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Abstract: In this paper an iterative method is proposed to solve a partial differential equation (PDE)
with free boundary arising from pricing corporate bond with credit grade migration risk. A iterative
algorithm is designed to construct two sequences of fixed internal boundary problems, which produce
two weak solution sequences. It is proved that both weak solution sequences are convergent. In
each iteration step, an implicit-upwind difference scheme is used to solve the fixed internal boundary
problem. It is shown that the scheme is stable and first-order convergent. Numerical experiments verify
that the limit of the weak solution sequence is the solution of the free boundary problem. This method
simplifies the free boundary problem solving, ensures the stability of the discrete scheme and reduces
the amount of calculation.
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1. Introduction

In recent years, with the frequent occurrence of financial risk events, more and more attention has
been paid to the credit risks of financial products. Credit risks of financial products include both default
risks and credit grade migration risks. The previous research pays more attention to default risk, but
now credit grade migration risk has become an important role in the bond risk managements. The
upgrade or downgrade of credit rating will affect the value of corporate bond. The free boundary
models have been established in [2, 6, 8, 10–12, 15] for pricing corporate bonds with the characteristic
of credit grade migration risk, in which the free boundary is determined by the ratio of corporate debt
to corporate value.

In this paper we study the following PDE with free boundary for pricing a corporate bond with the
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characteristic of credit grade migration risk [6, 13]

∂vL

∂τ
+

1
2
σ2

LS 2∂
2vL

∂S 2 + rS
∂vL

∂S
− rvL = 0, 0 < S <

1
γ

vL, τ > 0, (1.1)

∂vH

∂τ
+

1
2
σ2

HS 2∂
2vH

∂S 2 + rS
∂vH

∂S
− rvH = 0, S >

1
γ

vH, τ > 0, (1.2)

with the final value condition at the expiration time T

vL (S ,T ) = vH (S ,T ) = min {S , F} . (1.3)

Here S is the corporate asset value, τ is the time, vL(S , τ) and vH(S , τ) are the bond values in low and
high credit grades respectively, σL and σH (0 < σH < σL) are volatilities of the corporate asset value
under the low and high credit rating respectively, γ (0 < γ < 1) is the threshold ratio of corporate debt
to corporate asset value, r is the risk-free rate of interest, and F is the face value of the bond. Generally,
it can be assumed that F = 1. The defined domain of the free boundary problem is divided into a low
rating region ΩL where 0 < S < 1

γ
vL and a high rating region ΩH where S > 1

γ
vH. It has been proved

that two domains are separated by a free boundary s(τ), and

ΩL = {S < s(τ)} , ΩH = {S > s(τ)} .

At the credit rating migration boundary s(τ), the values of the bond in low and high credit rating satisfy

vL (s(τ), τ) = vH (s(τ), τ) = γs(τ), (1.4)
∂vL

∂S
(s(τ), τ) =

∂vH

∂S
(s(τ), τ) , (1.5)

where s(τ) is an apriorily unknown function since the solutions vL and vH are two apriorily unknown
functions. It has been proved in [6, Theorems 5.1 and 6.1] that the
free boundary problems (1.1)–(1.5) has a unique weak solution (v(S , t), s(t)) with
v(S , t) ∈ W2,1

∞

(
((−∞,∞) × [0,T ]) \ Q̄ρ

)
∩ W1,0

∞ ((−∞,∞) × [0,T ]) and s(t) ∈ C[0,T ] for any ρ > 0,
where

v(S , t) =
{

vH(S , t), in high rating region,
vL(S , t), in low rating region

and Qρ = (−ρ, ρ) ×
(
0, ρ2

)
.

The above problem requires not only solving the value of the bond, but also solving the free
boundary. In financial engineering, pricing financial products with free boundary has long been
recognized as a very challenging problem. A few numerical methods have been used to solve such
problems. Explicit difference schemes are used in [6, 11, 15] to solve free boundary problems for
pricing corporate bonds with credit grade migration risks. A front fixing method is derived in [7] to
solve problems (1.1)–(1.5), which transforms the free boundary into a fixed boundary by including
the unknown boundary into the equation, resulting in the differential equation becoming a nonlinear
equation. For the transformed fixed boundary problem, the predictor-corrector algorithm and
Newton-like iterative algorithms are used to solve the difference equations in [7]. The
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predictor-corrector algorithm is also an explicit discrete scheme that needs to satisfy the stability
conditions, while the Newton-like iterative method needs a lot of computation to solve the nonlinear
difference equations.

In this paper, we propose a novel method to solve the PDE with free boundary (1.1)–(1.5). An
iterative algorithm is designed to generate weak solution sequences of fixed internal boundary
problems. It is proved that both weak solution sequences are convergent. Since it is not easy to obtain
analytical solutions of the fixed internal boundary problems, numerical methods are used to solve
them. In each iteration step, an implicit-upwind difference scheme is applied to solve the fixed
internal boundary problem. The stability and convergence order of the discrete scheme are given.
Numerical experiments verify that the limit of the weak solution sequence is the solution of the free
boundary problem and also verify that the discrete scheme is stable and first-order convergent. The
advantages of this method are reflected in three aspects: first, the free boundary problem is
transformed into a sequence of fixed internal boundary problems, which simplifies the problem and
deepens the understanding of this free boundary problem; second, the implicit scheme is used to solve
the fixed internal boundary problem in each iteration step, so as to ensure the stability of the discrete
scheme without additional constraints; third, this method only involves solving the root of a single
nonlinear equation without solving the system of nonlinear equations, which reduces the amount of
calculation.

