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Abstract: We suggest a novel iterative scheme for solutions of singular boundary value
problems (SBVPs) that is obtained by embedding Green’s function into the Picard-Mann
Hybrid (PMH) iterative scheme. This new scheme we call PMH-Green’s iterative scheme and prove its
convergence towards a sought solution of certain SBVPs. We impose possible mild conditions on the
operator or on the parameters involved in our scheme to obtain our main outcome. After this, we prove
that this new iterative scheme is weak w2-stable. Eventually, using two different numerical examples
of SBVPs, we show that our new approach suggests highly accurate numerical solutions as compared
the corresponding Picard-Green’s and Mann-Green’s iterative schemes.
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1. Introduction

In some sense, all the real world phenomena can be essentially modeled in the form of differential
equations having certain boundary conditions [1]. This is one of the reasons that the study of
differential equations is too important. One of the difficulties that arise naturally in studying differential
equations is that their sought solutions are explicitly unknown (or it is very hard to solve them using
available analytical approaches). In this case, the sought solution is thus reasonably possible to set the
form of a fixed point problem of an operator (whose domain is possibly some distance space). However,
when a fixed point of this operator exists, then one naturally thinks how its approximate value can be
computed using an appropriate numerical scheme. In 1922, Banach [2] proved that if the domain
of such an operator is complete normed space and the operator is contraction, then such operators
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admit a unique fixed point (which is the unique solution of the underlying problem) and the sequence
of Picard [3] iterates essentially converge to this unique fixed point. This result has many useful
applications in differential and integral equations because it gives the existence and approximation of
a solution for these problems. Notice that if B denotes a Banach space with the norm ||.||, then the
operator F : B→ B is called a contraction (sometimes called a Banach-contraction) if for all v,w ∈ B
it is possible to find a real constant µ ∈ [0, 1), such that

||Fv − Fw|| ≤ µ||v − w||. (1.1)

We say that a point s∗ ∈ B is known as a fixed point of F when the equation Fs∗ = s∗ holds and we
write f ix(F) to denote a set of all fixed points. In this case, the Picard iteration [3] of F is defined as:{

w0 ∈ B,
wm+1 = Fwm, (m = 0, 1, 2, 3, ...).

(1.2)

We know that the selfmap F is known as a nonexapnsive mapping on B if the relation (1.1) holds
for µ = 1. Fixed point approximation under different iterative schemes is an active and important area
of research on its own [4–7]. Browder’s [8] (cf. also Gohde [9] and Kirk [10]) fixed point theorem
suggests a fixed point (may not unique) for a certain nonexpansive operator in a Banach space setting.
Moreover, there are some well-known numerical examples of nonexpansive operators, for which the
Picard iteration is not convergent to its fixed point (see, e.g., [11] and others). To overcome the case of
nonexpansive mappings, Mann [12] suggested a new iteration scheme which needs an initial value as
well as a sequence of real numbers whose values are between 0 and 1.

The Mann iteration [12] recursively generates a sequence as:{
w0 ∈ B,
wm+1 = (1 − αm)wm + αmFwm, (m = 0, 1, 2, 3, ...),

(1.3)

where αm ∈ [0, 1].
In the literature of iterative schemes, it is known that the speed of the both Picard [3] and Mann [12]

iteration is slow. To achieve a better rate of convergence, Khan [13] combined the iterative schemes
due to Picard and Mann and named the resultant iterative scheme as a Picard-Mann hybrid iterative
scheme (PMH-iterative scheme).

Precisely, PMH-iterative scheme [13] recursively generates a sequence as:
w0 ∈ B,
vm = (1 − αm)wm + αmFwm,

wm+1 = Fvm, (m = 0, 1, 2, 3, ...),
(1.4)

where αm ∈ (0, 1).
Khan proved that the PMH-iteration scheme (1.4) essentially converges to a fixed point of a certain

operator. Moreover, he proved analytically and numerically that this scheme suggests high accurate
results corresponding to Mann and Picard iterations. Existence and approximation of solutions for
BVPs is an important area on its own. Different techniques have been studied by authors for existence
and approximation of solutions for various classes of BVPs [14]. On the other hand, Khuri and
Sayfy [15–17] embedded Green’s function into some well-known iterative schemes and proved that

AIMS Mathematics Volume 8, Issue 12, 29517–29534.



29519

these new type of schemes suggest high accurate results corresponding to the other available methods
of the literature. Motivated by Khuri and Sayfy, Assadi et al. [18] introduced Picard-Green’s and
Mann-Green’s iterative schemes for a class of SBVPs and proved that both of these schemes are better
than the many other previous iterative schemes studied for SBVPs. Thus, the challenging question
is when is it possible to obtain a modified version of the scheme (1.4) based on Green’s function for
finding solution of SBVP? In this paper, we first obtain the requested version of this scheme for SBVPs
and name it PMH-Green’s iterative scheme and show that the PMH-Green produces very high accurate
results compared to Mann-Green’s and Picard-Green’s iteration schemes. We also show that the PMH-
Green’s iterative scheme is weak w2-stable in this case. The numerical computations given at the end
of the paper supports the main outcome of the paper and suggests the numerical effectiveness of the
proposed scheme.

