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1. Introduction

Since we know that interval analysis has a veritably broad history, Moore [1] first developed the
interval and interval-valued functions in his work in the 1950s. This research field has attracted the
attention of the mathematical community since it was established. There are many applications of
interval analysis in global optimization algorithms and constraint solving algorithms. In contrast,
calculation error has long been a problematic issue in numerical analysis. The accumulation of
calculation errors can make the calculation result meaningless, so interval analysis has attracted much
attention as a tool to solve uncertainty problems [2, 3]. For the last five decades, It has been used in
a variety of fields, including neural network output optimization [4], computer graphic [5], interval
differential equation [6], aeroelasticity [7] and so on. The fusion of integral inequalities with interval-
valued functions (IVFS) has resulted in many insightful findings in recent decades. Since the invention
of interval analysis, researchers studying inequalities have been interested in seeing if the inequalities
found in the below results can be substituted with inclusions. Among these are Beckenbach type
inequalities and Minkowski types for IVFS developed by Roman-Flores [8]. Moreover, Costa [9]
established Opial-type inclusion for IVFS.

Classical Hermite-Hadamard inequality (H-H) is as follows:

f (r) + f (s)
2

≥
1

s − r

∫ s

r
f (α)dα ≥ f

(r + s
2

)
. (1.1)

Due to its geometrical interpretation, the H-H inequality is considered one of the classics of elementary
mathematics. In addition to being generalized and refined, the function is now extended to cover
various classes of convexity. Many inequalities have been revealed by the convexity of functions
over time in mathematics and other scientific fields, including economics, probability theory, and
optimal control theory, as well as in economics. In probability theory, a convex function applied to
the expected value of a random variable is always bound by the expected value of its convex function.
Further, Jensen’s inequality is a probabilistic inequality, and its beauty lies in the fact that several
well-known inequalities can be deduced from it, including the arithmetic-geometric mean inequality
and Holder’s inequality based on the expected values for convex and concave transforms of random
variables. For different extensions and conceptions of these inequalities [10–19]. Initially, Işcan present
the concept of harmonical convexity in 2014 and created various H-H inequalities for this form of
convexity [20]. In the case of harmonical convex functions, some refinements of such inequalities have
been investigated [21–26].

Noor et al. [27] established harmonical h-convex functions and developed a revised form of H-H
inequalities in 2015. In addition to interval analysis, Dafang et al. extended H-H and Jensen type
inequalities to h-convex and harmonic h-convex in the context of IVFS [28, 29]. We refer interested
readers to some new research on harmonical h-convexity [30–35]. Based on the notion of the h-
GL function, Kilicman et al. developed the following inequality [36]. As a step forward, Afzal
et al. developed these inequalities in 2022 for the generalized class of h-Godunova-Levin functions
and (h1, h2)-Godunova-Levin functions in the context of interval-valued functions using inclusion
relation [37, 38]. The beauty of this class of convexity is that inequality terms are straightforward
to deduce and generalize. Moreover, Baloch et al. developed the Jensen-type inequality for harmonic
h-convex functions [39].
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Inspired by [29, 37–39], we present harmonical h-Godunova-Levin functions as a new class of
convexity based on inclusion relation for IVFS. As part of our analysis, we first derived new variants
of the H-H inequality, and then we used this new class to represent the Jensen inequality. Additionally,
we provide several examples to illustrate how our key findings can be applied.

Finally, the rest of the paper is organized as follows. In Section 2, preliminary information is
provided. The key conclusions are described in Section 3. Section 4 contains the conclusion.

2. Preliminaries

For the notions which are used in this paper and are not defined here, we refer [28]. Let’s say I
represent a set of real numbers in the form of a pack of all intervals of R, [s] ∈ I is defined as

[s] = [s, s] = {x ∈ R|s ≤ x ≤ s}, s, s ∈ R,

where real interval [s] is compact subset of R. There is a degeneration of the interval [s] when s = s.
In this case, we are denoting the bundle of all intervals in R by RI and use RI+ for the collection of all
positive intervals. The inclusion “⊆” is established as

[s] ⊆ [r]⇐⇒ [s, s] ⊆ [r, r]⇐⇒ r ≤ s, s ≤ r.

For any arbitrary κ ∈ R and [s], the κ[s] is defined as

κ.[s, s] =


[κs, κs], if κ > 0;
{0}, if κ = 0;
[κs, κs], if κ < 0.

For [s] = [s, s], and [r] = [r, r], defining arithmetic operators as

[s] + [r] =
[
s + r, s + r

]
,

[s] − [r] =
[
s − r, s − r

]
,

[s] · [r] =
[
min

{
sr, sr, sr, sr

}
,max

{
sr, sr, sr, sr

}]
,

[s]/[r] =
[
min

{
s/r, s/r, s/r, s/r

}
,max

{
s/r, s/r, s/r, s/r

}]
,

where
0 < [s, s].