2. Iterative method

By using the variable transformations x = ln S and t = T − τ, and defining

u(x, t) =
{

vL(ex, τ), u ≥ γex,

vH(ex, τ), u < γex,

we can derive the following equation from (1.1)–(1.5) and the assumption F = 1

∂u
∂t −

1
2σ

2
L
∂2u
∂x2 −

(
r − 1

2σ
2
L

)
∂u
∂x + ru = 0, −∞ < x < x∗(t), 0 < t ≤ T,

∂u
∂t −

1
2σ

2
H
∂2u
∂x2 −

(
r − 1

2σ
2
H

)
∂u
∂x + ru = 0, x∗(t) < x < ∞, 0 < t ≤ T,

u (x, 0) = min {ex, 1} , −∞ < x < ∞,
u (x∗(t)−, t) = u (x∗(t)+, t) = γex∗(t), 0 < t ≤ T,
∂u
∂x (x∗(t)−, t) = ∂u

∂x (x∗(t)+, t) , 0 < t ≤ T,

(2.1)

where x∗(t) is the free boundary transformed from s(τ). Here x∗(t) is an apriorily unknown function
since it should be solved by the following equation

u (x∗(t), t) = γex∗(t), (2.2)

where the solution u is also an apriorily unknown function.
Let uH(x, t) and uL(x, t) be the solutions of problems ∂uH

∂t −
1
2σ

2
H
∂2uH
∂x2 −

(
r − 1

2σ
2
H

)
∂uH
∂x + ruH = 0, −∞ < x < ∞, 0 < t ≤ T,

uH (x, 0) = min {ex, 1} , −∞ < x < ∞,
(2.3)

AIMS Mathematics Volume 8, Issue 2, 3286-3302.



3289 ∂uL
∂t −

1
2σ

2
L
∂2uL
∂x2 −

(
r − 1

2σ
2
L

)
∂uL
∂x + ruL = 0, −∞ < x < ∞, 0 < t ≤ T,

uL (x, 0) = min {ex, 1} , −∞ < x < ∞,
(2.4)

respectively. Then, using the method for solving the classical Black-Scholes equation [9], we can get
the solutions of problems (2.3) and (2.4) as follows

uH(x, t) = e−rtN
(
d2 − σH

√
t
)
+ exN (−d2) ,

uL(x, t) = e−rtN
(
d1 − σL

√
t
)
+ exN (−d1) ,

where

d1 =
x +

(
r + 1

2σ
2
L

)
t

σL
√

t
, d2 =

x +
(
r + 1

2σ
2
H

)
t

σH
√

t
and

N(y) =
1
√

2π

∫ y

−∞

e−
ξ2
2 dξ.

Similar results have been given in the literature [12]. Furthermore, the following result can be obtained,
which also has been proved in [12, Theorem 2.2].
Lemma 2.1 Let u(x, t), uH(x, t) and uL(x, t) be the solutions of problems (2.1), (2.3) and (2.4)
respectively. Then, we have

uL(x, t) ≤ u(x, t) ≤ uH(x, t).

Next, according to the theory of the linear parabolic equation [4], we construct two weak solution
sequences

{
ū(k)

}
and

{
u(k)

}
with ū(k), u(k) ∈ W2,1

∞

(
((−∞,∞) × [0,T ]) \ Q̄ρ

)
∩W1,0

∞ ((−∞, ∞) × [0,T ]) for

ρ > 0 and Qρ = (−ρ, ρ) ×
(
0, ρ2

)
, which are generated as follows

ū(0)(x, t) = uH(x, t), −∞ < x < ∞, 0 ≤ t ≤ T,
ū(k−1)

(
x̄(k)(t), t

)
= γex̄(k)(t), 0 ≤ t ≤ T,

∂ū(k)

∂t −
1
2σ

2
L
∂2ū(k)

∂x2 −
(
r − 1

2σ
2
L

)
∂ū(k)

∂x + rū(k) = 0, −∞ < x < x̄(k)(t), 0 < t ≤ T,
∂ū(k)

∂t −
1
2σ

2
H
∂2ū(k)

∂x2 −
(
r − 1

2σ
2
H

)
∂ū(k)

∂x + rū(k) = 0, x̄(k)(t) < x < ∞, 0 < t ≤ T,
ū(k) (x, 0) = min {ex, 1} , −∞ < x < ∞,
ū(k)

(
x̄(k)(t)−, t

)
= ū(k)

(
x̄(k)(t)+, t

)
, 0 < t ≤ T,

∂ū(k)

∂x

(
x̄(k)(t)−, t

)
= ∂ū(k)