2. Overview of the iterative scheme

To propose the desired PMH-Green’s iterative scheme, first we define some elementary concepts
and results that are necessary for the main work.

2.1. Construction of the Green’s function

This subsection will establish the Green’s function for a broad class of SBVPs. To succeed in this
aim, suppose t ∈ (a, b), we consider a linear second order equation which is mathematically written as
following:

L(w) = w′′(t) + p(t)w′(t) + q(t)w(t) = f (t), (2.1)

and the associated boundary conditions (BCs) are the following:{
Ba[w] = α0w(a) + α1w′(a) = ξ,

Bb[w] = β0w(b) + β1w′(b) = λ.
(2.2)

It should be noted that the possible general solution is given as w(t) = wh(t) + wp(t). Here, the function
wh(t) is essentially the solution for the equation L[w] = 0 subjected to the BCs suggested in (2.2), and
wp(t) is solution for the equation L[w] = f (t) endowed with the homogeneous BCs given below:

Ba[w] = Bb[w] = 0. (2.3)

Now, for finding wp(t), one needs a solution for

L[w] = δ(t − s), (2.4)

which is essentially subject to the BCs as given in (2.3) and in this case, such a solution is known as a
Green’s function, denoted normally by G(t, s). Then

wp =

∫ b

a
G(t, s) f (s)ds. (2.5)

Let w1, w2 be two linearly independent solutions of L[w] = 0. Notice that the Green’s function
essentially obeys the homogeneous equation for each choice of t , s and thus it will be a linear
combination of w1 and w2:

AIMS Mathematics Volume 8, Issue 12, 29517–29534.



29520

G(t, s) =

{
c1w1(t) + c2w2(t) when a < t < s,
d1w1(t) + d2w2(t) when s < t < b,

the constants ci and di, (i = 1, 2) are determined using the following axioms:

(A1) G satisfies the given homogeneous BCs, i.e.,

Ba[G(t, s)] = Bb[G(t, s)] = 0. (2.6)

(A2) Continuity of G at t = s:

c1w1(s) + c2w2(s) = d1w1(s) + d2w2(s). (2.7)

(A3) Jump discontinuity of G′ at t = s, i.e.,

d1w′1(s) + d2w′2(s) − c1w′1(s) − c2w′2(s) = 1. (2.8)

For nonlinear SBVPs

w′′(t) + p(t)w′(t) + q(t)w(t) = f (t,w(t),w′(t)), (2.9)

the particular solution satisfies

wp =

∫ b

a
G(t, s) f (s,wp(s),w′p(s))ds, (2.10)

and here G is the Green’s function connected to (2.9).

2.2. PMH-Green’s iterative scheme

Now we propose our desired PMH-Green’s iterative scheme for approximate solutions of the
following SBVPs of the form as follows:

L[w] = w′′ +
q
t
w′ = f (t,w,w′), (2.11)

and the associated BCs are as given in (2.2). Now consider the Green’s function G corresponding to
the linear term and we consider the following operator:

M[wp] =

∫ b

a
G(t, s)L[wp]ds. (2.12)

Now from (2.10) and (2.12), we obtain

M[wp] =

∫ b

a
G(t, s)[L(wp) − f (s,w(s),w′(s)]ds + wp. (2.13)

Put wp = w in (2.13), one has

M(w) = w +

∫ b

a
G(t, s)[L(w) − f (s,w(s),w′(s)]ds. (2.14)
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Hence from (2.14), we obtain the modified form of PMH-iterative scheme given in (1.4) as follows:
vm = (1 − αm)wm + αmM[wm],
wm+1 = M[vm],
(m = 0, 1, 2, 3, ...),

(2.15)

which yields the following iterative procedure: vm = (1 − αm)wm + αm[
∫ b

a
G(t, s)[L(wm) − f (s,wm(s),w′m(s)]ds + wm],

wm+1 = [
∫ b

a
G(t, s)[L(vm) − f (s, vm(s), v′m(s)]ds + vm], (m = 0, 1, 2, 3, ...).

(2.16)

It follows that vm = wm + αm[
∫ b

a
G(t, s)[L(wm) − f (s,wm(s),w′m(s)]ds],

wm+1 = vm +
∫ b

a
G(t, s)[L(vm) − f (s, vm(s), v′m(s)]ds, (m = 0, 1, 2, 3, ...),

(2.17)

and here L denotes the linear term and the initial value to start the scheme, that is, w0 must be chosen
in a way that satisfies the Eq (2.11), L[w] = 0, and the given specified BCs.

3. Convergence result

We are now interested in establishing the main convergence result. For this, let q ≥ 2 and consider
a SBVP as provided below:

w′′(t) +
q
t
w′(t) = f (t,w(t),w′(t)), (3.1)

and the associated BCs are the following:

w′(0) = α, w(1) = β. (3.2)

To construct the required Green’s function associated with (3.1), we apply the axioms of Green’s
function which we gave in the last section. Hence, after solving the Eq (3.1), one has

G(t, s) =

{
A + Bt1−q, when 0 < t < s,
C + Dt1−q, when s < t < 1.