In intervals, Hausdorff distance is calculated as follows:

d
(
[s, s], [r, r]

)
= max

{
|s − r|, |s − r|

}
.

As far as we know, the entire metric space (RI , d) is completed moreover, IR denote the Riemann
integrable.

Definition 2.1. [40] Let f : [s, r] → RI be defined as f (q) = [ f (q), f (q)] for any q ∈ [s, r] and f , f
are IR over interval [s, r]. Consequently, we say that our function f is IR over [s, r] and defined as∫ r

s
f (q)dq =

[∫ r

s
f (q)dq,

∫ r

s
f (q)dq

]
.
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Definition 2.2. [41] A set S ⊂ Rn − {0} is called harmonical convex, if

sr
κs + (1 − κ)r

∈ S ,

for all s, r ∈ S and κ ∈ [0, 1].

Definition 2.3. [42] A function f : S → R+ is called GL-function, if

f (κs + (1 − κ)r) ≤
f (s)
κ

+
f (r)

(1 − κ)
,

for all s, r ∈ S and κ ∈ (0, 1).

Definition 2.4. [20] A function f : S → R is called harmonically convex, if

f
(

sr
κs + (1 − κ)r

)
≤ κ f (s) + (1 − κ) f (r),

for all s, r ∈ S and κ ∈ [0, 1].

Definition 2.5. [43] Consider h : [0, 1] ⊆ S → R with h , 0 be a nonnegative function. We say
f : S → R is called harmonical h-convex, if

f
(

sr
κs + (1 − κ)r

)
≤ h(κ) f (s) + h(1 − κ) f (r),

for all s, r ∈ S and κ ∈ [0, 1].

Definition 2.6. [44] Consider h : (0, 1) ⊆ S → R be a nonnegative function. We say f : S → R is
called h-GL function, if

f (κs + (1 − κ)r) ≤
f (s)
h(κ)

+
f (r)

h(1 − κ)
,

for all s, r ∈ S and κ ∈ (0, 1).

Definition 2.7. [45] Consider h : (0, 1) ⊆ S → R be a nonnegative function. We say f : S → R is
called harmonical h-GL function, if

f
(

sr
κs + (1 − κ)r

)
≤

f (s)
h(κ)

+
f (r)

h(1 − κ)
,

for all s, r ∈ S and κ ∈ (0, 1).

Remark 2.1. (1) If h(κ) = 1
κ
, then Definition 2.7 provides a harmonical convex function [20];

(2) If h(κ) = 1, then Definition 2.7 provides a harmonical p-convex function [43];
(3) If h(κ) = κs, then Definition 2.7 provides a harmonical s-GL function [43].
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3. Main results

In this section firstly we define a novel class of convexity called harmonic h-GL IVFS.

Definition 3.1. Consider h : (0, 1) ⊆ S → R such that h , 0. A function f : S → R+
I is called

harmonical h-GL IVF, if
f (s)
h(κ)

+
f (r)

h(1 − κ)
⊆ f

(
sr

κs + (1 − κ)r

)
, (3.1)

for all s, r ∈ S and κ ∈ (0, 1). If the inclusion is change from ⊆ to ⊇ in Definition 3.1, then f is
called harmonical h-GL concave IVF. Harmonical h-GL convex and concave IVFS are represented by
S GHX

((
1
h

)
, S ,RI

+
)

and S GHV
((

1
h

)
, S ,RI

+
)
, respectively.

Proposition 3.1. Consider f : [s, r] → RI
+ be harmonical h-GL convex IVF defined as f (κ) =

[ f (κ), f (κ)]. Then, if f ∈ S GHX
((

1
h

)
, S ,RI

+
)

iff f ∈ S GHX
((

1
h

)
, [s, r],R+

)
and if f ∈

S GHV
((

1
h

)
, [s, r],R+

)
.

Proof. Suppose f be be harmonical h-GL convex IVF and consider x, y ∈ [s, r], κ ∈ (0, 1), we have

f (x)
h(κ)

+
f (y)

h(1 − κ)
⊆ f

(
xy

κx + (1 − κ)y

)
, (3.2)

that is,  f (x)

h(κ)
+

f (y)

h(1 − κ)
,

f (x)
h(κ)

+
f (x)

h(1 − κ)

 ⊆ [
f
(

xy
κx + (1 − κ)y

)
, f

(
xy

κx + (1 − κ)y

)]
.

Consequently, we have
f (x)

h(κ)
+

f (y)

h(1 − κ)
≥ f

(
xy

κx + (1 − κ)y

)
and

f (x)
h(κ)

+
f (y)

h(1 − κ)
≤ f

(
xy

κx + (1 − κ)y

)
.

