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1. Introduction

Tilting complexes were introduced by Rickard [1] and play an important role in representation
theory, since then various results on extensions of algebras and extensions of tilting
complexes (modules) have been given in representation theory. For more detailed information, please
see [1–6]. However, in this paper, we consider the extension of tilting complexes in some new aspects.

It is well known that A1 ⊗ A3 and A2 ⊗ A3 are derived equivalent if A1 and A2 are derived equivalent,
where A1, A2 and A3 are three finite dimensional k-algebras (see [7]). Now if A and C are left H-module
algebras, then there exist two smash product algebras A#H and C#H. Since A ⊗k H can be thought as
trivial smash product, we naturally ask the following questions:

(1) If A and C are derived equivalent, does it follow that A#H and C#H are also derived equivalent?
(2) Conversely, if A#H and C#H are derived equivalent, does it follow that A and C are also derived

equivalent?
In general, we know that A#H is an H-Galois extension of A. Hence we can also ask whether the

relation of derived equivalence is invariant under H-Galois extension. Let A and C be right faithful flat
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H-Galois extensions of AcoH∗ and CcoH∗ , respectively.

(1) If A and C are derived equivalent, does it follow that AcoH∗ and CcoH∗ are also derived equivalent?
(2) Conversely, if AcoH∗ and CcoH∗ are derived equivalent, does it follow that A and C are also derived

equivalent?
In fact, the above questions (1) and (2) have been considered in the context of strongly group graded

algebras [8], and the questions (1) and (2) in the case of Morita equivalence have been considered in [9].
The aim of this paper is to answer the above question (2) (Corollary 3.1).

The recollements of triangulated categories were introduced by Beilinson-Bernstein-Deligne [10]
and play an important role in algebraic geometry [10], representation theory [11]. Han constructed
perfect recollements of derived categories of tensor product algebras from a perfect recollement of
derived categories of algebras in [12]. In this paper we generalize this construction to smash product
algebras. Furthermore, This result can be generalized to the n-recollement which is a natural
generalization of the recollement.

This paper is organized as follows. In Section 2, we recall some basic definitions and results. In
Section 3, according to Theorem 2.1, we show that a derived equivalence between two H-module
algebras can be extended to their smash product algebras under some conditions. In Section 4, we
prove that 0 → EndDb(B)(T•) → EndDb(A)(T• ⊗B A) is an H-Galois Frobenius extension if A/B is
an H-Galois Frobenius extension. In Section 5, for any perfect recollement of derived categories of
H-module algebras, we construct a perfect recollement of derived categories of their smash product
algebras. Moreover, we prove the similar result for n-recollements.

2. Preliminaries

In this section we introduce some basic notations, definitions and results needed in this paper.
Throughout this paper, k is a fixed field and all algebras are finite dimensional k-algebras. Given

an algebra A, we denote by ModA the category of right A-modules, by modA the full subcategory of
finite dimensional right A-modules and by Proj-A (resp. P(A)) the category of (resp. finitely generated)
projective right A-modules.

LetA be an abelian category. A complex X• overA is a sequence of morphisms di between objects
Xi inA, that is,

· · · −→Xi+1
di
−→ Xi

di−1
−→ Xi−1 −→ · · ·

such that di−1di = 0 for all i ∈ Z. The category of all complexes over A with the usual complex maps
of degree zero is denoted by C(A). The homotopy category and the derived category of complexes
over A is denoted by K(A) and D(A), respectively. The full subcategory of C(A) consisting of
bounded (resp. bounded above) complexes over A is denoted by Cb(A) (resp. C−(A)). Similarly, we
have full subcategories Db(A), D−(A) in D(A) and Kb(A), K−(A) in K(A). In particular, if A =

modA with A a finite dimensional k-algebra, then we briefly write C(A), Cb(A) for C(A), Cb(A), and
so on.

Let H be a Hopf algebra over k and H∗ be the dual Hopf algebra of H. We use the Sweedler notation
for the comultiplication on H: 4(h) =

∑
h1 ⊗ h2. A k-algebra A is called a left H-module algebra

if A is a left H-module such that h · (ab) =
∑

(h1 · a)(h2 · b) and h · 1A = ε(h)1A for all a, b ∈ A and
h ∈ H. Given any left H-module M, the submodule of H-invariants is the set MH = {m ∈ M|h · m =
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ε(h)m f or all h ∈ H}. If A is an H-module algebra, then AH is a subalgebra of A. The dual notion of
left H-module algebra is the right H∗-comodule algebra induced naturally from the left H-module.

Definition 2.1. [13, Definitions 7.2.1 and 8.1.1] Let A be a k-algebra, B be a subalgebra of A, and H
be a Hopf k-algebra.

(1) B ⊂ A is called a right H-extension if A is a right H-comodule algebra with structure map ρ
satisfying B = AcoH, where AcoH is defined as the subcomodule {a ∈ A | ρ(a) = a ⊗ 1};

(2) A right H-extension B ⊂ A is called H-cleft if there exists a right H-comodule map γ : H → A
which is (convolution) invertible;

(3) A right H-extension B ⊂ A is called right H-Galois if the map β : A ⊗B A → A ⊗ H given by
β(a ⊗ b) = (a ⊗ 1)ρ(b) is bijective.

The next proposition is taken from [13, Theorem 8.2.4].

Proposition 2.1. [13] Let A ⊂ B be an H-extension. Then the following are equivalent:
(1) A ⊂ B is H-cleft;
(2) A ⊂ B is H-Galois and has the normal basis property.