Accordingly, using homogenous BCs as given in (3.2), that is, w′(0) = w(1) = 0, one has the
following

B = 0, D + C = 0. (3.3)

Applying the continuity axioms of Green’s function, we obtain

A + Bs1−q = C + Ds1−q. (3.4)

Using unit jump discontinuity connected to the first derivative of the Green’s function, we have

D(1 − q)s−q − B(1 − q)s−q = 1. (3.5)

After solving (3.3)–(3.5), we get the desired Green’s function as follows:
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G(t, s) =

 sq−s
q−1 , when 0 < t < s,
sq(1−t1−q)

q−1 , when s < t < 1.

Now, embedding the above Green’s function in the PMH-iterative scheme given in (2.17), we get
the following PMH-iterative scheme:

vm = wm + αm[
∫ t

0
sq

q−1 (t1−q − 1)[w′′m(s) +
q
s w′m(s) − f (s,wm(s),w′m(s)]ds,

+
∫ 1

t
1

q−1 (s − sq)[w′′m(s) +
q
s w′m(s) − f (s,wm(s),w′m(s)]ds],

wm+1 = vm +
∫ t

0
sq

q−1 (t1−q − 1)[v′′m(s) +
q
s v′m(s) − f (s, vm(s), v′m(s)]ds,

+
∫ 1

t
1

q−1 (s − sq)[v′′m(s) +
q
s v′m(s) − f (s, vm(s), v′m(s)]ds,

(m = 0, 1, 2, 3, ...).

(3.6)

It follows that
vm = wm + αm[

∫ 1

0
G(t, s)[w′′m(s) +

q
s w′m(s) − f (s,wm(s),w′m(s)]ds],

wm+1 = vm +
∫ 1

0
G(t, s)[v′′m(s) +

q
s v′m(s) − f (s, vm(s), v′m(s)]ds,

(m = 0, 1, 2, 3, ...).
(3.7)

Set FG : C[0, 1]→ C[0, 1] by

FGw(t) = w(t) +

∫ 1

0
G(t, s)[w′′m(s) +

q
s

w′m(s) − f (s,w(s),w′(s)]ds. (3.8)

Then (3.7) becomes {
vm = (1 − αm)wm + αmFGwm,

wm+1 = FGvm, (m = 0, 1, 2, 3, ...).
(3.9)

The main result of the paper is now ready to establish.

Theorem 3.1. Consider a Banach space B = C[0, 1] with the supremum norm. Let FG : B→ B be the
operator defined in (3.8) and {wm} be the sequence of PMH-Green’s iterative scheme (3.9). Assume
that the following conditions hold:

(a) 1
2(q−1) Mc < 1, where Mc = max[0,1]×R2 |

∂ f
∂w |.

(b)
∑
αm = ∞ or for some α, 0 < α ≤ αm.

Subsequently, {wm} converges strongly to the unique solution of the problems (3.1) and (3.2).

Proof. By using assumption (a), we show that FG is a Banach-contraction, that is, ||FGv − FGw|| ≤
µ||v − w|| for all v,w ∈ B and some fixed µ ∈ [0, 1). To do this, direct integration gives us,∫ t

0

sq

1 − q
(t1−q − 1)[w′′(s) +

q
s

w′(s)]ds =
(t1−q − 1)

1 − q

∫ t

0
[sqw′′(s) + qsq−1w′(s)]ds

=
(t1−q − 1)

1 − q

∫ t

0
[(sqw′(s))′]ds

=
t − tq

1 − q
w′(t). (3.10)
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Also, integration by parts twice, we get∫ 1

t

1
q − 1

(sq − s)w′′(s) =
1

q − 1
[(1 − q)w(1) + (qtq−1 − 1)w(t) + (t − tq)w′(t)

+q(q − 1)
∫ 1

t
sq−2w(s)ds]. (3.11)

Now integrating once, we have∫ 1

t

1
q − 1

(sq − s)
q
s

w(s)ds =
q

q − 1
[(1 − tq−1)w(t) − (q − 1)

∫ 1

t
sq−2w(s)ds]. (3.12)

From (3.10)–(3.12), we have

FG(w) = w(1) +

∫ t

0

sq

1 − q
(t1−q − 1) f (s,w(s),w′(s))ds +

∫ 1

t

1
q − 1

(sq − s) f (s,w(s),w′)ds. (3.13)

From (3.2), w(1) = β, therefore (3.13) takes the following form

FG(w) = β +

∫ 1

0
G(t, s) f (s,w(s),w′(s),w′(s))ds. (3.14)

Hence

|FG(v) − FG(w)| =

∣∣∣∣∣∣β +

∫ 1

0
G(t, s) f (s, v, v′)ds − β −

∫ 1

0
G(t, s) f (s,w,w′)ds

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫ 1

0
G(t, s)[ f (s, v, v′) − f (s,w,w′)]

∣∣∣∣∣∣ ds. (3.15)

