and E2
2 is

sign(J) =

[
− −

+ −

]
(3.10)

or

sign(J) =

[
+ −

+ −

]
(3.11)

In (3.9), b < c(1 − p)u∗p−2v∗m and dv∗(g2)

du∗ < dv∗(g1)

du∗ , hence E1
2 is a saddle point since the det (J) < 0.

This is evident in Figure 1(c). In (3.10), b > c(1 − p)u∗p−2v∗m, thus E2
2 is LAS since det (J) > 0

and tr (J) < 0. In (3.11), when b < c(1 − p)u∗p−2v∗m then det (J) > 0 if dv∗(g2)

du∗ > dv∗(g1)

du∗ . Therefore,
E2

2 is LAS if tr (J) < 0.

�

4. Bifurcation analysis

4.1. Local bifurcation

In this subsection, we investigate the qualitative changes in the dynamical behavior of model (2.2)
under the effect of varying the strength of the fear of predator k. The conditions and restrictions for
the occurrence of saddle-node and Hopf bifurcations are derived analytically and their classification is
of co-dimension 1 bifurcations. Additionally, we present numerically the two-parameter projection of
the Hopf-bifurcation diagrams of the model (2.2).

4.1.1. Saddle-node bifurcation

Saddle-node bifurcation occurs when shifting a parameter value causes two equilibria of contrasting
stability to collide and mutually disappear, forming an instantaneous saddle-node at the point of their
collision. This is a one parameter bifurcation and hence of codimension 1. In the next theorem, we
show that using the strength of fear as a bifurcation parameter, the model (2.2) satisfies the conditions
for saddle-node bifurcation.

Theorem 4.1. Model (2.2) admits a saddle-node bifurcation around E2 at ks when the model parameter
values satisfy the conditions dv∗(g2)

du∗ = dv∗(g1)

du∗ and tr (J) < 0.

Proof. In order to verify the conditions for the existence of saddle-node bifurcation, we employ
Sotomayor’s theorem [63] at k = ks. At k = ks, we obtain that dv∗(g2)

du∗ = dv∗(g1)

du∗ and tr (J) < 0, which
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shows that the Jacobian (J) has a zero eigenvalue. Let W and Z be the eigenvectors corresponding to
the zero eigenvalue of the matrix J and JT respectively. Here, W = (w1,w2)T and Z = (z1, z2)T , where
w1 = − J12w2

J11
, z1 = − J21z2

J11
and w2, z2 ∈ R \ {0}.

Furthermore, let H = (F,G)T and M̃ = (u∗, v∗)T , where F,G are defined in (2.2). Thus

ZT Hk(M̃, ks) = (z1, z2)
(
−

au∗v∗

(1 + ksv∗)2 , 0
)T

= −
au∗v∗

(1 + ksv∗)2 z1 , 0,

and

ZT
[
D2H(M̃, ks)(W,W)

]
, 0.

Therefore model (2.2) admits a saddle-node bifurcation when k = ks. �

Remark 2. Additionally, the model (2.2) undergoes saddle-node bifurcation around E2 with respect to
the following parameters, d, b, a, c and e. See Figure 9 in the appendix for numerical verification.

4.1.2. Hopf-bifurcation

Similar to a saddle-node bifurcation, a Hopf-bifurcation describes a local change in the stability
of an interior equilibrium point due to an alteration of a parameter. However, for a Hopf-bifurcation,
varying the bifurcation parameter does not annihilate or create new equilibrium points. Rather, at the
point where system stability shifts (i.e. Hopf point) – a stable or unstable periodic orbit develops.
This is a one parameter bifurcation and hence of codimension 1. The conditions for the existence of
Hopf-bifurcation of the model (2.2) is derived in the theorem below.

Theorem 4.2. Model (2.2) experiences Hopf-bifurcation around the coexistence equilibrium point E2

at k = kh, where

kh =
1
v∗

[
a

2bu∗ + cpu∗p−1v∗m + d(1 − m)
− 1

]
,

when the following conditions are satisfied:

S (k) = 0, M(k) > 0, and
d
dk

Re[ηi(k)
]
|k=kh , 0 for i = 1, 2.