It shows that f ∈ S GHX
((

1
h

)
, [s, r],R+

)
and f ∈ S GHV

((
1
h

)
, [s, r],R+

)
. Conversely, suppose that if

f ∈ S GHX
((

1
h

)
, [s, r],RI

+
)

and f ∈ S GHV
((

1
h

)
, [s, r],RI

+
)
. According to the above definition and set

inclusion, we can say that f ∈ S GHX
((

1
h

)
, [s, r],RI

+
)
. This completes the proof. �

Proposition 3.2. Suppose f : [s, r] → RI
+ be harmonical h-GL concave IVF defined as f (κ) =

[ f (κ), f (κ)]. Then if f ∈ S GHV
((

1
h

)
, [s, r],RI

+
)

iff f ∈ S GHV
((

1
h

)
, [s, r],R+

)
and if f ∈

S GHX
((

1
h

)
, [s, r],R+

)
.

Proof. The proof similar to Proposition 3.1. �

3.1. Hermite-Hadamard inequalities

Theorem 3.1. Consider h : (0, 1) → R+ such that h , 0. Let f : [s, r] → RI
+. If f ∈

S GHX
((

1
h

)
, [s, r],RI

+
)

and f ∈ IR[s,r], we have[
h
(

1
2

)]
2

f
(

2sr
s + r

)
⊇

sr
r − s

∫ r

s

f (κ)
κ2 dκ ⊇ [ f (s) + f (r)]

∫ 1

0

dx
h(x)

. (3.3)
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Proof. We begin by assuming that f ∈ S GHX
((

1
h

)
, [s, r],RI

+
)
, then

f (a1)

h
(

1
2

) +
f (b1)

h
(

1
2

) ⊆ f
(

2a1b1

a1 + b1

)
,

where
a1 =

sr
xs + (1 − x)r

,

and
b1 =

sr
(1 − x)s + xr

.

Then
1

h
(

1
2

) [
f
(

sr
xs + (1 − x)r

)
+ f

(
sr

(1 − x)s + xr

)]
⊆ f

(
2sr
s + r

)
. (3.4)

Multiplying both sides by h
(

1
2

)
, we have[

f
(

sr
xs + (1 − x)r

)
+ f

(
sr

(1 − x)s + xr

)]
⊆ h

(
1
2

)
f
(

2sr
s + r

)
. (3.5)

The above inequality is integrated over (0, 1), we have∫ 1

0

[
f
(

sr
xs + (1 − x)r

)
+ f

(
sr

(1 − x)s + xr

)]
dx ⊆ h

(
1
2

) ∫ 1

0
f
(

2sr
s + r

)
dx.

So ∫ 1

0
f
(

sr
xs + (1 − x)r

)
dx +

∫ 1

0
f
(

sr
(1 − x)s + xr

)
dx ≥ h

(
1
2

) ∫ 1

0
f
(

2sr
s + r

)
dx,

and ∫ 1

0
f
(

sr
xs + (1 − x)r

)
dx +

∫ 1

0
f
(

sr
(1 − x)s + xr

)
dx ≤ h

(
1
2

) ∫ 1

0
f
(

2sr
s + r

)
dx.

It follows that

2sr
r − s

∫ r

s

f (κ)

κ2 dκ ≥ h
(
1
2

) ∫ 1

0
f
(

2sr
s + r

)
dx = h

(
1
2

)
f
(

2sr
s + r

)
.

Similarly,

2sr
r − s

∫ r

s

f (κ)
κ2 dκ ≤ h

(
1
2

) ∫ 1

0
f
(

2sr
s + r

)
dx = h

(
1
2

)
f
(

2sr
s + r

)
.

This implies that [
h
(
1
2

)] [
f
(

2sr
s + r

)
, f

(
2sr
s + r

)]
⊇

2sr
r − s

∫ r

s

f (κ)
κ2 dκ.
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Divide both sides by 1
2 first inclusion of (3.3) is proved,[

h
(

1
2

)]
2

[
f
(

2sr
s + r

)
, f

(
2sr
s + r

)]
⊇

sr
r − s

∫ r

s

f (κ)
κ2 dκ. (3.6)

According to our hypothesis,

f (s)
h(1 − x)

+
f (r)
h(x)

⊆ f
(

sr
(1 − x)s + xr

)
,

and
f (s)
h(x)

+
f (r)

h(1 − x)
⊆ f

(
sr

xs + (1 − x)r

)
.

Adding above two inclusions and integrate over (0, 1), we have

[
f (s) + f (r)

] ∫ 1

0

1
h(x)

dx +
[
f (s) + f (r)

] ∫ 1

0

1
h(1 − x)

dx

⊆

∫ 1

0

[
f
(

sr
xs + (1 − x)r

)
+ f

(
sr

(1 − x)s + xr

)]
dx.