If A is an H-module algebra, then A may be considered as an H∗-comodule algebra. Let AM
H∗

be the category of relative Hopf modules (see [13, Definition 8.5.1]). When H is a finite dimensional
Hopf algebra over k, we may identify AM

H∗ with the category Mod(A#H∗∗)=Mod(A#H).
In this paper we are interested in giving some properties of derived categories under smash product.

For the background on derived categories, we refer to [14]. The following Rickard’s Morita theorem
on derived categories is useful for our discussion in the sequel.

Theorem 2.1. [7] For two finite dimensional k-algebras A and B, the following are equivalent:
(a)Db(A) andDb(B) are equivalent as triangulated categories;
(b) Kb(P(A)) and Kb(P(B)) are equivalent as triangulated categories;
(c) B � EndDb(A)(T•), where T• is a complex in Kb(P(A)) satisfying

(1) T• is self-orthogonal in Kb(P(A)): HomKb(P(A))(T•,T•[i]) = 0 for all i , 0,
(2) add (T•) generates Kb(P(A)) as a triangulated category.

Remark 2.1. Rickard [5] also showed that (b) can be replaced by the following condition:
For each non-zero object X• of K−(Proj-A), there is some i such that HomK(A)(T•, X•[i]) , 0.

If two finite dimensional k-algebras A and B satisfy one of the equivalent conditions in Theorem 2.1,
then A and B are said to be derived equivalent. A complex T• inKb(P(A)) satisfying the conditions (1)
and (2) in Theorem 2.1 is called a tilting complex over A. Given a derived equivalence F between A
and B, there is a unique (up to isomorphism) tilting complex T• over A such that F(T•) = B. This
complex T• is called a tilting complex associated to F.

Here we recall some homological results which we need in the sequel.

Lemma 2.1. Let A and B be two finite dimensional k-algebras.
(1) In the situation (PA,B UA,B Z), if PA is finitely generated and projective, then

P ⊗A HomB(U,Z) � HomB(HomA(P,U),Z).
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(2) In the situation (PA, XB,A YB), if PA is finitely generated projective, or if XB is finitely generated
projective, then

P ⊗A HomB(XB,A YB) � HomB(XB, P ⊗A YB).

Dually, in the situation (AP,B X,B YA), if AP is finitely generated projective, or if BX is finitely
generated projective, then

HomB(BX,B YA) ⊗A P � HomB(BX,B Y ⊗A P).

3. Derived equivalence for smash product algebra

In this section, assume that B ⊂ A is a right H-Galois extension. Now we consider the following
question: how to construct a derived equivalence between two smash product algebras from a derived
equivalence between two left H-module algebras. An efficient way is to construct tilting complex. In
fact, a similar problem has been considered by many authors ( [1–6, 15, 16]). But nobody considered
to relate this problem with Hopf algebra. Now we give some results from this viewpoint.

Firstly, following [17], we recall the definition of H-stable module.

Definition 3.1. [17] Let A/B be an H-Galois extension, and M a right B-module. M is called H-stable
or stable if there is a right B-linear and right H-colinear isomorphism M ⊗B A � M ⊗ H, where the
module and comodule structure on M⊗H are defined by (m⊗h) ·b = m ·b⊗h and id⊗∆, respectively.
If H = kG is a group algebra, then H-stable modules are called G-invariant in [18].

Example 3.1. (1) Note that B is H-stable if and only if B ⊂ A satisfies the normal basis property,
see [13]. Thus following Proposition 2.1, we see that if B ⊂ A is a right H-cleft extension, then B is
H-stable. This means that each projective B-module is H-stable.

(2) Let G be a group and G′ E G be a normal subgroup. Consider the k[G/G′]-Galois extension
B = k[G′] ⊂ A = k[G], ∆A(g) = g ⊗ g for all g ∈ G, where g ∈ G/G′ . In this case, any B-module M is
stable if and only if for all g ∈ G, M is B-isomorphic to the twisted B-module gM.

(3) Any left A-module N is H-stable over B (by restriction).

Inspired by Definition 3.1, we introduce the following definition.

Definition 3.2. Let A/B be an H-Galois extension, and X• a right B-complex. X• is called H-stable or
stable if there is a right B-linear and right H-colinear isomorphism X• ⊗B A � X• ⊗ H.

Now a tilting complex T• over B is called an H-stable tilting complex if there is a right B-linear and
right H-colinear isomorphism X• ⊗B A � X• ⊗ H.

Clearly, if B ⊂ A is a right H-cleft extension, then each tilting B-complex is an H-stable tilting
complex.

Note that, if an A#H-complex T• is a tilting complex over A (by restriction), then T• is an H-stable
tilting complex over A. In this case, we say T• to be an H-tilting complex over A.

Lemma 3.1. Let A/B be an H-Galois extension. If T• is a H-stable tilting complex, then T• ⊗B A is a
tilting complex over A.
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Proof. Set

T• = · · · −→Ti+1
di+1
−→ Ti

di
−→ Ti−1 −→ · · ·

and T
′

• = T• ⊗B A. By the definition of tilting complex, Ti is a finitely generated projective B-module
for each i ∈ Z. Hence T

′

• is in Kb(P(A)).
Since HomA(T• ⊗B A,T• ⊗B A) = HomB(T•,T• ⊗B A), we have the following isomorphisms:

HomDb(A)(T
′

•,T
′

•[i]) = HomDb(A)(T• ⊗B A,T• ⊗B A[i])
� HiRHomA(T• ⊗B A,T• ⊗B A)
� HiRHomB(T•,T• ⊗B A)
� HiRHomB(T•,T• ⊗ H)
� HiRHomB(T•,T•) ⊗ H

� HomDb(B)(T•,T•[i]) ⊗ H

� 0,

for any i , 0, where RHomA means the derived functor of HomA in D(A) and the third isomorphism
holds since T• is a H-stable tilting complex over B.