Now a simple integration suggests∫ 1

0
G(t, s)ds =

1
2(q + 1)

(t2 − 1) = g(t). (3.16)

It is easy to see that the g(t) attains the maximum value in [0, 1] either at endpoints or on the critical
points. Hence

|g(t)| ≤
1

2(q + 1)
. (3.17)

By (3.15)–(3.17), one has

|FG(v) − FG(w)| ≤
1

2(q + 1)
max
t∈[0,1]

| f (t, v, v′) − f (t,w,w′)|

≤
1

2(q + 1)
Mc||v − w||. (3.18)
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But µ = 1
2(q+1) Mc < 1, it follows from (3.18), that FG is a Banch contraction. Since B is complete

and FG is a Banach-contraction, thanks to the BCP [2], FG admits essentially a unique fixed point in
B = C[0, 1] and this point we shall denote by s∗ and hence it follows that this s∗ is a unique solution of
the problems (3.1) and (3.2).

Moreover, from the assumption (b), we will prove that PMH-Green’s iterative converges strongly
to s∗. First, we assume the case when

∑
αm = ∞. Now

||vm − s∗|| = ||(1 − αm)wm + αmFGwm − s∗||

= ||(1 − αm)(wm − s∗) + αm(FGwm − s∗)||
≤ (1 − αm)||wm − s∗|| + αm||FGwm − s∗||

≤ (1 − αm)||wm − s∗|| + αmµ||wm − s∗||

= [1 − αm(1 − µ)]||wm − s∗||.

Hence, we obtain
||vm − s∗|| ≤ [1 − αm(1 − µ)]||wm − s∗||. (3.19)

Finally, using (3.19), we compute ||wm+1 − s∗|| as follows.

||wm+1 − s∗|| = ||FGvm − s∗||

≤ µ||vm − s∗||

≤ µ[1 − αm(1 − µ)]||vm − s∗||.

Hence, we obtain
||vm − s∗|| ≤ µ[1 − αm(1 − µ)]||vm − s∗||. (3.20)

Now, from (3.20), we step by step obtain the following

||wm+1 − s∗|| ≤ µ[1 − αm(1 − µ)]||wm − s∗||

≤ µ2[1 − αm(1 − µ)][1 − αm−1(1 − µ)]||wm−1 − s∗||

≤ µ3[1 − αm(1 − µ)][1 − αm−1(1 − µ)][1 − αm−2(1 − µ)]||wm−2 − s∗||.

It follows that
||wm+1 − s∗|| ≤ (µ)m+1Πm

i=0[1 − αi(1 − µ)]||w0 − w∗||. (3.21)

Noting that limm→∞(µ)m = 0 because µ ∈ [0, 1). Also, it is well-known from the classical analysis that
1 − w ≤ e−w for all w ∈ [0, 1]. Taking these facts into account with (3.21), we get

||wm+1 − s∗|| ≤ (µ)m+1e−(1−µ)
∑m

i=0 αi ||w0 − s∗||. (3.22)

As supposed
∑
αm = ∞ and µ lies in [0, 1), we have from (3.22) that

lim
m→∞
||wm+1 − s∗|| = 0.

Accordingly, {wm} converges to a fixed point s∗ of FG which is the unique solution of the
problems (3.1) and (3.2). The case when 0 < α ≤ αm is included already in the case (a) and
hence omitted. �
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4. Stability

In all branches of mathematics where iterative methods are used for finding approximate value of
the sought solution, stability analysis is one of the desirable properties for such schemes (see [19–21]
and others). Fixed point procedure may or may not stable when we implement them on a certain
operator equation [22] (cf. also [23, 24] and others). Suppose a given iterative scheme of a certain
operator is convergent to some of its fixed point. In this case, the iterative scheme is said to be stable
if and only if the estimated error between two successive iterative strategy does not affect its so-called
convergence. As many know, stability for fixed points iterations finds its initial roots in the paper due
to Urabe [25]. Motivated by Urabe [25], Harder and Hicks [26] constructed mathematical definition
for stability. Some basic concepts that we need in the work are recalled below.

Definition 4.1. [26] Consider a mapping F of a Banach space B and suppose {wm} ⊆ B is a sequence
generated from certain iterative scheme using the mapping F as follows:{

w0 ∈ B,
wm+1 = γ(F,wm),

(4.1)

here, the element w0 denotes starting point and γ is a function of F and wm. Assume that the sequence
of iterates {wm} converges to s∗ ∈ f ix(F). In this case, {wm} is said to be stable if and only if

lim
m→+∞

||sm+1 − γ(F, sm)|| = 0 ⇒ lim
m→+∞

sm = s∗,

where {sm} is any chosen sequence in the space B.

Definition 4.2. [27] Suppose {sm} and {wm} are any two sequences in a Banach space. We say that
these two sequences equivalent if and only if limm→+∞ ||sm − wm|| = 0.