∂x

(
x̄(k)(t)+, t

)
, 0 < t ≤ T

for k = 1, 2, . . . ,

(2.5)

and 

u(0)(x, t) = uL(x, t), −∞ < x < ∞, 0 ≤ t ≤ T,
u(k−1)

(
x(k)(t), t

)
= γex(k)(t), 0 ≤ t ≤ T,

∂u(k)

∂t −
1
2σ

2
L
∂2u(k)

∂x2 −
(
r − 1

2σ
2
L

)
∂u(k)

∂x + ru(k) = 0, −∞ < x < x(k)(t), 0 < t ≤ T,
∂u(k)

∂t −
1
2σ

2
H
∂2u(k)

∂x2 −
(
r − 1

2σ
2
H

)
∂u(k)

∂x + ru(k) = 0, x(k)(t) < x < ∞, 0 < t ≤ T,
u(k) (x, 0) = min {ex, 1} , −∞ < x < ∞,
u(k)

(
x(k)(t)−, t

)
= u(k)

(
x(k)(t)+, t

)
, 0 < t ≤ T,

∂u(k)

∂x

(
x(k)(t)−, t

)
=

∂u(k)

∂x

(
x(k)(t)+, t

)
, 0 < t ≤ T

for k = 1, 2, . . . .

(2.6)
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When the solution ū(k−1) of the k − 1 iteration is known, the existence and uniqueness of x̄(k) can be
derived from the results in Lemmas 2.2 and 2.3. When x̄(k) is known, the iteration equation of the k-th
order is a fixed internal boundary problem. For the fixed internal boundary problems in (2.5), they are
parabolic equations with discontinuous coefficients as discussed in [3, 5, 14]. By using a construction
method as used in [5] we can prove that the parabolic equation with discontinuous coefficients exists
a solution. Let ū(k)

1 (x, t) and ū(k)
2 (x, t) be particular solutions of the following differential equations

respectively ∂ū(k)
1
∂t −

1
2σ

2
L
∂2ū(k)

1
∂x2 −

(
r − 1

2σ
2
L

)
∂ū(k)

1
∂x + rū(k)

1 = 0, −∞ < x < x̄(k)(t), 0 < t ≤ T,
ū(k)

1 (x, 0) = min {ex, 1} , −∞ < x < x̄(k)(0),

and  ∂ū(k)
2
∂t −

1
2σ

2
H
∂2ū(k)

2
∂x2 −

(
r − 1

2σ
2
H

)
∂ū(k)

2
∂x + rū(k)

2 = 0, x̄(k)(t) < x < ∞, 0 < t ≤ T,
ū(k)

2 (x, 0) = min {ex, 1} , x̄(k)(0) < x < ∞.

Consider the following function

ū(k)(x, t) =
{

ū(k)
1 (x, t) + A(t)ϕ1(x, t), −∞ < x < x̄(k)(t), 0 < t ≤ T,

ū(k)
2 (x, t) + B(t)ϕ2(x, t), x̄(k)(t) < x < ∞, 0 < t ≤ T,

where ϕ1(x, t) and ϕ2(x, t) are the solutions of the following parabolic problems respectively ∂ϕ1
∂t −

1
2σ

2
H
∂2ϕ1
∂x2 −

(
r − 1

2σ
2
H

)
∂ϕ1
∂x + rϕ1 = 0, −∞ < x < ∞, 0 < t ≤ T,

ϕ1 (x, 0) = 0, −∞ < x < ∞,

and  ∂ϕ2
∂t −

1
2σ

2
L
∂2ϕ2
∂x2 −

(
r − 1

2σ
2
L

)
∂ϕ2
∂x + rϕ2 = 0, −∞ < x < ∞, 0 < t ≤ T,

ϕ2 (x, 0) = 0, −∞ < x < ∞.

By imposing the conditions

ū(k)
(
x̄(k)(t)−, t

)
= ū(k)

(
x̄(k)(t)+, t

)
, 0 < t ≤ T,

∂ū(k)

∂x

(
x̄(k)(t)−, t

)
=
∂ū(k)

∂x

(
x̄(k)(t)+, t

)
, 0 < t ≤ T,

we can get A(t) and B(t). From this we conclude that the parabolic equation with discontinuous
coefficients in (2.5) exists a solution. Similar results can be obtained for (2.6).

Next, we give some properties of iterative solutions.
Lemma 2.2 The weak solutions ū(k) and u(k) of problems (2.5) and (2.6) satisfy

∂ū(k)

∂x
> 0,

∂u(k)

∂x
> 0, (x, t) ∈ (−∞,∞) × (0,T ], (2.7)

∂ū(k)

∂x
− ū(k) < 0,

∂u(k)

∂x
− u(k) < 0, (x, t) ∈ (−∞,∞) × (0,T ] (2.8)
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for k ≥ 0 and

∂2ū(k)

∂x2 −
∂ū(k)

∂x
< 0, (x, t) ∈

(
(−∞,∞) \x̄(k)

)
× (0,T ], (2.9)

∂2u(k)

∂x2 −
∂u(k)

∂x
< 0, (x, t) ∈

(
(−∞,∞) \x(k)

)
× (0,T ] (2.10)

for k ≥ 1.