Let X be an object of K−(Proj-A) such that HomK(A)(T• ⊗B A, X[i]) = 0 for all i. Then we have the
following isomorphisms:

HomDb(B)(T•, X ⊗A AB[i]) = HiRHomB(T•,X ⊗A AB)
� HiRHomA(T• ⊗B A, X)
� HomDb(A)(T• ⊗B A, X[i])
� 0

for all i. Since T• is a tilting complex over B, we have X⊗A AB � 0 inDb(B), that is, Hi(XB) = Hi(XA) =

0 for all i. Thus X � 0 inDb(A). This means that T
′

• = T• ⊗B A is a tilting complex over A.

Remark 3.1. In [4], Miyachi showed that (in our terminology), if B→ A is a ring homomorphism and
T• is a tilting complex over B with HomDb(B)(T•,T• ⊗B AB[i]) = 0 for all i , 0, then T• ⊗B A is a tilting
complex over A. Here we can view H-stable tilting complex as a concrete example that satisfies the
assumption given by Miyachi above.

Let A/B be an H-Galois extension with the canonical map β : A ⊗B A −→ A ⊗ H. For any h ∈ H,
we write β−1(1 ⊗ h) =

∑
Xh

i ⊗ Yh
i . Following [19, Lemma 2.1] and [17, Remark 3.4], we recall the

properties of the elements Xh
i and Yh

i .

Lemma 3.2. [17] Following the notations above, let a ∈ A, b ∈ B and h, l ∈ H. Then the following
statements hold:

(1)
∑

bXh
i ⊗ Yh

i =
∑

Xh
i ⊗ Yh

i b;
(2)
∑

a0Xa1
i ⊗ Ya1

i = 1 ⊗ a;
(3)
∑

Xh
i Yh

i = ε(h)1A;
(4)
∑

Xh
i ⊗ Yh

i,0 ⊗ Yh
i,1 =
∑

Xh1
i ⊗ Yh1

i ⊗ h2;
(5)
∑

Xh
i,0 ⊗ Yh

i ⊗ Xh
i,1 =
∑

Xh2
i ⊗ Yh2

i ⊗ S (h1);
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(6)
∑

Xhl
i ⊗ Yhl

i =
∑

Xl
i X

h
j ⊗ Yh

j Y
l
i ;

(7)
∑

Xh1
i ⊗ Yh1

i Xh2
j ⊗ Yh2

j =
∑

Xh
i ⊗ 1 ⊗ Yh

i ;
(8)
∑

Xh
i,0Yh

i,0 ⊗ Xh
i,1 ⊗ Yh

i,1 =
∑

1 ⊗ S (h1) ⊗ h2.

For any right A-modules X and Y , there is a natural left H-module action on HomB(X,Y) : (h· f )(x) =∑
f (xXS (h)

i )YS (h)
i , where h ∈ H, x ∈ X and f ∈ HomB(X,Y). Moreover, if X• and Y• are complexes of

right A-modules, then HomB(X•,Y•) is also a complex of left H-module.
It is known that for any right A-modules M, there exists an isomorphism of right H-comodules and

right B-modules:
M ⊗B A→ M ⊗ H, m ⊗ a 7→

∑
ma0 ⊗ a1, (3.1)

whose inverse morphism is given by

M ⊗ H → M ⊗B A, m ⊗ h 7→
∑

mXh
i ⊗ Yh

i . (3.2)

Similarly, these isomorphisms can be generalized to complexes.
Now, suppose that X• is an A-complex. If X• is a tilting complex over B (by restriction), then X• is

an H-stable tilting complex over B. So we have the following result.

Theorem 3.1. Let A/B be an H-Galois extension and T• an A-complex. If T• is tilting complex over B
(by restriction) with C = HomDb(B)(T•,T•), then T•⊗B A is a tilting complex over A and EndDb(A)(T•⊗B

A) � C#H as algebras. Therefore we have the derived equivalence between A and C#H.

Proof. By Lemma 3.1, T• ⊗B A is a tilting complex over A. Thus it remains only to show that
EndDb(A)(T• ⊗B A) � C#H as algebras. Consider the following isomorphism:

HomDb(B)(T•,T•) ⊗ H � HomDb(B)(T•,T• ⊗ H)
� HomDb(B)(T•,T• ⊗B A)
� HomDb(A)(T• ⊗B A,T• ⊗B A).

(3.3)

Thus EndDb(A)(T• ⊗B A) � C#H as vector spaces.
From the above isomorphism, we also obtain an isomorphism of complexes

ϕ : HomDb(B)(T•,T•) ⊗ H −→ HomDb(A)(T• ⊗B A,T• ⊗B A),

such that
ϕ( f ⊗ h)(t ⊗ a) =

∑
f (tXh

i ) ⊗ Yh
i a,

where f ∈ HomDb(B)(T•,T•), h ∈ H, a ∈ A and t ∈ T•.
Note that β : A ⊗B A → A ⊗ H is bijective, which induces an isomorphism (β ⊗ idH)(idA ⊗ β):

A ⊗B A ⊗B A→ A ⊗ H ⊗ H. One easily show that

(β ⊗ idH)(idA ⊗ β)(
∑

Xh2
j XS (h1)

k ⊗ YS (h1)
k ⊗ Yh2

j ) = (β ⊗ idH)(idA ⊗ β)(
∑

1 ⊗ Xh
i ⊗ Yh

i ).