Since at x = 1
2 both integrals ∫ 1

0

1
h(x)

dx =

∫ 1

0

1
h(1 − x)

dx

are equal, which implies that

2
[
f (s) + f (r)

] ∫ 1

0

1
h(x)

dx ⊆
2sr

r − s

∫ r

s

f (κ)
κ2 dκ.

Dividing by 2, we obtain the desired result,

[
f (s) + f (r)

] ∫ 1

0

1
h(x)

dx ⊆
sr

r − s

∫ r

s

f (κ)
κ2 dκ. (3.7)

By combining (3.6) and (3.7), we obtain the desired result[
h
(

1
2

)]
2

f
(

2sr
s + r

)
⊇

sr
r − s

∫ r

s

f (κ)dκ
κ2 ⊇ [ f (s) + f (r)]

∫ 1

0

dx
h(x)

.

This completes the proof. �

Remark 3.1. It is shown that Theorem 3.1 can be reduced to harmonical p-IVFS, if h(x) = 1, i.e.,

1
2

f
(

2sr
s + r

)
⊇

sr
r − s

∫ r

s

f (κ)dκ
κ2 ⊇ [ f (s) + f (r)].

If h(x) =
1
x

, then Theorem 3.1 reduces to harmonical convex IVFS:

f
(

2sr
s + r

)
⊇

sr
r − s

∫ r

s

f (κ)dκ
κ2 ⊇

[ f (s) + f (r)]
2

.
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If h(x) =
1
xs , then Theorem 3.1 reduces to harmonical s-IVFS:

2s−1 f
(

2sr
s + r

)
⊇

sr
r − s

∫ r

s

f (κ)dκ
κ2 ⊇

[ f (s) + f (r)]
s + 1

.

Example 3.1. Let us define h(x) =
1
x

for x ∈ (0, 1), [r, s] =

[
1
2
, 1

]
and f : [r, s] → RI

+ be defined as

f (κ) = [2κ2, 4 − eκ]. Then[
h( 1

2 )
]

2
f
(

2sr
s + r

)
= f

(
2
3

)
=

[
8
9
, 4 − e

2
3

]
,

sr
r − s

∫ r

s

f (κ)
κ2 dκ =

∫ 1

1
2

2dκ,
∫ 1

1
2

(4 − eκ)
κ2 dκ

 = [1, 1.979941375566026] ,

and [
f (s) + f (r)

] ∫ 1

0

dx
h(x)

=
[
f (s) + f (r)

] ∫ 1

0
xdx =

[
5
4
, 4 −

√
e

2
−

e
2

]
.

Thus, we obtain [
8
9
, 4 − e

2
3

]
⊇ [1, 1.979941375566026] ⊇

[
5
4
, 4 −

√
e

2
−

e
2

]
,

which demonstrates the result described in Theorem 3.1.

Theorem 3.2. Consider h : (0, 1) → R+ such that h , 0. Let f : [s, r] → RI
+. If f ∈

S GHX
((

1
h

)
, [s, r],RI

+
)

and f ∈ IR[s,r], we have[
h
(

1
2

)]2

4
f
(

2sr
s + r

)
⊇ 41 ⊇

sr
r − s

∫ r

s

f (κ)
κ2 dκ ⊇ 42 ⊇

[ f (s) + f (r)
] 1

2
+

1

h
(

1
2

)

∫ 1

0

dx
h(x)

,

where

41 =
[h(1

2 )]
4

[
f
(

4sr
s + 3r

)
+ f

(
4sr

r + 3s

)]
,

and

42 =

[
f
(

2sr
s + r

)
+

(
f (s) + f (r)

2

)] ∫ 1

0

dx
h(x)

.

Proof. Consider f ∈ S GHX
((

1
h

)
, [s, r],RI

+
)

and f ∈ IR[s,r], for [s, 2sr
s+r ], we have

f
(

s 2sr
s+r

xs+(1−x) 2sr
s+r

)
h
(

1
2

) +

f
(

s 2sr
s+r

(1−x)s+x 2sr
s+r

)
h
(

1
2

) ⊆ f
(

4sr
s + 3r

)
,

we get
1

h
(

1
2

)  f
 s 2sr

s+r

xs + (1 − x) 2sr
s+r

 + f
 s 2sr

s+r

(1 − x)s + x 2sr
s+r

 ⊆ f
(

4sr
s + 3r

)
.
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On integration over (0, 1), we have

1
h(1

2 )

∫ 1

0

 f
 s 2sr

s+r

xs + (1 − x) 2sr
s+r

dx + f
 s 2sr

s+r

(1 − x)s + x 2sr
s+r

dx

f
 s 2sr

s+r

xs + (1 − x) 2sr
s+r

dx + f
 s 2sr

s+r

(1 − x)s + x 2sr
s+r

dx
 ⊆ f

(
4sr

s + 3r

)
.