Opposed to the concept of arbitrary sequences, Timis [28], used the concept of equivalent sequences
and obtained a new mathematical definition of the weak stability. This new type of stability is called
the weak w2-stability. The formal definition is given below.

Definition 4.3. [28] Consider a Banach space B and F a selfmap on B. If {wm} is a sequence of
iterates of F produced by the formula (4.1). Assume that {wm} is convergent to a point s∗ ∈ f ix(F).
Then {wm} is said to be weak w2-stable if for every equivalent sequence {sm} ⊆ B of {wm}, one has
the following

lim
m→+∞

||sm+1 − f (F, sm)|| = 0 implies lim
m→+∞

sm = s∗.

Using the above concepts, we now show that our PMH-Green’s iterative scheme (3.9) is weak w2-
stable.

Theorem 4.4. Let B, FG and {wm} be as given in the Theorem 3.1. The {wm} is essentially weak
w2-stable with respect to FG.

Proof. To complete the proof, we consider any equivalent sequence {sm} of {wm}, that is limm→∞ ||sm −

wm|| = 0. Put
εm = ||sm+1 − FGrm]||,

where rm = (1 − αm)sm + αmFG sm.
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Assumed that limm→+∞ εm = 0. First we compute the estimate ||rm − vm||. For this,

||rm − vm|| = ||[(1 − αm)sm + αmFG sm] − [(1 − αm)wm + αmTGwm]||
= ||[(1 − αm)(sm − wm) + αm(FG sm − FGwm]||
≤ (1 − αm)||sm − wm|| + αm||FG sm − FGwm||

≤ (1 − αm)||sm − wm|| + αmµ||sm − wm||

≤ [1 − αm(1 − µ)]||sm − wm||.

Consequently, we find
||rm − vm|| ≤ [1 − αm(1 − µ)]||sm − wm||. (4.2)

Keeping (4.2) in mind, we can proceed as follows:

||sm+1 − s∗|| ≤ ||sm+1 − wm+1|| + ||wm+1 − s∗||

≤ ||sm+1 − FGrm|| + ||FGrm − wm+1|| + ||wm+1 − s∗||

= εm + ||FGrm − wm+1|| + ||wm+1 − s∗||

= εm + ||FGrm − FGvm|| + ||wm+1 − s∗||

≤ εm + µ||rm − vm|| + ||wm+1 − s∗||

≤ εm + µ[1 − αm(1 − µ)]||sm − wm|| + ||wm+1 − s∗||.

Subsequently, we obtain

||sm+1 − s∗|| ≤ εm + µ[1 − αm(1 − µ)]||sm − wm|| + ||wm+1 − s∗||. (4.3)

By assumptions, limm→+∞ εm = 0 and limm→∞ ||sm −wm|| = 0 because {sm} is an equivalent sequence
for {wm}. Also limm→+∞ ||wm − s∗|| = 0 due to the convergence of {wm} towards s∗. Accordingly,
from (4.3), limm→+∞ ||sm − s∗|| = 0. This means that {wm} generated by PMH-Green’s iterative
scheme (3.9) is weak w2-stable with respect to the mapping FG. �

5. Numerical example and computations

In this section, we consider several numerical examples to show the high accurate numerical results
produced by our proposed method.

Example 5.1. First, we consider the following SBVP which represents the equilibrium of isothermal
gas sphere [29]:

w′′(t) +
2
t
w′(t) = −w5(t), (5.1)

subjected with the BCs:

w′(0) = 0, w(1) =

√
3
4
, (5.2)

where 0 < t < 1. The exact solution of (5.1) and (5.2) is w(t) =

√
3

3+t2 . Take w0(t) =

√
3
4 = 0.866025

which satisfies the equation w′′ = 0 and given BCs.
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Now using Example 5.1, the proposed scheme takes the following form:
vm = wm − αm

∫ t

0
s2(1 − 1

t )[w′′m(s) + 2
s w′m(s) + w5

m(s)]ds
−αm

∫ 1

t
s(s − 1)[w′′m(s) + 2

s w′m(s) + w5
m(s)]ds,

wm+1 = vm −
∫ t

0
s2(1 − 1

t )[v′′m(s) + 2
s v′m(s) + v5

m(s)]ds
−

∫ 1

t
s(s − 1)[v′′m(s) + 2

s v′m(s) + v5
m(s)]ds.

(5.3)

Now, for αm = 0.99, the values generated by Picard-Green’s, Mann-Green’s and PMH-Green’s
iterative schemes in Tables 1–3. Clrearly the PMH-Green’s iterative scheme moving faster to the
solution. While Green’s function involved in scheme (5.3) is provided in Figure 1, the graphical
comparison of the absolute errors in this case is given in Figure 2.