Thus
∑

Xh2
j XS (h1)

k ⊗ YS (h1)
k ⊗ Yh2

j =
∑

1 ⊗ Xh
i ⊗ Yh

i .
According to Lemma 3.2, we have the following equalities.

ϕ(( f #h)(g#l))(t ⊗ a) = ϕ( f (h1 · g)#h2l)(t ⊗ a)
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=
∑

f (h1 · g)(tXh2l
i ) ⊗ Yh2l

i a

=
∑

f (g(tXh2l
i XS (h1)

j )YS (h1)
j ) ⊗ Yh2l

i a

=
∑

f (g(tXl
i X

h2
j XS (h1)

k )YS (h1)
k ) ⊗ Yh2

j Y l
i a

=
∑

f (g(tXl
i)X

h
j ) ⊗ Yh

j Y
l
i a

= ϕ( f #h)ϕ(g#l))(t ⊗ a),

where f , g ∈ HomDb(B)(T•,T•), h, l ∈ H, a ∈ A and t ∈ T•. Thus ϕ is an isomorphism of algebras.
By Theorem 2.1, we get the desired result.

Let A1, A2 and A3 be finite dimensional k-algebras. Following [7] we know that Db(A1 ⊗ A3) '
Db(A2⊗A3) ifDb(A1) ' Db(A2). Inspired by this result, it is natural to consider the following question:
Are A#H and C#H derived equivalent when two H-module algebras A and C are derived equivalent as
k-algebras? The following corollary is the answer to this question.

Corollary 3.1. Let H be a finite dimensional Hopf algebra, and A a left H-module algebra. If there
exists an H-tilting complex T• over A with C = HomDb(A)(T•,T•), then Db(A#H) and Db(C#H) are
equivalent.

Proof. Set T
′

• = T• ⊗A (A#H). By Lemma 3.1, T• ⊗A (A#H) is a tilting complex over A#H. Thus
Db(A#H) andDb(C#H) are derived equivalent.

Let A be a right H-comodule algebra, andMH
A the category of right relative Hopf modules. Then

we have a pair of adjoint functors (F = − ⊗AcoH A,G = ( )coH) between the categories ModAcoH and
MH

A . If the extension AcoH ⊂ A is right faithful flat H-Galois, then ModAcoH andMH
A are equivalent as

abelian categories.

Corollary 3.2. Let H be a finite dimensional Hopf algebra, and A a left H-module algebra. Assume
that there exists an H-tilting complex T• over A with C = HomDb(A)(T•,T•). If A and C are right faithful
flat H∗-Galois extensions of AH and CH respectively, thenDb(AH) andDb(CH) are equivalent.

Proof. From Corollary 3.1 we have thatDb(A#H) ' Db(C#H).
Since H is a finite dimensional Hopf algebra over a field k, it is not difficult to see that Mod(A#H) '

MH∗
A and Mod(C#H) ' MH∗

C . Therefore we haveDb(MH∗
A ) ' Db(MH∗

C ).
According to [13], by the assumption that A and C are right faithful flat H∗-Galois extensions of AH

and CH respectively, we have the following equivalences:

MH∗
A ' ModAH and MH∗

C ' ModCH.

ThusDb(AH) ' Db(CH).

Following [4] we recall the definition of cotilting complex. Denote by D = Homk(−, k) the standard
duality from Db(modA) to Db(A-mod). A complex T• is called a cotilting complex if the following
statements hold:

(1) T• ∈ Kb(IA), where IA is the category of finitely generated injective right A-modules;
(2) HomDb(A)(T•,T•[i]) = 0 for all i , 0;
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(3) D(A) ∈ I(add T•), where I(add T•) is the triangulated subcategory of Kb(IA) generated by
objects in add T•.

Recall that if X• belongs to Kb(P(A)), then there exists an Auslander-Reiten translation τA(X•)
which is isomorphic to ν(X•)[−1], where νA = − ⊗L

A D(A), and then there exists an Auslander-Reiten
triangle τAX• → Y• → X• → τAX•[1] in Db(A), see [20]. Then τA(T•) is a cotilting complex over A if
T• is a tilting complex over A.

Proposition 3.1. Let A/B be an H-Galois extension. If T• is an H-stable tilting complex over B, then
RHomB(AAB, τB(T•)) is a cotilting complex over A.

Proof. Consider the following isomorphisms:

τA(T• ⊗L
B A) � (T• ⊗B A) ⊗A D(A)[−1]

� T• ⊗B D(A)[−1]
� DHomB(T•, AB)[−1] by Proposition 2.1(1)
� D(AA ⊗B HomB(T•, B))[−1] by Proposition 2.1(2)
� HomA(AAB,DHomB(T•, B))[−1]
� RHomA(AAB, τBT•).

By Lemma 3.1, we get that RHomB(AAB, τBT•) is a cotilting complex over A.

4. H-Frobenius extension

In this section, suppose that B ⊂ A is a right H-Galois extension. The endomorphism ring extension
of an A-module M has been studied by Oystaeyen and Zhang in [19]. It was proved that there is an
isomorphism of algebras EndA(M ⊗B A) = EndB(M)#H. The necessary and sufficient conditions for an
endomorphism ring extension to be a H-Galois extension were also induced in [19]. In this section we
generalize this idea to derived endomorphism ring of H-stable tilting complex. Furthermore, we show
that 0 → EndDb(B)(T•) → EndDb(A)(T• ⊗B A) is an H-Frobenius extension if A/B is an H-Frobenius
extension.