Proof. Hu et al. [6] regard the free boundary problem (2.1) as a parabolic equation with discontinuous
coefficients, and apply the maximum principle to prove in Lemmas 4.2 and 4.5 and Theorem 5.1
of [6] that the properties (2.7)–(2.10) hold true for the solution of the free boundary problem (2.1).
For the fixed internal boundary problems in (2.5) and (2.6), they are also parabolic equations with
discontinuous coefficients. The only difference between the two equations is that the coefficient σ is
different. As long as σ = σH + (σL − σH) H (u − γex) in [6] is replaced by
σ = σH + (σL − σH) H

(
x̄(k)(t) − γex

)
or σ = σH + (σL − σH) H

(
x(k)(t) − γex

)
, it can be proved by the

same method that the results (2.7)-(2.10) for the fixed internal boundary problems in (2.5) and (2.6)
also hold true for 0 < t ≤ T and the inequalities (2.7)–(2.10) become equations for t = 0, where H(ξ)
is the Heaviside function and u is the solution of the free boundary problem. □

In order to simplify the expression, we introduce the following problems

∂v j

∂t −
1
2σ

2
L
∂2v j

∂x2 −
(
r − 1

2σ
2
L

)
∂v j

∂x + rv j = 0, −∞ < x < y j(t), 0 < t ≤ T,
∂v j

∂t −
1
2σ

2
H
∂2v j

∂x2 −
(
r − 1

2σ
2
H

)
∂v j

∂x + rv j = 0, y j(t) < x < ∞, 0 < t ≤ T,
v j (x, 0) = min {ex, 1} , −∞ < x < ∞,
v j

(
y j(t)−, t

)
= v j

(
y j(t)+, t

)
, 0 < t ≤ T,

∂v j

∂x

(
y j(t)−, t

)
=

∂v j

∂x

(
y j(t)+, t

)
, 0 < t ≤ T

(2.11)

for j = 1, 2, which are any two iterative equations in the iterative problems (2.5) and (2.6).
Furthermore, let s j(t) with j = 1, 2 be the solutions of the following problems

v j

(
s j(t), t

)
= γes j(t), 0 ≤ t ≤ T, j = 1, 2, (2.12)

respectively. By making the variable transformation v j = exw j, problems (2.11) and (2.12) can be
reduced to 

∂w j

∂t −
1
2σ

2
L

(
∂2w j

∂x2 +
∂w j

∂x

)
− r ∂w j

∂x = 0, −∞ < x < y j(t), 0 < t ≤ T,
∂w j

∂t −
1
2σ

2
H

(
∂2w j

∂x2 +
∂w j

∂x

)
− r ∂w j

∂x = 0, y j(t) < x < ∞, 0 < t ≤ T,

w j (x, 0) = min {1, e−x} , −∞ < x < ∞,
w j

(
y j(t)−, t

)
= w j

(
y j(t)+, t

)
, 0 < t ≤ T,

∂w j

∂x

(
y j(t)−, t

)
=

∂w j

∂x

(
y j(t)+, t

)
, 0 < t ≤ T

(2.13)

and

w j

(
s j(t), t

)
= γ, 0 ≤ t ≤ T (2.14)
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for j = 1, 2, respectively.
Applying Lemma 2.2 we can get

∂v j

∂x
> 0,

∂v j

∂x
− v j < 0, (x, t) ∈ (−∞,∞) × (0,T ] (2.15)

and

∂2v j

∂x2 −
∂v j

∂x
< 0, (x, t) ∈

(
(−∞,∞) \y j(t)

)
× (0,T ] (2.16)

for j = 1, 2. Combining the variable transformation v j(x, t) = exw j(x, t) and inequalities (2.15)
and (2.16) we obtain

∂w j

∂x
< 0, (x, t) ∈ (−∞,∞) × (0,T ], j = 1, 2, (2.17)

and

∂2w j

∂x2 +
∂w j

∂x
< 0, (x, t) ∈

(
(−∞,∞) \y j(t)

)
× (0,T ], j = 1, 2. (2.18)

Lemma 2.3 For each j, the problem (2.12) have a unique solution s j(t). Then each iterative equation
in problems (2.5) and (2.6) has a unique solution.

Proof. For each j, it is assumed that there exist two solutions s1
j(t) and s2

j(t) to the problem (2.12).
Suppose there exists t0 ∈ [0,T ] such that

s1
j(t0) > s2

j(t0).