Proof. Using the strength of fear as a bifurcation parameter, consider the Jacobian matrix (3.6) around
the coexistence equilibrium E2. The characteristic equation at E2 is given by

η2 − S (k)η + M(k) = 0, (4.1)

where S = tr (J) = J11 + J22 and M = det (J) = J11J22 − J12J21. The zeros of the equation (4.1) are

η1,2 = ξ(k) ± iµ(k). (4.2)

At k = kh, S (k) = 0 implies

a
1 + khv∗

− 2bu∗ − pcu∗p−1v∗m − d(1 − m) = 0.
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The characteristic equation (4.1) becomes

η2 + M(k) = 0, (4.3)

at k = kh. Solving for the zeros of equation (4.3) yields η1,2 = ±i
√

M. Thus, a pair of purely imaginary
eigenvalues. Furthermore, we substantiate the transversality condition. For any k in the neighborhood

of kh in (4.2), let ξ(k) = Re
[
ηi(k)

]
= 1

2S (k) and µ(k) =

√
M(k) − [S (k)]2

4 . Thus,

d
dk

Re[ηi(k)
]
|k=kh =

1
2

d
dk

S (k)|k=kh .

Thus the tranversality condition is satisfied if
d
dk

Re[ηi(k)
]
, 0 at k = kh. Therefore, by the Hopf-

bifurcation Theorem [64], the model (2.2) experiences a Hopf-bifurcation around E2 at k = kh. �

4.1.3. Direction of Hopf-bifurcation

We investigate the stability and direction of the periodic cycles emitted via Hopf-bifurcation around
the coexistence equilibrium point by computing the first Lyapunov coefficient [63]. We first translate
the coexistence equilibrium E2 of the model (2.2) to the origin by using the transformation x = u − u∗

and y = v − v∗. Now, the model (2.2) becomes
dx
dt

=
a(x + u∗)

1 + k(y + v∗)
− b(x + u∗)2 − c(x + u∗)p(y + v∗)m,

dy
dt

= −d(y + v∗) + e(x + u∗)p(y + v∗)m.

Applying Taylor series expansion at (x, y) = (0, 0) up to third order, we obtain the following planar
analytic model 

ẋ = a10x + a01y + a20x2 + a11xy + a02y2 + a30x3 + a21x2y

+a12xy2 + a03y3,

ẏ = b10x + b01y + b20x2 + b11xy + b02y2 + b30x3 + b21x2y

+b12xy2 + b03y3,

(4.4)

where

a10 =
a

1 + khv∗
− 2bu∗ − cpu∗p−1v∗m,

a01 = −
khau∗

(1 + khv∗)2 − cmu∗pv∗m−1,

a20 = − b −
c
2

(p − 1)pu∗p−2v∗m,

a11 = −
akh

(1 + khv∗)2 − cmpu∗p−1v∗m−1,

a02 =
ak2

hu∗

(1 + khv∗)3 −
c
2

(m − 1)mu∗pv∗m−2,

a30 = −
c
6

(p − 2)(p − 1)pu∗p−3v∗m,
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a21 = −
c
2

m(p − 1)pu∗p−2v∗m−1,

a12 =
ak2

h

(1 + khv∗)3 −
c
2

(m − 1)mpu∗p−1v∗m−2,

a03 = −
ak3

hu∗

(1 + khv∗)4 −
c
6

(m − 2)(m − 1)mu∗pv∗m−3,

b10 =epu∗p−1v∗m,

b01 = − d + emu∗pv∗m−1,

b20 =
e
2

(p − 1)pu∗p−2v∗m,

b11 =empu∗p−1v∗m−1,

b02 =
e
2

(m − 1)mu∗pv∗m−2,

b30 =
e
6

(p − 2)(p − 1)pu∗p−3v∗m,

b21 =
e
2

m(p − 1)pu∗p−2v∗m−1,

b12 =
e
2

(m − 1)mpu∗p−1v∗m−2,

b03 =
e
6

(m − 2)(m − 1)mu∗pv∗m−3.

Since a10, a01, b10 and b01 are the components of the Jacobian matrix J evaluated at the coexistence
equilibrium point E2 at k = kh, then S = a10 + b01 = 0 and M = a10b01 − a01b10 > 0.
The first Lyapunov coefficient L [63] is computed by the formula

L =
−3π

2a01M3/2 {[a10b10(a2
11 + a11b02 + a02b11) + a10a01(b2

11 + a20b11 + a11b02)

+b2
10(a11a02 + 2a02b02) − 2a10b10(b2

02 − a20a02) − 2a10a01(a2
20 − b20b02)

−a2
01(2a20b20 + b11b20) + (a01b10 − 2a2

10)(b11b02 − a11a20)]
−(a2

10 + a01b10) [3(b10b03 − a01a30) + 2a10(a21 + b12) + (b10a12 − a01b21)]}.