Recall that A/B is H-Frobenius if A is a finitely generated projective right B-module and A �

HomB(A, B) as B-A-bimodules, see [21]. If A/B is H-Galois as well as H-Frobenius, we say the
extension A/B to be H-Galois Frobenius. Let T• be a tilting complex over A and X• ∈ Kb(P(A)).
Recall that X• is isomorphic to a direct summand of a finite direct sum of T• if HomDb(A)(T•, X•[i]) =

HomDb(A)(X•[i], T•) = 0 for all i , 0, see [4, Lemma 3.2].

Theorem 4.1. Let A/B be an H-Galois extension such that 0 → B → A → C → 0 is an exact
sequence of B-bimodule. Assume that an A-complex T• is a tilting complex over B (by restriction). Let
B′ = EndDb(B)(T•), A′ = EndDb(A)(T• ⊗B A) and C′ = HomDb(B)(T•,T• ⊗B C). Then A′ is an H-Galois
extension of the algebra B′ such that 0 → B′ → A′ → C′ → 0 is an exact sequence of B′-bimodule.
Moreover, if A/B is H-Galois Frobenius, then A′/B′ is also H-Galois Frobenius.

Proof. Since T• is a complex of projective B-modules, from the assumption we have the following
short exact sequence of B-complex

0→ T• → T• ⊗B AB → T• ⊗B CB → 0.
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Clearly, we also have the following exact sequence

0→ HomB(T•,T•)→ HomB(T•,T• ⊗B AB)→ HomB(T•,T• ⊗B CB)→ 0.

Since HomDb(B)(T•,T•[i]) = HomDb(B)(T•,T•⊗B A[i]) = 0, we obtain that HomDb(B)(T•,T•⊗BCB[i]) = 0
for all i , 0. This implies that

0→ HomDb(B)(T•,T•)→ HomDb(B)(T•,T• ⊗B AB)→ HomDb(B)(T•,T• ⊗B CB)→ 0

is exact, which is also a sequence of B-bimodules.
Now, it remains to show that A′ is a Frobenius extension of B′ if A/B is an H-Frobenius extension.

Clearly T• ⊗B AB is a complex of projective B-module since T• is a tilting complex over B and A/B is
an H-Frobenius extension. And we obtain that BAA � HomB(AAB,B BB) as B-A-bimodules. Consider
following isomorphisms:

HomDb(B)(T• ⊗B AB,T•[i]) � HiRHomB(T• ⊗B AB,T•)
� HiRHomB(T•,HomB(BAB,T•))
� HiRHomB(T•,T• ⊗B AB)
� HomDb(B)(T•,T• ⊗B AB[i])
� 0 for all i , 0.

Similarly, we can prove HomDb(B)(T•[i],T• ⊗B AB) = 0, thus T• ⊗B AB is isomorphic to a direct
summand of a finite direct sum of T• according to [4, Lemma 3.2], as mentioned above. Since A′A′B′
is isomorphic to A′HomDb(B)(T•,T• ⊗B AB)B′ as A′-B′-bimodules, A′B′ is a finitely generated projective
B′-module. Now we consider the following isomorphisms:

HomB′(A′A′B′ ,B′ B′B′) � HomB′(A′HomDb(B)(T•,T• ⊗B AB)B′ ,B′ HomDb(A)(T•,T•)B′)
� HomDb(B)(T• ⊗B AB,T•)
� HomDb(A)(T• ⊗B A,T• ⊗B A)
� B′A′A′ .

This completes the proof.

5. Recollement and H-Galois extension

In this section, for any perfect recollement of derived categories of H-module algebras, we give a
way to construct a perfect recollement of derived categories of their smash product algebras. Firstly,
following [10] we recall the definition of recollements of triangulated categories.

Definition 5.1. (Beilinson-Bernstein-Deligne [10]) Let T1, T and T2 be triangulated categories. A
recollement of T relative to T1 and T2 is given by

T1 T T2

� i∗ � j!

-i∗ = i! -j! = j∗

� i!
� j∗

AIMS Mathematics Volume 8, Issue 2, 3210–3225.



3219

and denoted by 9-tuple (T1,T ,T2, i∗, i∗ = i!, i!, j!, j! = j∗, j∗) such that
(R1) (i∗, i∗), (i!, i!), ( j!, j!) and ( j∗, j∗) are adjoint pairs of triangulated functors;
(R2) i∗, j! and j∗ are full embeddings;
(R3) j!i∗ = 0 (and thus also i! j∗ = 0 and i∗ j! = 0);
(R4) for each X ∈ T , there are triangles

j! j!X → X → i∗i∗X →

i!i!X → X → j∗ j∗X → .

Let X be an object in D(A). Define X⊥ = {Y ∈ D(A)|HomD(A)(X,Y[n]) = 0,∀n ∈ Z}, and TriaX
to be the smallest full triangulated subcategory of D(A) which contains X and is closed under small
coproducts. We say X to be exceptional if HomD(A)(X, X[n]) = 0 for all n , 0. We say X to be
compact if the functor HomD(A)(X,−) preserves small coproduct, or equivalently, X to be perfect, if X
is isomorphic to an object in Kb(P(A)).

A recollement (D(A1),D(A),D(A2), i∗, i∗ = i!, i!, j!, j! = j∗, j∗) is said to be perfect if i∗(A1) is
perfect, where A1, A and A2 are three k-algebras.