Then, above inequality become as

1

h
(

1
2

)  2sr
r − s

∫ 2sr
s+r

s

f (κ)

κ2 dκ +
2sr

r − s

∫ 2sr
s+r

s

f (κ)

κ2 dκ,
2sr

r − s

∫ 2sr
s+r

s

f (κ)
κ2 dκ +

2sr
r − s

∫ 2sr
s+r

s

f (κ)
κ2 dκ


⊆ f

(
4sr

s + 3r

)
=

1

h
(

1
2

)  4sr
r − s

∫ 2sr
s+r

s

f (κ)

κ2 dκ,
4sr

r − s

∫ 2sr
s+r

s

f (κ)
κ2 dκ

 ⊆ f
(

4sr
s + 3r

)

=
4

h
(

1
2

)  sr
r − s

∫ 2sr
s+r

s

f (κ)

κ2 dκ,
sr

r − s

∫ 2sr
s+r

s

f (κ)
κ2 dκ

 ⊆ f
(

4sr
s + 3r

)

=
4

h
(

1
2

)  sr
r − s

∫ 2sr
s+r

s

f (κ)
κ2 dκ

 ⊆ f
(

4sr
s + 3r

)

=
sr

r − s

∫ 2sr
s+r

s

f (κ)
κ2 dκ ⊆

[
h
(

1
2

)]
4

f
(

4sr
s + 3r

)
. (3.8)

Similarly for interval
[

2sr
s+r , r

]
, we have

sr
r − s

∫ r

2sr
s+r

f (κ)
κ2 dκ ⊆

[
h
(

1
2

)]
4

f
(

4sr
r + 3s

)
. (3.9)

Adding above inclusions (3.8) and (3.9), we have

41 =

[
h
(

1
2

)]
4

[
f
(

4sr
3s + r

)
+ f

(
4sr

s + 3r

)]
⊇

[
sr

r − s

∫ r

s

f (κ)
κ2 dκ

]
=

1
2

 2sr
r − s

∫ 2sr
s+r

s

f (κ)
κ2 dκ +

2sr
r − s

∫ r

2sr
s+r

f (κ)
κ2 dκ


⊇

1
2

[[
f (s) + f

(
2sr
s + r

)] ∫ 1

0

dx
h(x)

]
+

1
2

[[
f (r) + f

(
2sr
s + r

)] ∫ 1

0

dx
h(x)

]
=

1
2

[{
f (s) + f (r) + 2 f

(
2sr
s + r

)}∫ 1

0

dx
h(x)

]
=

[
f (s) + f (r)

2
+ f

(
2sr
s + r

)] ∫ 1

0

dx
h(x)

= 42.
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Now, [
h
(

1
2

)]2

4
f
(

2sr
s + r

)
=

[
h
(

1
2

)]2

4
f
 2 4sr

s+3r
4sr

r+3s
4sr

s+3r + 4sr
r+3s

 ⊇
[
h
(

1
2

)]2

4

 f
(

4sr
s+3r

)
h( 1

2 )
+

f
(

4sr
r+3s

)
h
(

1
2

) 
=

[
h
(

1
2

)]2

4h( 1
2 )

[
f
(

4sr
s + 3r

)
+ f

(
4sr

r + 3s

)]

=

[
h
(

1
2

)]
4

[
f
(

4sr
s + 3r

)
+ f

(
4sr

s + 3r

)]
= 41

⊇

[
h
(

1
2

)]
4

 1

h
(

1
2

) [
f (s) + f

(
2sr
s + r

)]
+

1
h( 1

2 )

[
f (r) + f

(
2sr
s + r

)]
=

[
h
(

1
2

)]
4

 1

h
(

1
2

) [
f (s) + f (r) + 2 f

(
2sr
s + r

)]
=

1
4

{
f (s) + f (r) + 2 f

(
2sr
s + r

)}
=

1
2

[
f (s) + f (r)

2
+ f

(
2sr
s + r

)]
⊇

[
f (s) + f (r)

2
+ f

(
2sr
s + r

)] ∫ 1

0

dx
h(x)

= 42

⊇

 f (s) + f (r)
2

+
f (s)

h
(

1
2

) +
f (r)

h
(

1
2

) ∫ 1

0

dx
h(x)

=

 f (s) + f (r)
2

+
1

h
(

1
2

) [
f (s) + f (r)

] ∫ 1

0

dx
h(x)

=

[ f (s) + f (r)
] 1

2
+

1

h
(

1
2

)

∫ 1

0

dx
h(x)

.