Now, if L < 0, then the Hopf-bifurcation is supercritical and subcritical if L > 0.

4.1.4. Generalized Hopf-bifurcation

We note here that from the two-dimensional projection of the Hopf-bifurcation diagrams of the
model (2.2) in Figure 4, a generalized Hopf-bifurcation or Bautin bifurcation is observed. The
generalized Hopf-bifurcation is a local bifurcation of co-dimension 2 and this happens when the first
Lyapunov coefficient is zero, and the coexistence equilibrium point has a pair of purely imaginary
eigenvalues. The generalized Hopf-bifurcation point separates branches of subcritical and supercritical
Hopf-bifurcation in the parameter plane.

Now, we present a conjecture that pertains to generalized Hopf-bifurcation.
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Conjecture 1 (Existence of Generalized Hopf-bifurcation). Assume that the model (2.2) admits a
Hopf-bifurcation as in Theorem 4.2 for a given set of parameters. If the first Lyapunov coefficient
becomes zero and the coexistence equilibrium point has a pair of purely imaginary eigenvalues, then
the model (2.2) undergoes a Bautin or generalized Hopf-bifurcation.

4.2. Global bifurcation

Now, there exist a unique value of parameter k for which W s(E0) and Wu(E0) coincide, and that
implies existence of a homoclinic loop in model (2.2). In particular, we state a conjecture concerning
the effect of fear of predators on the global dynamics of model (2.2).

Conjecture 2 (Existence of Homoclinic Bifurcation). Consider the model (2.2) where all parameters
are fixed except k ≥ 0. There exists k∗ > 0 such that a homoclinic loop occurs when k = k∗.

5. Fear-Driven Finite Time Extinction (FDFTE)

We seek to investigate the effect of introducing fear of predator in the predator-prey model – that
is, is it possible for the fear effect to drive a stable coexistence equilibrium point to extinction in finite
time?

Thus, we state our result concerning finite time extinction driven by fear of predators.

Theorem 5.1 (FDFTE). Consider the predator-prey model given by (2.2), and a certain parameter set,
and certain initial data (u(0), v(0)) that converges uniformly to a stable coexistence equilibrium point
(u∗, v∗) for k = 0. Then there exists k > 0 such that all trajectories initiating from the same initial data
(u(0), v(0)) will lead to finite time extinction of u, followed by v going extinct asymptotically.

Proof. We argue by contradiction. We begin by assuming not. Thus for a certain parameter set,
with k = 0 and certain initial data (u∗(0), v∗(0)) that converges uniformly to a stable coexistence
equilibrium point (u∗, v∗), there exists a k > 0 s.t for trajectories emanating from the same initial
data, and parameters, we will have

u ≥ u∗(0)e−T ∗ > 0, (5.1)

on [0,T ∗], ∀T ∗. Now,
dv
dt
≥ −dv.

This implies,

v(t) ≥ v(0)e−dt. (5.2)

Note, via (5.2), the upper bound on u, and positivity of solutions, we have

du
dt

=
au

1 + kv
− u2 − cupvm,

≤
au
kv
− cupvm

≤
a2

kv
− cupvm
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≤
a2edt

kv(0)
− c(v(0))me−mdtup

(5.3)

However, we see that the solution to u,

du
dt

=
a2edt

kv(0)
− c(v(0))me−mdtup (5.4)

will go extinct in finite time if (
a2e(m+1)dt

kc(v(0))(m+1)

) 1
p

< u0. (5.5)

Thus, given an initial data (u∗(0), v∗(0)), and T ∗ > 0 we can choose k >> 1, s.t.

(
a2e(m+1)dt

kc(v∗(0))(m+1)

) 1
p

< u∗0, ∀t ∈ [0,T ∗], (5.6)

so that we obtain,

0 ≤ u ≤ u∗(0)e−T ∗ , (5.7)

on [0,T ∗], with u being driven to extinction in finite time, from which the asymptotic extinction of v
follows. Since T ∗ is arbitrary, we have derived a contradiction, and so the theorem is proved. �

Remark 3. We see from Theorem 5.1 that k chosen sufficiently large will lead to prey extinction in
finite time; however in practice, k need not be large, see Figure 6. Thus, a necessary condition on the
size of k to cause finite time prey extinction remains unproven.