Definition 5.2. [22] Let T1, T and T2 be triangulated categories, and n a positive integer. An n-
recollement of T relative to T1 and T2 is given by n + 2 layers of triangle functors

T1
//

...

//
T

//

...

//

oo

oo T2

oo

oo

such that every consecutive three layers form a recollement.

According to [22], if we have a perfect recollement (D(A1),D(A),D(A2), i1, i2, i3, j1, j2, j3), then
it can be extended one step downwards by choosing the right adjoint functors of i3, j3, which is a
2-recollement; on the other hand, if we have a n-recollement, the first three layers form a perfect
recollement. Thus a perfect recollement is equivalent to a 2-recollement.

There is an important criterion for the derived category of an algebra to admit a perfect recollement
in [12].

Theorem 5.1. [12] Let A1, A and A2 be algebras. ThenD(A) admits a perfect recollement relative to
D(A1) andD(A2) if and only if there are objects Xi, i = 1, 2, inD(A) such that
(1) EndD(A)(Xi) = Ai as algebras, ∀ i = 1, 2;
(2) Xi is exceptional and perfect, ∀ i = 1, 2;
(3) X1 ∈ X⊥2 ;
(4) X⊥1 ∩ X⊥2 = {0}.

Following [12] we see thatD(C⊗A) admits a perfect recollement relative toD(C⊗A1) andD(C⊗A2)
if D(A) admits a perfect recollement relative to D(A1) and D(A2), where C is an algebra. Now we
generalize this idea to smash product algebras.
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Theorem 5.2. Let A/B be an H-Galois extension, B1 and B2 two k-algebras. Suppose that there exist
A-complexes Xi, i = 1, 2, in D(A) such that X1 and X2 as B-complex induce the following perfect
recollement

D(B1) D(B) D(B2).
� �

- -

� �

ThenD(A) admits a perfect recollement relative toD(B1#H) andD(B2#H).

Proof. Set X′1 = X1 ⊗B A and X′2 = X2 ⊗B A. Clearly, by Theorem 5.1, we shall show that X′i , i = 1, 2
satisfy the conditions in Theorem 5.1. Since A/B is an H-Galois extension and Xi(i = 1, 2) is perfect,
X′i is perfect for i = 1, 2.

Consider the following isomorphisms:

HomD(A)(X
′

i , X
′

i [n]) = HomD(A)(Xi ⊗B A, Xi ⊗B A[n])
� HnRHomA(Xi ⊗B A, Xi ⊗B A)
� HnRHomB(Xi, Xi ⊗B A)
� HnRHomB(Xi, Xi ⊗ H)
� HnRHomB(Xi, Xi) ⊗ H

� HomD(B)(Xi, Xi[n]) ⊗ H

�

{
0, n , 0

HomD(B)(Xi, Xi) ⊗ H, n = 0

Thus X′i is exceptional for i = 1, 2. As the same as the proof in Theorem 3.1, we can show that
EndD(A)(Xi ⊗B A) � Bi#H as algebras for i = 1, 2.

Since X1 ∈ X⊥2 and X2 is perfect, we obtain the following isomorphisms:

HomD(A)(X
′

2, X
′

1[n]) = HomD(A)(X2 ⊗B A, X1 ⊗B A[n])
� HnRHomA(X2 ⊗B A, X1 ⊗B A)
� HnRHomB(X2, X1 ⊗B A)
� HnRHomB(X2, X1 ⊗ H)
� HnRHomB(X2, X1) ⊗ H

� HomD(B)(X2, X1[n]) ⊗ H

� 0, for all n.

Hence X′1 ∈ X
′⊥
2 . Now it remains to show that X

′⊥
1 ∩ X

′⊥
2 = {0}. Let X ∈ X

′⊥
1 ∩ X

′⊥
2 . Then we have the

following isomorphisms:

0 = HomD(A)(Xi ⊗B A, X[n])
� HnRHomA(Xi ⊗B A, X)
� HnRHomB(Xi, X)
� HomD(B)(Xi, X[n]), for all n ∈ Z and i = 1, 2.

(5.1)

This implies that X � 0 inD(A). This completes the proof.
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Suppose A-complex T• is a tilting complex over B, then T• and 0 are two exceptional and perfect
objects satisfy the conditions in Theorem 5.1. Setting B1 = EndDb(B)(T•),B2 = 0, according to
Theorem 5.1, Db(A) admits a perfect recollement relative to Db(B1#H) and Db(B2#H). And in this
case,Db(A) is equivalent toDb(B1#H). Thus Theorem 5.2 is a generalization of Theorem 3.1.

Assume that B is a left H-module algebra. Since B#H is an H-Galois extension of B, we have the
following corollary.

Corollary 5.1. Let H be a finite dimensional Hopf algebra, B be a left H-module algebra and B1, B2

be two k-algebras. Suppose that there exist B#H-complexes Xi, i = 1, 2, in D(A) such that X1 and X2

as B-complex induce the following perfect recollement

D(B1) D(B) D(B2).
� �

- -

� �

ThenD(B#H) admits a perfect recollement relative toD(B1#H) andD(B2#H).

Recall that an algebra A is said to be smooth if it has a finite Hochschild dimension, i.e., pdAe A < ∞,
see [23], or equivalently A is isomorphic to an object in Kb(Proj-Ae).

According to [12, Theorem 3], ifD(B) admit a recollement relative toD(B1) andD(B2), Then B is
smooth if and only if so are B1 and B2. Thus we have the following corollary.

