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Abstract: The purpose of this paper is twofold. Firstly, we generalize the notion of semigeneric braid
arrangement to semigeneric graphical arrangement. Secondly, we give a formula for the characteristic
polynomial of the semigeneric graphical arrangement SG := {xi − x j = ai : i j ∈ E(G), 1 ≤ i < j ≤ n},
where ai’s are generic. The formula is obtained by characterizing central subarrangements of SG via
the corresponding graph G.

Keywords: hyperplane arrangement; characteristic polynomial; semigeneric graphical arrangement;
semigeneric braid arrangement; generic element
Mathematics Subject Classification: 52C35, 32S22

1. Introduction

The study of a hyperplane arrangement typically goes along with the study of its characteristic
polynomial as the polynomial carries combinatorial and topological information of the arrangement
(e.g., [10, 16, 17]). Terao’s factorization theorem shows that if an arrangement is free, then its
characteristic polynomial factors into the product of linear polynomials over the integer ring. Many
attempts have been made in order to compute and to make a broader understanding the characteristic
polynomials (e.g., [1, 2, 6, 7, 9, 12, 13, 15, 23, 24]). It is well-known that the characteristic polynomial
of any hyperplane arrangement gets generalized to the Tutte polynomial [22]. More recently,
the generalizations of the polynomials, the arithmetic Tutte polynomial, the characteristic quasi-
polynomial and the chromatic quasi-polynomials were introduced (e.g., [12, 14, 15, 21]).

The braid arrangement (or type A Coxeter arrangement) is the hyperplane arrangement in Rn defined
by

An−1 :=
{
xi − x j = 0 : 1 ≤ i < j ≤ n

}
.

Deformations of the braid arrangement are often studied in the literature, among these deformations
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are the Linial arrangement, Shi arrangement, Catalan arrangement, semiorder arrangement, generic
braid arrangement, and semigeneric braid arrangement, etc, see [3–5, 8, 11, 19, 20, 23] for a discussion
of the combinatorics and freeness of these arrangements. The semigeneric braid arrangement is the
hyperplane arrangement in Rn defined by

Sn := {xi − x j = ai : 1 ≤ i < j ≤ n},

where ai’s are generic. Stanley asked to find the characteristic polynomial of this arrangement. In this
paper, we give a formula for the characteristic polynomials of the semigeneric braid arrangement and
its subarrangements, which we call the semigeneric graphical arrangements.

The remainder of the paper is organized as follows. In Section 2, we recall definitions and basic
facts of arrangements. In Section 3, we prove our main results which provide the characterizations of
a central semigeneric graphical arrangement, and induce a formula for the characteristic polynomial of
a semigeneric graphical arrangement. In Section 4, we show some applications of our main results.

2. Preliminaries

We first review some basic concepts and preliminary results on arrangements. Our standard
reference is [17, 18]. Let K be a field, n be a positive integer and V = Kn be the n-dimensional
vector space over K. A hyperplane in V is a affine subspace of codimension one of V . An arrangement
A is a finite set of hyperplanes in V . An intersection lattice L(A) ofA is defined by

L(A) :=

⋂
H∈B

H , ∅ : B ⊆ A

 ,
with an order by reverse inclusion X ≤ Y ⇔ Y ⊆ X for X,Y ∈ L(A). The characteristic polynomial
χA(t) ∈ Z[t] ofA is defined by

χA(t) :=
∑

X∈L(A)

µ(X)tdim X,

where µ denotes the Möbius function µ : L(A)→ Z defined recursively by

µ(V) = 1 and µ(X) = −
∑

Y∈L(A)
X(Y

µ(Y).

Let G be a simple graph with vertex set V(G) = [n] = {1, . . . , n} and edge set E(G). The graphical
arrangementAG in Kn is defined by

AG :=
{
xi − x j = 0 : i j ∈ E(G)

}
.

A simple graph is chordal if it does not contain an induced cycle of length greater than three, or Cn-free
for all n > 3 in shorthand notation. The freeness of graphical arrangements is completely characterized
by chordality. If G = Kn, the complete graph on [n], thenAG = An−1.