6. Impact of effort harvesting of predators

In this section, we consider the impact of an external effort dedicated to harvesting of predators in
the model (2.2). A natural question that arises is: how do the external effort of predator harvesting affect
the FTE dynamic of the prey population species? Here, the harvesting is proportional to the density of
harvested predator population species. The corresponding differential equations can be represented as:

du
dt

=
au

1 + kv
− bu2 − cupvm, u(0) ≥ 0,

dv
dt

= −vd − qvr + eupvm. v(0) ≥ 0.
(6.1)

Let the parameter q > 0 represents the external effort dedicated to predator harvesting. Here 0 < r ≤ 1.
We recover the model (2.2) when q = 0. Nonnegativity of solutions of model (6.1) follows from
Lemma 3.1. The model (6.1) contains a trivial equilibrium point E0(0, 0), an axial equilibrium point,
E1(a/b, 0), and coexistence equilibrium point(s) E2 (or Ei

2, for i = 1, 2).
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6.1. Dynamical Guidelines

The linearized model (6.1) at any coexistence equilibrium point (u∗, v∗) is given by the Jacobian
Matrix J∗

J∗ =

[
c11 c12

c21 c22

]
, (6.2)

where
c11 = J11, c12 = J12, and c21 = J21. Here J11, J12 and J21 are given by (3.6). Now

c22 = −d − qrv∗r−1 + emu∗pv∗m−1

= −d − qrv∗r−1 + md + mqv∗r−1

= −d(1 − m) − q(r − m)v∗r−1.

Theorem 6.1. Consider the model given by (6.1) and assume r ≥ m.

(a) There exists a unique coexistence equilibrium point E2(u∗, v∗) which is LAS.

(b) There exist two coexistence equilibrium points such that E1
2(u∗1, v

∗
1) is a saddle and E2

2(u∗2, v
∗
2) is

LAS.

Proof. The proof of Theorem 6.1 is similar to proof in Theorem 3.3 and therefore omitted. �

Theorem 6.2. Model (6.1) experiences Hopf-bifurcation around the coexistence equilibrium point E2

at q = qh, where

qh =
1
r

v∗1−r
[
emu∗pv∗m−1 − bu + c(1 − p)u∗p−1v∗m − d

]
,

provided S (q) = 0, M(q) > 0, and
d

dq
Re[λ(q)

]
|q=qh , 0 for i = 1, 2.

Example 1. To validate Theorem 6.2, we consider the following parameter values m = 0.6, a = 3, k =

0.08, b = 0.2, p = 0.5, d = 1, c = 2, e = 1.1, q = 1, r = 1 (see Figure 7(a)). Hopf-bifurcation
is obtained at q = q∗h = 0.27068 around the coexistence equilibrium point E2(2.54542, 2.24175).
Furthermore, at q = qh, S (q) = tr (J∗) = 0, M(q) = det (J∗) = 0.29264 > 0 and d

dq Re[λ(q)
]
|q=qh , 0.

Hence, all necessary and sufficient condition for Hopf-bifurcation to occur are satisfied.

We now state two conjectures concerning the effect of effort harvesting of predators on the dynamics
of model (6.1).

Conjecture 3 (Existence of Homoclinic Bifurcation). Consider the model (6.1) where all parameters
are fixed except q ≥ 0. There exists q∗ > 0 such that a homoclinic loop occurs when q = q∗.

Conjecture 4 (Harvesting-Induced Recovery). Consider the predator-prey model given by (6.1). Then
there exists a harvesting effort, 0 < c1 < q∗ < c2 such that the solution to the prey equation does not
go extinct in finite time, and in particular for these levels of predator harvesting the solution can be
driven to a coexistence state, if initiated from certain initial conditions.
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7. Numerical simulations

In this section, we shall visualize the role of fear, herd behavior, mutual interference, and harvesting
in the models (2.2) and (6.1). Indeed in model (2.2), the coexistence equilibria are not analytically
accessible. Numerical simulations are provided as guidelines in Figure 1, to show the existence of a
unique coexistence equilibrium point for p + m ≥ 1 and two coexistence equilibria for p + m < 1.