Since s1
j(0) = s2

j(0) = 0, we have t0 , 0. Moreover, from (2.14) and (2.17) we have

γ = w j

(
s1

j(t0), t0

)
< w j

(
s2

j(t0), t0

)
= γ,

which is a contradiction. Hence, for each j we have s1
j(t) ≤ s2

j(t). Similarly, for each j we also can get
s2

j(t) ≤ s1
j(t). Therefore, for each j we have s1

j(t) = s2
j(t), which implies that the problem (2.12) have a

unique solution s j(t) for each j.
Furthermore, it is easy to prove that each iterative equation in problems (2.5) and (2.6) has a unique

solution by using the maximum principle as given in [3, 5, 14]. □

Lemma 2.4 For the solutions v j(x, t) of problems (2.11), the following results hold true:
(i) if y1(t) ≥ y2(t) for t ∈ [0,T ], then v1(x, t) ≤ v2(x, t) for (x, t) ∈ (−∞,∞) × [0,T ] and s1(t) ≤ s2(t)

for t ∈ [0,T ];
(ii) if y1(t) ≤ y2(t) for t ∈ [0,T ], then v1(x, t) ≥ v2(x, t) for (x, t) ∈ (−∞,∞) × [0,T ] and s1(t) ≥ s2(t)

for t ∈ [0,T ].

Proof. Set z(x, t) = v2(x, t) − v1(x, t) and

L1z =

 ∂z
∂t −

1
2σ

2
L
∂2z
∂x2 −

(
r − 1

2σ
2
L

)
∂z
∂x + rz, −∞ < x < y1(t), 0 < t ≤ T,

∂z
∂t −

1
2σ

2
H
∂2z
∂x2 −

(
r − 1

2σ
2
H

)
∂z
∂x + rz, y1(t) < x < ∞, 0 < t ≤ T.

(2.19)
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Then, if y1(t) ≥ y2(t) for t ∈ [0,T ], from (2.11) and (2.19) we have

L1z = L1v2 =

 −1
2

(
σ2

L − σ
2
H

) (
∂2v2
∂x2 −

∂v2
∂x

)
, y2(t) < x < y1(t), 0 < t ≤ T,

0, otherwise,

which implies

L1z ≥ 0,

where we have used Lemma 2.2. Obviously, z(x, 0) = 0. Hence, it follows by the maximum principle
in the sense of weak solution that

z(x, t) ≥ 0, (x, t) ∈ (−∞,∞) × [0,T ],

which implies

v1(x, t) ≤ v2(x, t), (x, t) ∈ (−∞,∞) × [0,T ]. (2.20)

By making the variable transformations v j = exw j, problems (2.11) can be reduced to
problem (2.13). Set ψ(x, t) = w2(x, t) − w1(x, t) and

L2ψ =

 ∂ψ

∂t −
1
2σ

2
L

(
∂2ψ

∂x2 +
∂ψ

∂x

)
− r ∂ψ

∂x , −∞ < x < y1(t), 0 < t ≤ T,
∂ψ

∂t −
1
2σ

2
H

(
∂2ψ

∂x2 +
∂ψ

∂x

)
− r ∂ψ

∂x , y1(t) < x < ∞, 0 < t ≤ T.
(2.21)

Then, if y1(t) ≥ y2(t) for t ∈ [0,T ], from (2.13) and (2.21) we have

L2ψ = L2w2 =

 −1
2

(
σ2

L − σ
2
H

) (
∂2w2
∂x2 +

∂w2
∂x

)
, y2(t) < x < y1(t), 0 < t ≤ T,

0, otherwise,

which implies

L2ψ ≥ 0, (2.22)

where we have used (2.18). It is also obvious that ψ(x, 0) = 0. Hence, it follows by the maximum
principle in the sense of weak solution that

ψ(x, t) ≥ 0, (x, t) ∈ (−∞,∞) × [0,T ], (2.23)

which implies

w1(x, t) ≤ w2(x, t), (x, t) ∈ (−∞,∞) × [0,T ].

Furthermore, we can prove the following inequality

ψ(x, t) > 0, (x, t) ∈ (−∞,∞) × (0,T ] (2.24)

holds true. If (2.24) does not hold for all (x, t) ∈ (−∞,∞) × (0,T ], then there is a point (x0, t0) ∈
(−∞,∞) × (0,T ] such that ψ(x, t) reaches its minimum value at (x0, t0), i.e.,

ψ (x0, t0) = 0,
∂ψ

∂x
(x0, t0) =

∂ψ

∂t
(x0, t0) = 0,

∂2ψ

∂x2 (x0, t0) > 0. (2.25)
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Then, the contradiction can be drawn from (2.22) and (2.25). Hence, we have

w1(x, t) < w2(x, t), (x, t) ∈ (−∞,∞) × (0,T ]. (2.26)

Based on the inequality (2.26) we prove the following inequality

s1(t) ≤ s2(t), t ∈ [0,T ] (2.27)

holds true. Since s1(0) = s2(0) = − ln γ, (2.27) holds true for t = 0. If (2.27) is not valid for all t, then
there exists t0 ∈ (0,T ] such that

s1(t0) > s2(t0).