Corollary 5.2. Let A/B be an H-Galois extension, B1 and B2 two k-algebras. Suppose that there exist
A-complexes Xi, i = 1, 2, in D(A) such that X1 and X2 as B-complex induce the following perfect
recollement

D(B1) D(B) D(B2).
� �

- -

� �

Then A is smooth if and only if so are B1#H and B2#H.

Definition 5.3. [22] Let B, B1 and B2 be algebras. An n-recollement

(D(B1),D(B),D(B2), i1, i2, ..., in+2, j1, j2, ..., jn+2)

is said to be standard via defined by Y ∈ D(Bop⊗B1) and Y2 ∈ D(Bop
2 ⊗B) if i1 � −⊗

L
B Y, j1 � −⊗

L
B2

Y2.

According to [22, Proposition 1, Remark 2], if D(B) admits an n-recollement relative to D(B1)
and D(B2). then D(B) admits a standard n-recollement relative to D(B1) and D(B2), defined by Y ∈
D(Bop ⊗ B1) and Y2 ∈ D(Bop

2 ⊗ B) as follows:

i1 � − ⊗
L
B Y, j1 � − ⊗

L
B2

Y2,

i2 � − ⊗
L
B1

Y∗B1 , j2 � − ⊗
L
B Y∗B2 ,

i3 � − ⊗
L
B Y∗B1∗B, j3 � − ⊗

L
B2

Y∗B∗B2
2 ,

...
...

in+1 � − ⊗
L
B1

Y∗B1(∗B∗B1)
n−1

2 , jn+1 � − ⊗
L
B Y∗B(∗B2∗B)

n−1
2

2 , if n is odd,

in+1 � − ⊗
L
B Y (∗B1∗B)

n
2 , jn+1 � − ⊗

L
B2

Y (∗B∗B2)
n
2

2 , if n is even,

in+2 � RHomB(Y∗B1(∗B∗B1)
n−1

2 ,−), jn+2 � RHomB2(Y
∗B(∗B2∗B)

n−1
2

2 ,−), if n is odd,

in+2 � RHomB1(Y
(∗B1∗B)

n
2 ,−), jn+2 � RHomB(Y (∗B∗B2)

n
2

2 ,−), if n is even,
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where X∗B := RHomB(X,B).
Finally, we generalize Theorem 5.2 to n-recollements.

Theorem 5.3. Let A/B be an H-Galois extension, B1 and B2 two k-algebras. Suppose D(B) admits
an n-recollement relative to D(B1) and D(B2) such that B-complexes Xi, i = 1, 2 induced by first four
layers are inD(A). ThenD(A) admits an n-recollement relative toD(B1#H) andD(B2#H).

Proof. Since D(B) admits an n-recollement relative to D(B1) and D(B2), D(B) admits a standard n-
recollement as above. Setting Y1 = Y∗B1 ∈ D(Bop

1 ⊗ B), (Y1)B � X1, (Y2)B � X2 in D(B) and Yi, i = 1, 2
are also A-complexes according to [14].

Furthermore, we may assume Y1, Y∗B1 , ..., Y (∗B∗B1)s

1 as well as Y2, Y∗B2 , ..., Y (∗B∗B2)t

2 are exceptional and
perfect for s = [ n

2 − 1], t = [n+1
2 − 1], and Y (∗B∗B1)i

1 ∈ (Y (∗B∗B2)i

2 )⊥, (Y (∗B∗B1)i

1 )⊥ ∩ (Y (∗B∗B2)i

2 )⊥ = {0} as well
as Y (∗B∗B2) j

2 ∈ (Y (∗B∗B1) j−1

1 )⊥, (Y (∗B∗B2) j

2 )⊥ ∩ (Y (∗B∗B1) j−1

1 )⊥ = {0} for 0 ≤ i ≤ s and 1 ≤ j ≤ t.
Now we set Y ′1 = Y1 ⊗B A, Y ′2 = Y2 ⊗B A. According to [14, 22], if we can prove via replacing Yi by

Y ′i , Bi by Bi#H, i = 1, 2 and B by A, the assumptions mentioned in the previous paragraph still hold,
then we complete the proof.

Since Y ′i � X1 ⊗Bi A in D(A), i = 1, 2, the statements hold for Yi have been proved in Theorem 5.2.
Thus we only consider the rest complexes.

Firstly, we prove Y ′∗A1 to be exceptional and perfect. In fact, similar to (3.3) in the proof of
Theorem 3.1, we can show that

Y ′∗A1 = RHomA(Y1 ⊗B A, B ⊗B A) � RHomB(Y1, B) ⊗ H. (5.2)

Besides,
RHomB(Y1, B) ⊗ H � RHomB(Y1, B) ⊗B1 B1#H = Y∗B1 ⊗B1 B1#H (5.3)

in D(B1#H), where the first isomorphism is given by (3.2) above Theorem 3.1. Since B1#H/B1 is an
H-Galois extension and Y∗B1 ⊗B1 B1 is perfect as B1-complex, Y∗B1 ⊗B1 B1#H is also perfect as B1#H-
complex. As the same as the proof in Theorem 5.2, we can prove