A natural deformation of the graphical arrangement turns up if we use generic elements ai’s to
replace 0’s in the equations of hyperplanes. Stanley explained the meaning of generic elements in [18]
as follows.
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LetA be an arrangement in an n-dimensional vector space V and L1(x), . . . , Lm(x) be linear forms,
not necessarily distinct, in the variables x = (x1, . . . , xn) over the field K. LetA be defined by L1(x) =

a1, . . . , Lm(x) = am, where a1, . . . , am are generic elements of K. This means if Hi = ker(Li(x) − ai),
then

Hi1 ∩ · · · ∩ Hik , ∅ ⇐⇒ Li1 , . . . , Lik are linearly independent.

Definition 2.1. Let G be a simple graph with vertex set V(G) = [n] and edge set E(G). The semigeneric
graphical arrangement in Rn is defined by

SG := {xi − x j = ai : i j ∈ E(G), 1 ≤ i < j ≤ n},

where ai’s are generic. SG is simply a subarrangement of the semigeneric braid arrangement Sn. In
particular, if G = Kn, then SG = Sn.

According to the definitions of generic elements and SG, the genericity of ai’s can be sure when
they take any numbers in R. We do not emphasize that ai’s are generic in later section.

Clearer comprehending can be achieved by a simple example.

Example 2.2. Figure 1 shows a simple graph G, a subgraph of K6, the semigeneric graphical
arrangement SG consists of the following hyperplanes:

x1 − x2 = a1, x1 − x5 = a1, x2 − x3 = a2, x2 − x4 = a2, x2 − x5 = a2,

x2 − x6 = a2, x3 − x4 = a3, x3 − x5 = a3, x4 − x6 = a4.

Figure 1. A subgraph of K6.

3. Main results

There are a few powerful methods for computing the characteristic polynomials of hyperplane
arrangements. In [7], Athanasiadis showed that simply by computing the number of points missing
the hyperplanes (over finite fields) and by using the Möbius formula, the characteristic polynomials
of many hyperplane arrangements can be computed. Our method is closer in spirit to [18] in
which Stanley gives an interpretation of linearly independent subarrangement B of the generic braid
arrangement in terms of the graph GB. We will provide a necessary and sufficient condition for a
central semigeneric graphical arrangement SG from the point of graph G (i.e., Theorem 3.4).

Lemma 3.1. The semigeneric graphical arrangement SG is central (i.e. ∩H∈SG H , ∅) if the graph G
is an acyclic graph.
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Proof. SG is central if the intersection of all the hyperplanes contains at least one point (x1, . . . , xn).
We can find such an assignment (x1, . . . , xn) satisfying xi − x j = ai(i j ∈ E(G)). That can be done by
just picking one from xi’s at a time since the graph G is acyclic and ai’s are generic. �

Owing to Lemma 3.1, we consider the centrality of SG where G is a cycle.

Lemma 3.2. If the arrangement S :=
{
xi j − xi j+1 = b j : 1 ≤ i j ≤ n, j = 1, . . . , k, ik+1 = i1

}
, then S is

central if and only if
∑k

j=1 b j = 0.

Proof. The arrangment S is central means there exists at least one point on all the hyperplanes, that is,
at least a solution to the system of the equations of all the hyperplanes in S. That means rank(M(S)) =

rank((M(S)), where M(S) and M(S) are the coefficient matrix and augmented matrix of the system of
the equations, respectively.

Perform the following series of elementary row operations on M(S) and M(S), we have

P(k, 1(1)) . . . P(k, k − 1(1))M(S) =

(
B
0

)
k×k

,

and

P(k, 1(1)) . . . P(k, k − 1(1))M(S) =

(
B β

0
∑k

j=1 b j

)
k×(k+1)

,

where B is a (k − 1) × k matrix, βT = (b1, . . . , bk−1), vector 0 = (0, . . . , 0) ∈ Rk, and P(i, j(m)) denotes
the elementary matrix by adding m multiple of j-th row of the identity matrix to i-th row of the identity
matrix. Distinctly,

∑k
j=1 b j = 0 if and only if rank(M(S)) = rank(B) = rank(M(S)), that is, the

arrangement S is central. �

Applying Lemma 3.2 to a semigeneric graphical arrangement, we get the following theorem.