We obtained saddle-node bifurcations of the model (2.2) as we increase the strength of fear of
predator with some appropriate choice of parameters, see Figure 2.
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Figure 1. Phase plane portraits depicting the predator and prey nullclines in the model (2.2)
(a) unique coexistence equilibrium point for p = 0.5 and m = 0.9, thus p + m > 1 (b) unique
coexistence equilibrium point for p = 0.4 and m = 0.6, thus p + m = 1 (c) two coexistence
equilibria for p = 0.2 and m = 0.4, thus p + m < 1. Solid black circles represent equilibrium
points.

(a) (b)

Figure 2. Figures illustrating saddle-node bifurcation of the model (2.2) at k = k∗s =

0.042859. Here, m = 0.4, a = 2.5, b = 0.3, p = 0.2, d = 2, c = 2.5, e = 2.5. (SN:
Saddle-node point.)
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From the numerical simulations in Figure 3, we show that the fear of predator has an effect in
altering the stability of the coexistence equilibrium solution E2(u∗, v∗) of the model (2.2) via Hopf-
bifurcation. In Figure 3(a), the coexistence equilibrium solution changes from an unstable zone to a
stable zone around E2(0.43392, 0.14327) as the strength of fear of predator k crosses the Hopf point
at k∗h = 15.093353. We used MATCONT [65] to generate the bifurcation diagrams and obtained
L = 1.83219e−01 > 0, hence subcritical Hopf-bifurcation. Furthermore, in Figure 3(b), the coexistence
equilibrium solution changes from a stable zone to an unstable zone around E2(2.26530, 3.16304) as
the parameter k crosses the Hopf point at k∗h = 0.061382 with L = 1.76388e−02 > 0, hence subcritical
Hopf-bifurcation. In summary, we conclude here that with appropriate parameters the effect of fear of
predator can have a stabilizing and destabilizing effect on the coexistence equilibrium solutions of the
model (2.2).

(a) (b)

Figure 3. Bifurcation diagrams of the model (2.2) illustrating change in stability with k as
the bifurcating parameter. (a) Hopf point at k = k∗h = 15.093353, here m = 0.9, a = 2.5, k =

10, b = 0.3, p = 0.5, d = 2, c = 2.5, e = 2.5 (b) Hopf point at k = k∗h = 0.061382, here
m = 0.6, a = 2, b = 0.2, p = 0.4, d = 0.9, c = 1, e = 0.8. (H: Hopf point.)

From the two-dimensional projections of Hopf-bifurcation curves, we observed a generalized Hopf-
bifurcations or Bautin bifurcation which is local and of co-dimension 2 (see Figures 4(a) − (d)). Next,
we explain Conjecture 2 via numerical simulations in Figure 5. In Figure 5(a), E2 is unstable and the
unstable manifold (Wu(E0)) surrounds the stable manifold (W s(E0)). In Figure 5(b), E2 is stable and a
homoclinic loop is formed as the strength of fear is increased.

Hopf-bifurcation occurs at q = q∗h = 0.27068 around (2.54542, 2.24175) with first Lyapunov
coefficient LH = 8.38051e−03 in the model (6.1). The periodic orbits emitted at the Hopf point is
subcritical. A two-parameter bifurcation diagram in q − k parametric plane is shown in Figure 7(b).
Clearly, increasing the harvesting effort q, will cause a lowering of the predator nullcline, bringing
down the coexistence equilibrium, see Figure 8. In Figure 8(a), E2 is unstable and all the points are
attracted to the predator axis when there is no harvesting effort. A homoclinic loop is formed in Figure
8(b) when W s(E0) coincide with Wu(E0) for 0.321 < q < 0.323. Here E2 is stable. Also, in Figure
8(c), for q = 1, E2 is stable and all initial data below W s(E0) converges to E2 whilst those above are
attracted to the predator axis.
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For large values of q, this could be brought as close to the predator free equilibrium as desired, see
Figure 7.