Figure 1. Plot of Green’s function involved in the scheme (5.3).
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Figure 2. Comparison of various iterative schemes based on Green’s function for Example 5.1.
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Table 1. Convergence of iterates towards the numerical solution for t = 0.1.

m Picard −Green Mann −Green PMH −Green

0 0.866025 0.866025 0.866025

1 0.946403 0.945599 0.976422

2 0.976769 0.976114 0.994334

3 0.989216 0.988807 0.997594

4 0.994451 0.994222 0.998199

5 0.996676 0.996554 0.998311

6 0.997626 0.997563 0.998332

7 0.998032 0.998001 0.998336

8 0.998206 0.998191 0.998337

9 0.998281 0.998273 0.998337

10 0.998313 0.998309 0.998337

Table 2. Convergence of iterates towards the numerical solution for t = 0.5.

m Picard −Green Mann −Green PMH −Green

0 0.866025 0.866025 0.866025

1 0.926917 0.926308 0.866028

2 0.947268 0.946831 0.958322

3 0.955153 0.954895 0.960316

4 0.958392 0.958250 0.960684

5 0.959755 0.959681 0.960753

6 0.960335 0.960297 0.960765

7 0.960583 0.960564 0.960768

8 0.960689 0.960679 0.960768

9 0.960734 0.960730 0.960768

10 0.960754 0.960751 0.960768
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Table 3. Convergence of iterates towards the numerical solution for t = 0.9.

m Picard −Green Mann −Green PMH −Green

0 0.866025 0.866025 0.866025

1 0.881451 0.881297 0.885099

2 0.885140 0.885061 0.886964

3 0.886451 0.886409 0.887284

4 0.886976 0.886953 0.887343

5 0.887194 0.887182 0.887354

6 0.887287 0.887281 0.887356

7 0.887326 0.887323 0.887356

8 0.887343 0.887342 0.887356

9 0.887351 0.887350 0.887356

10 0.887354 0.887353 0.887356

We finish the section with following example.

Example 5.2. Now we consider a SBVP whose exact solution is not known explicitly as follows:

w′′(t) +
2
t
w′(t) = −e−w(t), (5.4)

subjected to the BCs:
w′(0) = 0, 2w(1) + w′(1) = 0, (5.5)

where 0 < t < 1.
The initial iterate w0(t) = 0 corresponding to w′′ = 0 and given BCs.

Now using Example 5.2, the proposed scheme takes the following form:
vm = wm − αm

∫ t

0
s2(1

2 −
1
t )[w′′m(s) + 2

s w′m(s) + e−wm(s)]ds
−αm

∫ 1

t
s( s

2 − 1)[w′′m(s) + 2
s w′m(s) + e−wm(s)]ds,

wm+1 = vm −
∫ t

0
s2( 1

2 −
1
t )[v′′m(s) + 2

s v′m(s) + e−vm(s)]ds
−

∫ 1

t
s( s

2 − 1)[v′′m(s) + 2
s v′m(s) + e−vm(s)]ds.

(5.6)

Green’s function involved in scheme (5.6) is provided in Figure 3. The absolute error in this case
is given in Table 4. The graphical comparison of the absolute errors in this case is given in Figure 4.
Again, we see that the PMH-Green’s iterative approach is more accurate than the Picard-Green’s and
Mann-Green’s iterative approaches for problems (5.4) and (5.5).
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Figure 3. Plot of Green’s function involved in the scheme (5.6).

Table 4. Absolute error between different iterations.

Values of t Picard −Green Mann −Green PMH −Green

0.1 2.67164 × 10−8 1.40478 × 10−8 7.77156 × 10−16

0.2 2.62110 × 10−8 1.37820 × 10−8 8.32667 × 10−16

0.3 2.53779 × 10−8 1.33440 × 10−8 7.77156 × 10−16

0.4 2.42312 × 10−8 1.27410 × 10−8 7.21645 × 10−16

0.5 2.27905 × 10−8 1.19835 × 10−8 6.93889 × 10−16

0.6 2.10813 × 10−8 1.10848 × 10−8 6.66134 × 10−16

0.7 1.91348 × 10−8 1.00613 × 10−8 6.10623 × 10−16

0.8 1.69877 × 10−8 8.93231 × 10−9 5.27356 × 10−16

0.9 1.46826 × 10−8 7.72027 × 10−9 4.99600 × 10−16
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Figure 4. Comparison of various iterative schemes based on Green’s function for Example 5.2.

6. Conclusions

We modified the PHM-iterative scheme by embedding a Green’s function of a certain SBVP. The
convergence to a sought solution to a given SBVP is proved under some possible mild conditions. We
proved the proposed iterative scheme is weak w2-stable. Some numerical experiments are performed
and it has been shown the numerical accuracy of the PMH-Green’s is more accurate and corresponds
to the Picard-Green’s and Mann-Green’s iterative schemes studied by Assadi et al. [18]. Since the
proposed scheme is stable and gives high accurate numerical solutions in the setting of SBVPs, we
conclude that our results improve and extend many other results of the literature due to various authors.
Our next aim is to use the proposed scheme for other BVPs that arise in nano-fluid and mathematical
physics. Eventually, we point out the following:

(i) If we prove the mapping FG a Kannan contraction, that is, for all v,w, there exists a constant
µ ∈ [0, 1

2 ) such that ||FGv − FGw|| ≤ µ[||v − FGv|| + ||w − FGw||], then FG also admits a unique
fixed point. Thus, our iterative scheme can be used to approximate the solutions. However, the
Kannan mappings are sometimes not continuous [30]; therefore, this is not a good option in our
case. Furthermore, the space C[0, 1] contains only continuous functions.