Then, from (2.14), (2.17) and (2.26) we have

γ = w1 (s1(t0), t0) < w1 (s2(t0), t0) < w2 (s2(t0), t0) = γ,

which is a contradiction.
Combining inequalities (2.20) and (2.27), we conclude that the results in (i) hold true.
Using the same method used in proving (i), we also can prove that the results in (ii) hold true. □

The following theorems give the convergence of iterative sequences
{
ū(k)

}
and

{
u(k)

}
in (2.5)

and (2.6), which are the main results of this paper.
Theorem 2.5 The solution sequence

{
ū(k), x̄(k)

}
of problem (2.5) satisfies

uL ≤ ū(1) ≤ ū(3) ≤ · · · ≤ ū(2k+1) ≤ · · · ≤ u ≤ · · · ≤ ū(2k+2) ≤ · · · ≤ ū(4) ≤ ū(2) ≤ uH, (2.28)
x(1) ≤ x̄(2) ≤ x̄(4) ≤ · · · ≤ x̄(2k) ≤ · · · ≤ x∗ ≤ · · · ≤ x̄(2k+1) ≤ · · · ≤ x̄(5) ≤ x̄(3) ≤ x̄(1), (2.29)

which imply that the weak solution sequence
{
ū(k)

}
and the internal boundary sequence

{
x̄(k)

}
are

convergent respectively.

Proof. From Lemma 2.1 we have

u (x, t) ≤ uH (x, t) = ū(0) (x, t) , (x, t) ∈ (−∞,∞) × [0,T ] . (2.30)

Combining (2.30) with Lemma 2.4 we can obtain

x∗(t) ≤ x̄(1)(t), t ∈ [0,T ] . (2.31)

Then, by using Lemma 2.4 and (2.31) we can get

ū(1) (x, t) ≤ u (x, t) , (x, t) ∈ (−∞,∞) × [0,T ] . (2.32)

Set v̄(1) = ū(1) − uL and

L̄(1)v̄(1) =

 ∂v̄(1)

∂t −
1
2σ

2
L
∂2v̄(1)

∂x2 −
(
r − 1

2σ
2
L

)
∂v̄(1)

∂x + rv̄(1), −∞ < x < x̄(1)(t), 0 < t ≤ T,
∂v̄(1)

∂t −
1
2σ

2
H
∂2v̄(1)

∂x2 −
(
r − 1

2σ
2
H

)
∂v̄(1)

∂x + rv̄(1), x̄(1)(t) < x < ∞, 0 < t ≤ T.
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Then, from (2.4) and (2.5) we have

L̄(1)v̄(1) = −L̄(1)uL =

 0, −∞ < x < x̄(1)(t), 0 < t ≤ T,
1
2

(
σ2

H − σ
2
L

) (
∂2uL
∂x2 −

∂uL
∂x

)
, x̄(1)(t) < x < ∞, 0 < t ≤ T,

which implies

L̄(1)v̄(1) ≥ 0,

where we have used Lemma 2.2. It is also obvious that v̄(1)(x, 0) = 0. Hence, it follows by the maximum
principle in the sense of weak solution that v̄(1) ≥ 0, i.e.,

uL(x, t) ≤ ū(1)(x, t), (x, t) ∈ (−∞,∞) × [0,T ] . (2.33)

From Lemma 2.4 and (2.32) we have

x̄(2)(t) ≤ x∗(t), 0 ≤ t ≤ T. (2.34)

Then, by using Lemma 2.4 and (2.34) we can get

u (x, t) ≤ ū(2) (x, t) , (x, t) ∈ (−∞,∞) × [0,T ] . (2.35)

Set v̄(2) = uH(x, t) − ū(2) and

L̄(2)v̄(2) =

 ∂v̄(2)

∂t −
1
2σ

2
L
∂2v̄(2)

∂x2 −
(
r − 1

2σ
2
L

)
∂v̄(2)

∂x + rv̄(2), −∞ < x < x̄(2)(t), 0 < t ≤ T,
∂v̄(2)

∂t −
1
2σ

2
H
∂2v̄(2)

∂x2 −
(
r − 1

2σ
2
H

)
∂v̄(2)

∂x + rv̄(1), x̄(2)(t) < x < ∞, 0 < t ≤ T.

Then, from (2.3) and (2.5) we have

L̄(2)v̄(2) = L̄(2)uH =

 1
2

(
σ2

H − σ
2
L

) (
∂2uH
∂x2 −

∂uH
∂x

)
, −∞ < x < x̄(2)(t), 0 < t ≤ T,

0, x̄(2)(t) < x < ∞, 0 < t ≤ T,

which implies

L̄(2)v̄(2) ≥ 0,

where we also have used Lemma 2.2. It is also obvious that v̄(2)(x, 0) = 0. Hence, it follows by the
maximum principle in the sense of weak solution that v̄(2) ≥ 0, i.e.,

ū(2)(x, t) ≤ uH(x, t), (x, t) ∈ (−∞,∞) × [0,T ] . (2.36)

From (2.35), (2.36) and Lemma 2.4 we have

x∗(t) ≤ x̄(3)(t) ≤ x̄(1)(t), t ∈ [0,T ]. (2.37)

Then, by using Lemma 2.4 and (2.37) we can get

ū(1)(x, t) ≤ ū(3)(x, t) ≤ u(x, t), (x, t) ∈ (−∞,∞) × [0,T ] . (2.38)

AIMS Mathematics Volume 8, Issue 2, 3286-3302.