Theorem 3.3. Let G be a k-cycle with V(G) = {i1, . . . , ik} ⊆ {1, . . . , n}, the semigeneric graphical
arrangement SG consists of the following hyperplanes:

xi j − xi j+1 =

ai j , if i j < i j+1

ai j+1 , if i j > i j+1
.

The arrangement SG is central if and only if
∑k

j=1(−1)δ jai j+δ j
= 0, where δ j =

0, if i j < i j+1

1, if i j > i j+1
.

In the theorem below, we will characterize the central semigeneric graphical arrangement SG in
terms of G.

Theorem 3.4. The semigeneric graphical arrangement SG is central if and only if graph G satisfies
one of the following two conditions:

(1) G is an acyclic graph;
(2) the semigeneric graphical arrangements of all cycles in G are central.
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Proof. Suppose C1, . . . ,Cp are p connected components of G which are not the isolated vertices. If all
the subarrangements corresponding to C1, . . . ,Cp are central, then SG is central. Therefore, it suffices
to prove SC is central, where C is a connected component of G containing cycles.

Assume |E(C)| = t and SC := {ker(αi · x − ai)|1 ≤ i ≤ t}. Let T be a spanning tree of C which is a
tree that contains every vertex of C, then T = C − E(T ) is the cotree of T in C. Assume |V(C)| = s,
then |V(T )| = s. Since a connected graph with s vertices is a tree if and only if it has s − 1 edges,
let the normal vectors of the hyperplanes of ST be αu1 , . . . , αus−1 . Firstly, we will prove the vectors
αu1 , . . . , αus−1 form a basis of span(α1, . . . , αt), a space spanned by α1, . . . , αt. By Lemma 3.1, the
vectors αu1 , . . . , αus−1 are linearly independent, i.e., rank(αu1 , . . . , αus−1) = s − 1. Moreover, by the
definition of spanning tree, we know that T + e will generate a cycle D satisfying e ∈ E(D) for all
e ∈ E(T ). Assume |E(D)| = k and αv1 , . . . , αvk−1 are the normal vectors of hyperplanes of SD−e, it
follows that

αv1 , . . . , αvk−1 ∈
{
αu1 , . . . , αus−1

}
,

and the normal vector of hyperplane corresponding to e is αvk ∈ {α1, . . . , αt} −
{
αu1 , . . . , αus−1

}
. Since D

is a cycle, αvk is a linear combination of αv1 , . . . , αvk−1 , i.e.,

αvk ∈ span(αv1 , . . . , αvk−1) ⊆ span(αu1 , . . . , αus−1).

Since αvk is the normal vector of hyperplane for any e ∈ E(T ), hence α1, . . . , αt ∈ span(αu1 , . . . , αus−1),
and the vectors αu1 , . . . , αus−1 form a basis of span(α1, . . . , αt).

Let M(SC) and M(SC) be the coefficient matrix and the augmented matrix of the linear system of
the hyperplane equations of SC, respectively, that is,

M(SC) =


α1
...

αt

 and M(SC) =


α1 a1
...

...

αt at

 .
Since αu1 , . . . , αus−1 form a basis of span(α1, . . . , αt) and the semigeneric graphical arrangements of all
cycles in G are central, according to Lemma 3.2, M(SC) can be changed as follows by performing the
same series of elementary row operations : 

αu1 au1
...

...

αus−1 aus−1

0 0
...

...

0 0


.

So rank(M(SC)) = rank(M(SC)) = s − 1, i.e., SC is central.
We complete the proof. �

For the characteristic polynomial of an arrangement A in n-dimensional vector space, we adopt
Whitney’s theorem [18] which gives a basic formula,

χA(t) =
∑
B⊆A

B is central

(−1)#Btn−rank(B).
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Combining Whitney’s theorem and Theorem 3.4, we will give a formula for the characteristic
polynomial of the semigeneric graphical arrangement SG.

Corollary 3.5. Let G be a simple graph with V(G) = [n], then the characteristic polynomial of SG is

χSG (t) =
∑

D

(−1)|E(D)|tp(D),

where D ranges over all spanning subgraphs of G, and D is an acyclic graph or semigeneric graphical
arrangements of all cycles in D are central. |E(D)| denotes the number of the edges, and p(D) denotes
the number of the connected components of D.