(ii) Our iterative scheme uses only one sequence of scalars {αm} and the condition we imposed on it
is very simple in our convergence theorem. Thus, our iterative scheme needs few parameters to
start. Moreover, it gives high accurate results for small values of this sequence.

(iii) The iterative scheme is proved weak w2-stable. We know that every stable iterative scheme is
weak w2-stable but the converse is not generally true. Thus, our result of weak w2-stability
contains the case when one proves a stability result for our iterative scheme in the classical sense.

(iv) Since the Banach space used in this paper contains only continuous functions, it is a
challenge for us to replace this Banach space by a Banach space that also contains some
discontinuous functions.
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29532

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Authors contributions

Muhammad Arshad gave the idea as a supervisor. Junaid Ahmad wrote the initial draft. Reny
George edited the final version and approved for submission.

Acknowledgments

The authors extend their appreciation to Prince Sattam bin Abdulaziz University, Saudi Arabia for
funding this research work through the project number (PSAU/2023/01/9010).

Conflict of interest

The authors declare that they have no conflicts of interest.

References

1. K. Zhao, Existence and UH-stability of integral boundary problem for a class of nonlinear higher-
order Hadamard fractional Langevin equation via Mittag-Leffler functions, Filomat, 37 (2023),
1053–1063. https://doi.org/10.2298/FIL2304053Z

2. S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equations
integrales, Fund. Math. 3 (1922), 133–181. https://doi.org/10.4064/fm-3-1-133-181

3. E. M. Picard, Memorie sur la theorie des equations aux derivees partielles et la methode des
approximation ssuccessives, J. Math. Pure Appl., 6 (1890), 145–210.

4. P. Cholamjiak, W. Cholamjiak, Y. J. Cho, S. Suantai, Weak and strong convergence to common
fixed points of a countable family of multi-valued mappings in Banach spaces, Thai J. Math., 9
(2011), 505–520.

5. R. Pandey, R. Pant, V. Rakocevie, R. Shukla, Approximating fixed points of a general class
of nonexpansive mappings in Banach spaces with applications, Results Math. 74 (2018), 1–24.
https://doi.org/10.1007/s00025-018-0930-6

6. I. Uddin, M. Imdad, Convergence of SP-iteration for generalized nonexpansive mapping in
Hadamard spaces, Hacet. J. Math. Stat., 47 (2018), 1595–1604.

7. H. Afsharia, H. Aydi, Some results about Krasnoselskii-Mann iteration process, J. Nonlinear Sci.
Appl., 9 (2016), 4852–4859. https://doi.org/10.22436/jnsa.009.06.120

8. F. E. Browder, Nonexpansive nonlinear operators in a Banach space, P. Natl. Acad. Sci. USA, 54
(1965), 1041–1044. https://doi.org/10.1073/pnas.54.4.1041

9. D. Gohde, Zum prinzip der kontraktiven abbildung, Math. Nachr., 30 (1965), 251–258.
https://doi.org/10.1002/mana.19650300312

AIMS Mathematics Volume 8, Issue 12, 29517–29534.

http://dx.doi.org/https://doi.org/10.2298/FIL2304053Z
http://dx.doi.org/https://doi.org/10.4064/fm-3-1-133-181
http://dx.doi.org/
http://dx.doi.org/
http://dx.doi.org/https://doi.org/10.1007/s00025-018-0930-6
http://dx.doi.org/
http://dx.doi.org/https://doi.org/10.22436/jnsa.009.06.120
http://dx.doi.org/https://doi.org/10.1073/pnas.54.4.1041
http://dx.doi.org/https://doi.org/10.1002/mana.19650300312


29533

10. W. A. Kirk, A fixed point theorem for mappings which do not increase distance, Am. Math. Mon.,
72 (1965), 1004–1006. https://doi.org/10.2307/2313345

11. V. Berinde, Iterative approximation of fixed points, 2 Eds., Lecture Notes in Mathematics, Berlin:
Springer, 2007. https://doi.org/10.1109/SYNASC.2007.49

12. W. R. Mann, Mean value methods in iteration, P. Am. Math. Soc., 4 (1953), 506–510.
https://doi.org/10.1090/S0002-9939-1953-0054846-3

13. S. H. Khan, A Picard-Mann hybrid iterative process, Fixed Point Theory A., 69 (2013), 1–10.
https://doi.org/10.1186/1687-1812-2013-69

14. K. Zhao, Existence, stability and simulation of a class of nonlinear fractional Langevin
equations involving nonsingular Mittag-Leffler kernel, Fractal Fract., 6 (2022), 469.
https://doi.org/10.3390/fractalfract6090469

15. S. A. Khuri, A. Sayfy, Variational iteration method: Green’s functions and fixed point iterations
perspective, Appl. Math. Lett., 32 (2014), 24–34. https://doi.org/10.1016/j.aml.2014.01.006