HomD(B1#H)(Y ′∗A1 ,Y ′∗A1 [n]) � HomD(B1#H)(Y∗B1 ⊗B1 B1#H,Y∗B1 ⊗B1 B1#H[n]) = 0 if n , 0,

since Y∗B1 is exceptional.
Similarly, we can prove inductively Y ′∗A∗B1#H

1 , ..., Y ′(∗A∗B1#H)s

1 as well as Y ′∗A2 , ..., Y ′(∗A∗B2#H)t

2 are
exceptional and perfect for s = [ n

2 − 1], t = [ n+1
2 − 1], and

Y ′(∗A∗B2#H)i

2 � Y (∗B∗B1)i

1 ⊗B A, for i = 1, ..., s;

Y ′∗A2 � Y∗B2 ⊗B2 B2#H, Y ′(∗A∗B2#H)i

2 � Y (∗B∗B2)i

2 ⊗B A, for i = 1, ..., t,

whose proof is similar to (5.2) and (5.3). Finally, we prove the rest statements. As the same as the
proof of Theorem 5.2, we have

HomD(A)(Y ′1,Y
′∗A∗B2#H
2 [n]) � HomD(A)(Y1 ⊗B A,Y∗B∗B2

2 ⊗B A[n]) = 0, n ∈ Z,

since Y∗B∗B2
2 ∈ Y⊥1 , which means Y ′∗A∗B2#H

2 ∈ Y ′⊥1 . And we have

HomD(A)(Y ′1, X[n]) � HomD(B)(Y1, X[n]),
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3223

HomD(A)(Y
′∗A∗B2#H
2 , X[n]) � HomD(B)(Y

∗B∗B2
2 , X[n]),

which can be proved as the same as (5.1) in the proof of Theorem 5.2 for any complex X. Thus
Y ′⊥1 ∩ (Y ′∗A∗B2#H

2 )⊥ = Y⊥1 ∩ (Y ′∗A∗B2#H
2 )⊥ = 0.

Similarly, we can prove

Y ′(∗A∗B1#H)i

1 ∈ (Y ′(∗A∗B2#H)i

2 )⊥, and (Y ′(∗A∗B1#H)i

1 )⊥ ∩ (Y ′(∗A∗B2#H)i

2 )⊥ = {0}

as well as

Y ′(∗A∗B2#H) j

2 ∈ (Y ′(∗A∗B1#H) j−1

1 )⊥, and (Y ′(∗A∗B2#H) j

2 )⊥ ∩ (Y ′(∗A∗B1#H) j−1

1 )⊥ = {0}

for 1 ≤ i ≤ s and 2 ≤ j ≤ t. This completes the proof.

6. Conclusions

In this paper, we mainly find some homological invariants under H-Galois extensions. In the first
part, we prove derived equivalences are invariant under the H-Galois extensions with proper conditions.

As a generalization of the derived equivalence, the recollement is an important concept in category
theory. Hence in the second part, as a development of the previous result, we further prove the
recollements is invariant under the H-Galois extensions with proper conditions. In our proof, we
firstly prove the case for 2-recollements, i.e., perfect recollements, then inductively prove the result
for general cases.

Considering the importance of H-Frobenius extensions, we study derived equivalences under H-
Galois Frobenius extensions. It is found that if A/B is H-Galois Frobenius, then EndDb(A)(T•⊗B A) is an
H-Galois Frobenius extension of EndDb(B)(T•), following the fact that EndDb(B)(T•) is derive equivalent
to B.

Acknowledgments

This project is supported by the National Natural Science Foundation of China (No. 12071422 and
No. 12131015).

Conflict of interest

The authors declare that there is no conflict of interest.

References

1. J. Rickard, Morita theory for derived categories, J. London Math. Soc., s2-39 (1989), 436–456.
https://doi.org/10.1112/jlms/s2-39.3.436

2. I. Assem, N. Marmaridis, Tilting modules over split-by-nilpotent extensions, Commun. Algebra,
26 (1998), 1547–1555. https://doi.org/10.1080/00927879808826219

3. J. Miyachi, Tilting modules over trivial extensions of Artin algebras, Commun. Algebra, 13 (1985),
1319–1326. https://doi.org/10.1080/00927878508823223

AIMS Mathematics Volume 8, Issue 2, 3210–3225.

http://dx.doi.org/https://doi.org/10.1112/jlms/s2-39.3.436
http://dx.doi.org/https://doi.org/10.1080/00927879808826219
http://dx.doi.org/https://doi.org/10.1080/00927878508823223


3224

4. J. Miyachi, Extensions of rings and tilting complexes, J. Pure Appl. Algebra, 105 (1995), 183–194.
https://doi.org/10.1016/0022-4049(94)00145-6

5. J. Rickard, Lifting theorems for tilting complexes, J. Algebra, 142 (1991), 383–393.
https://doi.org/10.1016/0021-8693(91)90313-W

6. H. Tachikawa, T. Wakamatsu, Extensions of tilting functors and QF-3 algebras, J. Algebra,
103 (1986), 662–676. https://doi.org/10.1016/0021-8693(86)90159-6

7. J. Rickard, Derived equivalences as derived functors, J. London Math. Soc., s2-43 (1991), 37–48.
https://doi.org/10.1112/jlms/s2-43.1.37

8. A. Marcus, Equivalences induced by graded bimodules, Commun. Algebra, 26 (1998), 713–731.
https://doi.org/10.1080/00927879808826159

9. S. Caenepeel, S. Crivei, A. Marcus, M. Takeuchi, Morita equivalences induced
by bimodules over Hopf-Galois extensions, J. Algebra, 314 (2007), 267–302.
https://doi.org/10.1016/j.jalgebra.2007.02.033

10. P. Deligne, A. A. Beı̆linson, J. Bernstein, Faisceaux pervers, Astérisque, 1983.
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