Proof. Assume D is the spanning subgraph of G corresponding to the subarrangement B of SG. It is
clear that #B = |E(D)|. The rank of B is the number of the edges of a spanning forest of D. Since a
connected graph with n vertices is a tree if and only if it has n − 1 edges, the number of the edges of
a spanning forest of a graph D is the number of vertices minus the number of connected components,
that is rank(B) = n − p(D). �

4. Applications

In this section, we will give some applications of Theorem 3.4 and Corollary 3.5.

Example 4.1. The defining polynomial of S4 (i.e., 4-dimensional semigeneric braid arrangement) is

QS4 = (x1 − x2 − a1)(x1 − x3 − a1)(x1 − x4 − a1)(x2 − x3 − a2)(x2 − x4 − a2)(x3 − x4 − a3),

where a1, a2, a3 are generic elements. Table 1 illustrates all types of characteristic polynomials for S4,
which depend on the values of a2, a3, a2 + a3, a2 − a3. The symbol “T” in Table 1 indicates that the
condition is met, and “F” indicates that the condition is not met.

Table 1. All types of characteristic polynomials for S4.

a2 = 0 a3 = 0 a2 + a3 = 0 a2 − a3 = 0 χS4(t)
F F F F t4 − 6t3 + 15t2 − 15t
F F T / F F / T t4 − 6t3 + 15t2 − 14t

T / F F / T F F t4 − 6t3 + 13t2 − 10t
T T T T t4 − 6t3 + 11t2 − 6t

Example 4.2. For the semigeneric graphical arrangement SG of Example 2.2, we take a1 = 1, a2 =

3, a3 = 0, a4 = 2. Compute the characteristic polynomial χSG (t).
According to Theorem 3.4, we need to figure out the central subarrangements of cycles in G, which

depend on the values of the generic elements ai’s. In Figure 2, it is not difficult to see the semigeneric
graphical arrangements corresponding to cycles (a)–(c) are central, the others are non-central.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 2. Cycles in G.

Obviously, a subarrangement of SG is central if and only if the corresponding subgraph D is an
acyclic graph or only contains cycles (a), (b) or (c) in Figure 2. The isomorphism types of spanning
subgraph D (with the number of distinct labelings written below D) are given by Figure 3.

(a) 1 (b) 9 (c) 36 (d) 1 (e) 1

(f) 80 (g) 6 (h) 1 (i) 6 (j) 99

(k) 1 (l) 4 (m) 13 (n) 13 (o) 55

(p) 4 (q) 4 (r) 10 (s) 10 (t) 4

Figure 3. The spanning subgraph D corresponding to a central subarrangement.

For all the subgraphs D in Figure 3, we will list the number of connected components p(D), the
number of edges |E(D)|, and the number of distinct labelings of D in Table 2.
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Table 2. The values of p(D), |E(D)| and the number of distinct labelings of D.

p(D) type |E(D)|
the number of distinct

labelings of D
6 (a) 0 1
5 (b) 1 9
4 (c) 2 36

(d),(e) 3 2
3 (f) 3 80

(g),(h),(i) 4 13
(k) 5 1

2 (j) 4 99
(l),(m),(n) 5 30

(p) 6 4
1 (o) 5 55

(q),(r),(s) 6 24
(t) 7 4

Hence, from Corollary 3.5, we get

χSG (t) =t6 − 9t5 + (36 − 2)t4 − (80 − 13 + 1)t3 + (99 − 30 + 4)t2 − (55 − 24 + 4)t
=t6 − 9t5 + 34t4 − 68t3 + 73t2 − 35t.

5. Conclusions

In this paper, we study the characteristic polynomial of the semigeneric graphical arrangement SG,
which is a deformation of the graphical arrangement. The formula of the characteristic polynomial
is obtained by characterizing central subarrangements of SG via the corresponding graph G. The
semigeneric graphical arrangement SG is a subarrangement of the semigeneric braid arrangement (or
type A semigeneric arrangement). It would be interesting to develop a new method for computing the
characteristic polynomials of others types (e.g., type B and type D) of semigeneric arrangements in the
future.
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