16. S. A. Khuri, A. Sayfy, Generalizing the variational iteration method for BVPs:
Proper setting of the correction functional, Appl. Math. Lett., 68 (2017), 68–75.
https://doi.org/10.1016/j.aml.2016.11.018

17. S. A. Khuri, A. Sayfy, An iterative method for boundary value problems, Nonlinear Sci. Lett. A, 8
(2017), 178–186.

18. R. Assadi, S. A. Khuri, A. Sayfy, Numerical solution of nonlinear second order singular BVPs
based on Green’s functions and fixed point Iterative schemes, Int. J. Appl. Comput. Math., 4 (2018),
1–13. https://doi.org/10.1007/s40819-018-0569-8

19. K. Zhao, Stability of a nonlinear langevin system of ML-type fractional derivative affected
by time-varying delays and differential feedback control, Fractal Fract., 6 (2022), 725.
https://doi.org/10.3390/fractalfract6120725

20. J. Ahmad, M. Arshad, A. Hussain, H. Al-Sulami, A Green’s function based iterative approach for
solutions of BVPs in symmetric spaces, Symmetry, 15 (2023), 1838.

21. K. Zhao, Stability of a nonlinear ML-nonsingular kernel fractional Langevin
system with distributed lags and integral control, Axioms, 11 (2022), 350.
https://doi.org/10.3390/axioms11070350

22. M. O. Osilike, Stability of the Mann and Ishikawa iteration procedures for φ-strong
pseudocontractions and nonlinear equations of the φ-strongly accretive type, J. Math. Anal. Appl.,
227 (1998), 319–334. https://doi.org/10.1006/jmaa.1998.6075

23. A. Sahin, Some new results of M-iteration process in hyperbolic spaces, Carpathian J. Math., 35
(2019), 221–232. https://doi.org/10.37193/CJM.2019.02.10

24. A. Sahin, Some results of the Picard-Krasnoselskii hybrid iterative process, Filomat, 33 (2019),
359–365. https://doi.org/10.2298/FIL1902359S

25. M. Urabe, Convergence of numerical iteration in solution of equations, J. Sci. Hiroshima Univ. A,
19 (1956), 479–489. https://doi.org/10.32917/hmj/1556071264

26. A. M. Harder, T. L. Hicks, Stability results for fixed point iteration procedures, Math. Japonica, 33
(1988), 693–706.

AIMS Mathematics Volume 8, Issue 12, 29517–29534.

http://dx.doi.org/https://doi.org/10.2307/2313345
http://dx.doi.org/https://doi.org/10.1109/SYNASC.2007.49
http://dx.doi.org/https://doi.org/10.1090/S0002-9939-1953-0054846-3
http://dx.doi.org/https://doi.org/10.1186/1687-1812-2013-69
http://dx.doi.org/https://doi.org/10.3390/fractalfract6090469
http://dx.doi.org/https://doi.org/10.1016/j.aml.2014.01.006
http://dx.doi.org/https://doi.org/10.1016/j.aml.2016.11.018
http://dx.doi.org/
http://dx.doi.org/https://doi.org/10.1007/s40819-018-0569-8
http://dx.doi.org/https://doi.org/10.3390/fractalfract6120725
http://dx.doi.org/
http://dx.doi.org/https://doi.org/10.3390/axioms11070350
http://dx.doi.org/https://doi.org/10.1006/jmaa.1998.6075
http://dx.doi.org/https://doi.org/10.37193/CJM.2019.02.10
http://dx.doi.org/https://doi.org/10.2298/FIL1902359S
http://dx.doi.org/https://doi.org/10.32917/hmj/1556071264
http://dx.doi.org/


29534

27. T. Cardinali, P. Rubbioni, A generalization of the Caristi fixed point theorem in metric spaces,
Fixed Point Theory, 11 (2010), 3–10.

28. I. Timis, On the weak stability of Picard iteration for some contractive type mappings, Ann. Univ.
Craiova-Mat., 37 (2010), 106–114.

29. M. Chawla, R. Subramanian, H. Sathi, A fourth order method for a singular two-point boundary
value problem, BIT, 28 (1988), 88–97. https://doi.org/10.1007/BF01934697

30. P. Debnath, N. Konwar, S. Radenovic, Metric fixed point theory: Applications in science,
engineering and behavioural sciences, Singapore: Springer, 2023. https://doi.org/10.1007/978-981-
16-4896-0

© 2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 8, Issue 12, 29517–29534.

http://dx.doi.org/
http://dx.doi.org/
http://dx.doi.org/https://doi.org/10.1007/BF01934697
http://dx.doi.org/https://doi.org/10.1007/978-981-16-4896-0
http://dx.doi.org/https://doi.org/10.1007/978-981-16-4896-0
http://creativecommons.org/licenses/by/4.0

	Introduction
	Overview of the iterative scheme
	Construction of the Green's function
	PMH-Green's iterative scheme

	Convergence result
	Stability
	Numerical example and computations
	Conclusions