This completes the proof. �

Example 3.2. Recall to Example 3.1, we have[
h
(

1
2

)]2

4
f
(

2sr
s + r

)
⊇ 41 ⊇

sr
r − s

∫ r

s

f (κ)
κ2 dκ ⊇ 42 ⊇

[ f (s) + f (r)
] 1

2
+

1
h(1

2 )


∫ 1

0

dx
h(x)

,

where [
h
(

1
2

)]2

4
f
(

2sr
s + r

)
= f

(
2
3

)
=

[
8
9
, 4 − e

2
3

]
,
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41 =

[
h
(

1
2

)]
4

[
f
(

4sr
s + 3r

)
+ f

(
4sr

r + 3s

)]
=

1
2

[[
32
49
, 4 − e

4
7

]
+

[
32
25
, 4 − e

4
5

]]
=

1184
1225

, 4 −
e

4
7

2
−

e
4
5

2

 ,
42 =

[
f
(

2sr
s + r

)
+

(
f (s) + f (r)

2

)] ∫ 1

0

dx
h(x)

=
1
2

 f
(
2
3

)
+

 f ( 1
2 ) + f (1)

2

 =

77
72
,−

e
4
−

√
e

4
−

e
2
3

2
+ 4

 .
Thus, we obtain[

8
9
, 4 − e

2
3

]
⊇

1184
1225

, 4 −
e

4
7

2
−

e
4
5

2

 ⊇ [1, 1.979941375566026] ⊇

77
72
,−

e
4
−

√
e

4
−

e
2
3

2
+ 4

 ,
which demonstrates the result described in Theorem 3.2.

Theorem 3.3. Consider h1, h2 : (0, 1) → R+ such that h1, h2 , 0. Let f : [s, r] → RI
+. If f ∈

S GHX
((

1
h1

)
, [s, r],RI

+
)
, g ∈ S GHX

((
1
h2

)
, [s, r],RI

+
)

and f , g ∈ IR[s,r], we have

sr
r − s

∫ r

s

f (κ)g(κ)
κ2 dκ ⊇ M(s, r)

∫ 1

0

1
h1(x)h2(x)

dx + N(s, r)
∫ 1

0

1
h1(x)h2(1 − x)

dx,

where
M(s, r) = f (s)g(s) + f (r)g(r)

and
N(s, r) = f (s)g(r) + f (r)g(s).

Proof. We assume that f ∈ S GHX
((

1
h1

)
, [s, r],RI

+
)
, g ∈ S GHX

((
1
h2

)
, [s, r],RI

+
)
, then

f (s)
h1(x)

+
f (r)

h1(1 − x)
⊆ f

(
sr

xs + (1 − x)r

)
and

g(s)
h2(x)

+
g(r)

h2(1 − x)
⊆ g

(
sr

xs + (1 − x)r

)
.

Then

f
(

sr
xs + (1 − x)r

)
g
(

sr
xs + (1 − x)r

)
⊇

f (s)g(s)
h1(x)h2(x)

+
f (s)g(r)

h1(x)h2(1 − x)
+

f (r)g(s)
h1(1 − x)h2(x)

+
f (r)g(r)

h1(1 − x)h2(1 − x)
.

On integration over (0, 1), we have
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∫ 1

0
f
(

sr
xs + (1 − x)r

)
g
(

sr
xs + (1 − x)r

)
dx

=

[∫ 1

0
f
(

sr
xs + (1 − x)r

)
g
(

sr
xs + (1 − x)r

)
dx,

∫ 1

0
f
(

sr
xs + (1 − x)r

)
g
(

sr
xs + (1 − x)r

)
dx

]
=

 sr
r − s

∫ r

s

f (κ)g(κ)

κ2 dκ,
sr

r − s

∫ r

s

f (κ)g(κ)
κ2 dκ


=

sr
r − s

∫ r

s

f (κ)g(κ)
κ2 dκ

⊇

∫ 1

0

[
f (s)g(s) + f (r)g(r)

]
h1(x)h2(x)

dx +

∫ 1

0

[
f (s)g(r) + f (r)g(s)

]
h1(x)h2(1 − x)

dx.

It follows that

sr
r − s

∫ r

s

f (κ)g(κ)
κ2 dκ ⊇ M(s, r)

∫ 1

0

1
h1(x)h2(x)

dx + N(s, r)
∫ 1

0

dx
h1(x)h2(1 − x)

.

The proof is completed. �

Example 3.3. Suppose that h1(x) = 1
x , h2(x) = 2 for x ∈ (0, 1), [s, r] =

[
1
2 , 1

]
and

f (κ) =
[
κ2, 6 − eκ

]
, g(κ) =

[
κ, 5 − κ2

]
.