3296

Thus, from (2.38) and Lemma 2.4 we can get

x̄(2)(t) ≤ x̄(4)(t) ≤ x∗(t), t ∈ [0,T ] . (2.39)

Furthermore, by using Lemma 2.4 and (2.39) we have

u(x, t) ≤ ū(4)(x, t) ≤ ū(2)(x, t), −∞ < x < ∞, 0 ≤ t ≤ T. (2.40)

Next we assume that the inequalities (2.28) and (2.29) hold true when the number of iterations is
not greater than 2k. Then we have

ū(2k−3) ≤ ū(2k−1) ≤ u ≤ ū(2k−2) ≤ ū(2k), (x, t) ∈ (−∞,∞) × [0,T ] , (2.41)

Thus, from (2.41) and Lemma 2.4 we have

x̄2k−1(t) ≤ x̄2k+1(t) ≤ x∗(t) ≤ x̄(2k)(t) ≤ x̄(2k+2)(t), t ∈ [0,T ]. (2.42)

Furthermore, by using Lemma 2.4 and (2.42) we can get

ū(2k) ≤ ū(2k+2) ≤ u ≤ ū(2k+1) ≤ ū(2k−1), (x, t) ∈ (−∞,∞) × [0,T ] . (2.43)

Hence, it can be seen from the induction that the inequalities (2.28) and (2.29) hold true for all k.
Thus, by using Arzelà-Ascoli Theorem, we can prove that the monotone bounded sequences

{
x̄(2k−1)

}
and

{
ū(2k−1)

}
are convergent respectively. Similarly, we can also prove that the monotone bounded

sequences
{
x̄(2k)

}
and

{
ū(2k)

}
are convergent respectively. □

Remark. Although Theorem 2.5 does not prove that the limit of the solution sequence is the solution of
Eq (2.1) in the classical sense, it can be considered to prove that the limit satisfies Eq (2.1) in the sense
of distribution [1]. Considering that this paper focuses on numerical calculation, we use numerical
experiments to verify that the limit is the solution of Eq (2.1).

Using the same method for proving Theorem 2.5 we also can obtain the following results.
Theorem 2.6 The solution sequence

{
u(k), x(k)

}
of problem (2.6) satisfies

uL ≤ u(2) ≤ u(4) ≤ · · · ≤ u(2k) ≤ · · · ≤ u ≤ · · · ≤ u(2k−1) ≤ · · · ≤ u(3) ≤ u(1) ≤ uH,

x(1) ≤ x(3) ≤ x(5) ≤ · · · ≤ x(2k+1) ≤ · · · ≤ x∗ ≤ · · · ≤ x(2k) ≤ · · · ≤ x(4) ≤ x(2) ≤ x̄(1),

which imply that the weak solution sequence
{
u(k)

}
and the internal boundary sequence

{
x(k)

}
are

convergent respectively.

3. Discretization

Since it is difficult to get the analytical solution for problems (2.5) and (2.6), we use an implicit-
upwind difference scheme to solve them.

First, the spatial domain (−∞,∞) is truncated into a finite domain [xmin, xmax]. The boundary
conditions are chosen to be u(xmin, t) = uL (xmin, t) and u(xmax, t) = uH (xmax, t). Generally, the error
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caused by the truncation of the domain is negligible for the value of the bond. A uniform mesh
ΩN×K = ΩN ×ΩK is utilized to discretize the definition domain [xmin, xmax] × [0,T ], where

ΩN = {xi = xmin + ih | 0 ≤ i ≤ N, h = (xmax − xmin)/N}

and

ΩK ≡ {t j

∣∣∣t j = j△t, △t = T/K }.

For the differential operator

Lw =
∂w
∂t
−

1
2
σ2∂

2w
∂x2 −

(
r −

1
2
σ2

)
∂w
∂x
+ rw,

an upwind difference scheme on ΩN is utilized to approximate the spatial derivatives and an implicit
Euler method on ΩK is utilized to approximate the time derivative:

LN,KW j
i =

W j
i −W j−1

i

△t
−

1
2
σ2 W j

i+1 − 2W j
i +W j

i−1

h2 −

(
r −

1
2
σ2

)
D̃xW

j
i + rW j

i ,

where σ = σL or σ = σH, and

D̃xW
j

i =


W j

i+1−W j
i

h , if r ≥ 1
2σ

2,
W j

i −W j
i−1

h , if r < 1
2σ

2.

For the differential operator

lw =
∂w
∂x

(x(t)+, t) −
∂w
∂x

(x(t)−, t) ,

an upwind difference scheme also is utilized to approximate the left and right derivatives:

lN,KW j
i =

W j
i+1 −W j

i

h
−

W j
i −W j

i−1

h
.

It is easy to know that the discrete scheme satisfies the maximum principle, which can be derived
from the fact that the matrix related to the discrete operator

{
LN,K , lN,K

}
is an M-matrix. Then, we

can conclude that the discrete scheme is unconditionally stable and is first-order convergent by the
maximum principle.