(a) (b) (c)

(d) (e) (f)

Figure 4. Two-parameter bifurcation diagrams of the model (2.2). Here, we use parameters
from Figure 3(a). (GH: Generalized Hopf point.)
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Figure 5. Phase plane portraits of the model (2.2) for (a) k = 0, (b) for 1.548 < k < 1.563.
Here the parameters used are m = 0.7, a = 3, b = 0.3, p = 0.6, d = 0.75, c = 1 and e = 0.8.
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Figure 6. Diagram demonstrating Theorem 5.1. Herein, f1 is the stable manifold of E1
2 when

k = 0 and f2 is the stable manifold of E1
2 when k = 0.03. The solid green circle represents

an initial data at (u(0), v(0)) = (4.8, 8.3). Other parameter sets are given in the caption in
Figure 2.
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Figure 7. Bifurcation diagrams of the model (6.1). (a) Hopf-bifurcation occurs at q = q∗h =

0.27068, (b) two-parameter bifurcation diagram in q − k parametric plane. Parameter values
used here are from Example 1.
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Figure 8. Phase plane portrait of the model (6.1) for (a) q = 0, (b) 0.321 < q < 0.323 and (c)
q = 1. Parameter values used here are from Example 1.
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8. Conclusions

In this paper, we have proposed and investigated the rich dynamical behavior of a predator-prey
model (2.2), incorporating the effect of fear, prey herd behavior and mutual interference of predators.
The prey herd behavior is governed by a modified Holling type-I functional response that allows for
finite time extinction of the prey species due to the non-smoothness at the trivial equilibrium point [19,
20]. The stable manifold (W s(E0)) of the trivial equilibrium E0 splits the phase plane into two, where
solutions with initial conditions above the stable manifold are attracted towards the predator axis in
finite time. This posses a problem of non-uniqueness of solutions in backward time.

The fear of predation risk excited by predators can drive a stable prey population species to
extinction in finite time, and consequently, to the extinction of the predator population species. To
this end please see Theorem 5.1. We provide numerical justification in Figure 6.

Taking the strength of fear of predator k as a bifurcation parameter, we have shown analytically
and numerically various local and global bifurcations. We observed from our investigation that fear
of predator has the tendency to stabilize and destabilize a coexistence equilibrium point by producing
limit cycles via subcritical Hopf-bifucation. Biologically, a strong strength of fear can stabilize an
unstable coexistence equilibrium of interacting species, see Figure 3(a). Also, with weak strength of
fear of predator and certain parameter sets, the stable coexistence between a predator and prey can be
destabilized, see Figure 3(b). In Figure 3, the effects of fear reduces both predator and prey population
densities. There exist a critical strength of fear where the stable and unstable manifold of the trivial
equilibrium meet (i.e. homoclinic bifurcation), see Figure 5(b). This is conjectured in Conjecture 2.
Here we observe that all solutions with initial conditions inside the loop goes to the stable coexistence
equilibrium whilst those outside goes to prey extinction in finite time. Hence, these obtained results are
interesting and provide further justification that fear of predation risk plays a crucial role in ecosystem
balance [66].

We conjecture via Conjecture 4 that harvesting of predators can prevent finite time extinction of the
prey species and yield persistence of the predator and prey population species. Proving this conjecture
would make interesting future work. See Figure 8. Additionally, from our numerical simulations
in Figure 8, when the unstable manifold of E0 is above the stable manifold of E0 coupled with an
unstable coexistence equilibrium point, we observed a homoclinic loop by introducing an external
effort dedicated to predator harvesting. Biologically, we are able to stabilize the predator and prey
population species that initiated inside the loop with low harvesting effort. Also, when the external
effort dedicated to predator harvesting rate is very high, the prey population species approach its
carrying capacity and the predator population species get close to extinction, see Figure 7(a). Thus,
the predator population species may not survive at a very high harvesting effort. Note, harvesting finds
large scale applications in current bio-control applications [67]. A full dynamical analysis of (6.1)
would make an interesting future endeavor, as the FTE dynamic in predator could counteract with the
FTE dynamic in prey, to generate rich dynamical behavior.

Another bio-control application is in pest management where the fear of natural enemy is introduced
to drive an invasive pest into extinction. This study should, therefore, prove to be a useful tool in
resource management and control. A further interest, which the authors are currently investigating, is
the interplay of fear of predator between aggregating prey species and predator interference models,
such as those considered in [10, 68, 69].
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Appendix

We provide numerical simulations to visualize the saddle-node bifurcation of parameters b, c and d.

(a) (b) (c)

Figure 9. Figures illustrating saddle-node bifurcations of the model (2.2) at b, c and d. (a)
SN at b = bs = 0.35355 and NS at b = 0.24943 (b) SN at c = cs = 2.78413 and NS at
c = 2.21579 (c) SN at d = ds = 1.72647. Here, parameters used are given in the caption in
Figure 2. (SN: Saddle-node point, NS: Neutral saddle equilibrium point).
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