Then,

sr
r − s

∫ r

s
f (κ)g(κ)dκ =

∫ 1

1
2

κdκ,
∫ 1

1
2

(6 − eκ)(5 − κ2)
κ2 dκ

 =

[
3
8
,
−16e + 15

√
e + 53

4

]
,

M(s, r)
∫ 1

0

1
h1(x)h2(x)

dx =
M

(
1
2 , 1

)
2

∫ 1

0
xdx =

[
9

32
,

19
4
−

√
e

2
−

11e
16

]
and

N(s, r)
∫ 1

0

1
h1(x)h2(1 − x)

dx =
N

(
1
2 , 1

)
2

∫ 1

0
xdx =

[
3

16
,

19
4
−

11
√

e
16

−
e
2

]
.

It follows that[
3
8
,
−16e + 15

√
e + 53

4

]
⊇

[
9

32
,

19
4
−

√
e

2
−

11e
16

]
+

[
3

16
,

19
4
−

11
√

e
16

−
e
2

]
=

[
15
32
,

19
2

+
−19e − 19

√
e

16

]
,

which demonstrates the result described in Theorem 3.3.
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Theorem 3.4. Consider h1, h2 : (0, 1) → R+ such that h1, h2 , 0. Let f : [s, r] → RI
+. If f ∈

S GHX
((

1
h1

)
, [s, r],RI

+
)
, g ∈ S GHX

((
1
h2

)
, [s, r],RI

+
)

and f , g ∈ IR[s,r], we have

h1

(
1
2

)
h2

(
1
2

)
2

f
(

2sr
s + r

)
g
(

2sr
s + r

)
⊇

sr
r − s

∫ r

s

f (κ)g(κ)
κ2 dκ + M(s, r)

∫ 1

0

1
h1(x)h2(x)

dx + N(s, r)
∫ 1

0

1
h1(x)h2(1 − x)

dx.

Proof. According to our hypothesis, we have

f
(

2sr
s + r

)
⊇

f
(

sr
xs+(1−x)r

)
h1

(
1
2

) +
f
(

sr
xs+(1−x)r

)
h1

(
1
2

)
and

g
(

2sr
s + r

)
⊇

g
(

sr
xs+(1−x)r

)
h2

(
1
2

) +
g
(

sr
xs+(1−x)r

)
h2

(
1
2

) .

Then

f
(

2sr
s + r

)
g
(

2sr
s + r

)
⊇

1

h1

(
1
2

)
h2

(
1
2

) [
f
(

sr
xs + (1 − x)r

)
g
(

sr
xs + (1 − x)r

)
+ f

(
sr

xr + (1 − x)s

)
g
(

sr
xr + (1 − x)s

)]
+

1

h1

(
1
2

)
h2

(
1
2

) [
f
(

sr
xs + (1 − x)r

)
g
(

sr
xr + (1 − x)s

)
+ f

(
sr

xr + (1 − x)s

)
g
(

sr
xs + (1 − x)r

)]
⊇

1

h1

(
1
2

)
h2

(
1
2

) [
f
(

sr
xs + (1 − x)r

)
g
(

sr
xs + (1 − x)r

)
+ f

(
sr

xr + (1 − x)s

)
g
(

sr
xr + (1 − x)s

)]
+

1

h1

(
1
2

)
h2

(
1
2

) [(
f (s)

h1(x)
+

f (r)
h1(1 − x)

) (
g(s)

h2(1 − x)
+

g(r)
h2(x)

)
+

(
f (s)

h1(1 − x)
+

f (r)
h1(x)

) (
g(s)
h2(x)

+
g(r)

h2(1 − x)

)]
=

1

h1

(
1
2

)
h2

(
1
2

) [
f
(

sr
xs + (1 − x)r

)
g
(

sr
xs + (1 − x)r

)
+ f

(
sr

xr + (1 − x)s

)
g
(

sr
xr + (1 − x)s

)]
+

1

h1

(
1
2

)
h2

(
1
2

) [(
1

h1(x)h2(1 − x)
+

1
h1(1 − x)h2(x)

)
M(s, r) +

(
1

h1(x)h2(x)
+

1
h1(1 − x)h2(1 − x)

)
N(s, r)

]
.

On integration over (0, 1), we have
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∫ 1

0
f
(

2sr
s + r

)
g
(

2sr
s + r

)
dx =

[∫ 1

0
f
(

2sr
s + r

)
g
(

2sr
s + r

)
dx,

∫ 1

0
f
(

2sr
s + r

)
g
(

2sr
s + r

)
dx

]
= f

(
2sr
s + r

)
g
(

2sr
s + r

)
⊇

1

h1

(
1
2

)
h2

(
1
2

) [
2sr

r − s

∫ r

s

f (κ)g(κ)
κ2 dκ

]

+
2

h1
1
2 )h2(1

2 )

[
M(s, r)

∫ 1

0

1
h1(x)h2(1 − x)

dx + N(s, r)
∫ 1

0

1
h1(x)h2(x)

dx
]
.