Furthermore, the nonlinear equation

u (x(t), t) = γex(t), 0 ≤ t ≤ T,

in problems (2.5) and (2.6) can be solved by Newton iteration method, where u can be approximated by
numerical solutions. In general, the solution of the nonlinear equation does not happen to be the mesh
point of ΩN . We choose the closest mesh point as the approximate solution of the nonlinear equation.
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4. Numerical experiments

In this section we present some numerical results to indicate experimentally the efficiency and
accuracy of our method. We consider the same example as given in [6, 7].

Example The PDEs (1.1)–(1.5) with parameters σL = 0.4, σH = 0.2, r = 0.05, F = 1, γ = 0.8, T =
5, xmin = − ln 5, xmax = ln 5.

To numerically calculate Eqs (2.5) and (2.6), the stopping criterion of the iterative algorithm is
chosen as

max
0≤i≤N,0≤ j≤K

∣∣∣Ū j,(k)
i − Ū j,(k−1)

i

∣∣∣ ≤ 10−6, max
0≤i≤N,0≤ j≤K

∣∣∣U j,(k)
i − U j,(k−1)

i

∣∣∣ ≤ 10−6,

where Ū and U are the numerical solutions of Eqs (2.5) and (2.6) respectively.
The comparison between our numerical results and those of the explicit difference method given

in [6] shows that they are very consistent, which are presented in Table 1.

Table 1. The Maximum difference values between our scheme and the explicit difference
method [6] for Example.

N K Maximum difference value

32 1024 1.6580e-2
64 4096 7.3318e-3

128 16384 3.3590e-3
256 65536 1.5577e-3
512 262144 7.4266e-4

Figure 1 displays the iterative solutions at t = 0 for the iterative equation (2.5), which shows that the
even number of iterative solutions are above the numerical solution U and the odd number of iterative
solutions are below the numerical solution U, and the iterative solutions are closer to the solution
U with the increase of the number of iterations. Figure 2 displays the iterative solutions at t = 0
for the iterative equation (2.6), which shows that the odd number of iterative solutions are above the
numerical solution U and the even number of iterative solutions are below the numerical solution U,
and the iterative solutions are also closer to the solution U with the increase of the number of iterations.
Figure 3 gives the numerical solution of the corporate bond with credit rating migration and Figure 4
gives the numerical solution of the free boundary caused by credit rating migration. It’s easy to see
from Figures 3 and 4 that the function of the bond value has been decomposed into two regions by a
free boundary and the free boundary is decreasing as expected.
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Figure 1. The iterative solutions at τ = 0 for the iterative Eq (2.5).
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Figure 2. The iterative solutions at τ = 0 for the iterative Eq (2.6).

Figure 3. Bond value.
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Figure 4. Free boundary.

Since the example has no analytical solution, the double-layer mesh principle is utilized to calculate
the error and the corresponding convergence rate. The error in the discrete maximum norm is denoted
by

eN,K = max
i, j

∣∣∣∣U2N,2K
i j − UN,K

i j

∣∣∣∣ ,
and the convergence rate is denoted by

rN,K = log2

(
eN,K

e2N,2K

)
.

The maximum errors, convergence rates and number of iterations in the calculation of (2.5) and (2.6)
for Example are presented in Table 2, which show that the discrete scheme is stable and first-order
convergent.

Table 2. Maximum errors, convergence rates and number of iterations for Example

N K Error Rate Iterations
64 64 3.8119e-3 1.238 6

128 128 1.6164e-3 1.058 7
256 256 7.7631e-4 1.198 8
512 512 3.3836e-4 1.195 9

1024 1024 1.4775e-4 - 10

From the perspective of convergence order, our numerical method and the methods given in [6, 7]
are first-order convergent. Compared with the explicit difference methods given in [6, 7], we use the
implicit scheme to solve the fixed boundary problem in each iteration step, which ensures the stability
of our discrete scheme without additional constraints. Compared with the front fixing method with
Newton-like iterative algorithms given in [7], our method only involves solving the root of a single
nonlinear equation without solving the system of nonlinear equations, which reduces the amount of
calculation.
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5. Conclusions and discussion

An iterative method for a PDE with free boundary arising from pricing corporate bond with credit
grade migration risk has been proposed. The key to the success of this method is that the constructed
iterative algorithm produces two weak solution sequences of fixed internal boundary problems which
are proved to be convergent. Since it is not easy to obtain analytical solutions of the fixed internal
boundary problems, numerical methods are used to solve them. In each iteration step, an implicit-
upwind difference scheme is used to solve the fixed internal boundary problem, which ensures the
stability of the discrete scheme without additional constraints. Moreover, this method only involves
solving the root of a single nonlinear equation without solving the system of nonlinear equations, which
reduces the amount of calculation. It is shown that the scheme is stable and first-order convergent.
Numerical experiments verify that the limit of the weak solution sequence is the solution of the free
boundary problem, and numerical experiments also verify the stability and convergence order of the
discrete scheme. The study of this paper broadens the method of solving free boundary problems. In
future we extend this method to solve two dimensional models [11].
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