Multiply both sides by h1( 1
2 )h2( 1

2 )
2 , above equation we get

h1

(
1
2

)
h2

(
1
2

)
2

f
(

2sr
s + r

)
g
(

2sr
s + r

)
⊇

sr
r − s

∫ r

s

f (κ)g(κ)
κ2 dκ + M(s, r)

∫ 1

0

1
h1(x)h2(1 − x)

dx + N(s, r)
∫ 1

0

1
h1(x)h2(x)

dx.

Therefore, the proof is completed. �

Example 3.4. Consider h1(x) = 1
x , h2(x) = 2 for x ∈ (0, 1), [s, r] = [1

2 , 1] and

f (κ) = [κ2, 6 − eκ], g(κ) = [κ, 5 − κ2].

Then

h1

(
1
2

)
h2

(
1
2

)
2

f
(

2sr
s + r

)
g
(

2sr
s + r

)
= 2 f

(
2
3

)
g
(
2
3

)
=

16
27
,

492 − 82e
2
3

9

 ,
sr

r − s

∫ r

s
f (κ)g(κ)dκ =

∫ 1

1
2

κdκ,
∫ 1

1
2

(6 − eκ)(5 − κ2)
κ2 dκ

 =

[
3
8
,
−16e + 15

√
e + 53

4

]
,

M(s, r)
∫ 1

0

1
h1(x)h2(x)

dx =
M

(
1
2 , 1

)
2

∫ 1

0
xdx =

[
9

32
,

19
4
−

√
e

2
−

11e
16

]
,

and

N(s, r)
∫ 1

0

1
h1(x)h2(1 − x)

dx
N

(
1
2 , 1

)
2

∫ 1

0
xdx =

[
3
16
,

19
4
−

11
√

e
16

−
e
2

]
. (3.10)

It follows that16
27
,

492 − 82e
2
3

9

 ⊇ [
3
8
,
−16e + 15

√
e + 53

4

]
+

[
9

32
,

19
4
−

√
e

2
−

11e
16

]
+

[
3

16
,

19
4
−

11
√

e
16

−
e
2

]
=

[
27
32
,

19
2

+
−83e + 41

√
e + 212

16

]
.

This verifies the above theorem.

AIMS Mathematics Volume 8, Issue 2, 3303–3321



3317

3.2. Jensen type inequality

Theorem 3.5. Let t1, t2, t3, . . . , tl ∈ R
+ with l ≥ 2. Let f be non-negative harmonical h-GL IVF or

f ∈ S GX
(
(1

h ), [s, r],RI
+
)

and h is non-negative super multiplicative function with b1, b2, b3, . . . , bl ∈

I ⊆ RI
+. Then one has

f

 1
1
Tl

∑l
i=1

ti
bi

 ⊇ l∑
i=1

 f (bi)

h
(

ti
Tl

) , (3.11)

where Tl =
∑l

i=1 ti.

Proof. For l = 2, the inequality (3.11) is trivially true. Now, we assume that it also works for l − 1.
Consider

f

 1
1
Tl

∑l
i=1

ti
bi

 = f

 1
tl

Tlbl
+

∑l−1
i=1

ti
Tlbi


= f

 1
tl

Tlbl
+

Tl−1

Tl

∑l−1
i=1

ti
Tl−1bi


⊇

f (bl)

h
(

tl
Tl

) +

f
(

1∑l−1
i=1

ti
Tl−1bi

)
h
(

Tl−1

Tl

)
⊇

f (bl)

h
(

tl
Tl

) +

l−1∑
i=1

 f (bi)

h
(

ti
Tl−1

) 1

h
(

Tl−1
Tl

)
⊇

f (bl)

h
(

tl
Tl

) +

l−1∑
i=1

 f (bi)
h( ti

Tl
)


=

l∑
i=1

 f (bi)

h
(

ti
Tl

) .
Therefore, the result is proven using mathematical induction. �

4. Conclusions

The purpose of this paper is to introduce the harmonical h-GL concept for IVFS. Our goal with
the above concept was to study Jensen and H-H inequalities for IVFS. The inequalities recently
developed by Kiliman [36] and Dafang et al. [29] are generalized in this study. Additionally, some
useful examples are provided to support our main findings. This is an interesting topic that can be
explored in the future to determine equivalent inequalities for different types of convexity. Using these
concepts, convex optimization theory and fuzzy convex analysis take a new direction. Additionally,
we will explore the generalizations of this concept by using various other types of integral operators in
the future. Hopefully, this concept will be useful to other authors in various scientific fields.
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