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1. Introduction

Fractional calculus (FC) has long been devoted to studying integrals and derivatives of non-integer
order. In recent years, researchers have been growing interest in finding the most suitable fractional
derivative (FD) for modeling real-world problems. While classical calculus equations are sometimes
inadequate for capturing complex systems, fractional calculus methods have proven to be highly
effective in modeling phenomena observed in various disciplines such as physics, chemistry, electricity,
and mechanics, thanks to their ability to handle long-memory processes [1–8].

Traditionally, the focus of FC was primarily on Riemann-Liouville (RL) and Caputo fractional
derivatives. However, as we entered the new millennium, researchers began introducing new types of
fractional operators (FO), expanding the field of fractional calculus [9–15]. It is noteworthy that the
FOs proposed in this work are distinct instances of fractional derivatives/integrals compared to those
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described in [16–18]. Nevertheless, they share one crucial characteristic with other FOs, which is
nonlocality.

In [19], the authors introduced a local FD, known as the conformable derivative (CD). The
conceptualization of these local FD eventually led to the rediscovery of nonlocal FD previously
described in [14]. We provide an overview of the fundamental principles behind the CD and propose a
derivative consistent with both the left and right versions. Furthermore, we find that the nonlocal FD
version proposed in [20, 21] can be derived from [13].

In any form of FC or calculus with derivatives, it is essential for a function’s order zero to be equal
to the function itself. However, the CD lacks this crucial property, which can be seen as a deficiency.
To address this, the authors in [22, 23] redefined the CD to ensure that it yields the function itself
when the local FD has an order of zero. Subsequently, Sadek [24] introduced the FD version of this
redefined CD called cotangent fractional derivative which features the that they achieve a semi-group
property, the kernel operator is the exponential of the cotangent function, and is a generalization of the
Riemann-Liouville FD and Caputo FD.

The existence and uniqueness of solutions represent significant qualitative properties of fractional
differential problems. Several mathematicians have addressed the existence and uniqueness of
solutions for fractional differential problems involving various types of FD and boundary/initial
conditions (see [25–35]).

From the works of [36, 37], we introduce an innovative FD called the Hilfer cotangent fractional
derivative. Building upon this newly defined derivative, we investigate the solutions’ existence and
uniqueness for a distinct class of nonlinear fractional differential problems that feature nonlocal initial
conditions. The Hilfer cotangent fractional differential equation is formulated as follows:

D
G,q,r
c+ x(`) = f (`, x(`)), ` ∈ L = [c, d], d > c ≥ 0, r ∈ (0, 1], 0 ≤ q ≤ 1,

I
1−σ,r
c+ x(c) =

∑m
i=1 cix (τi) , G ≤ σ = G + q −Gq, τi ∈ (c, d).

(1.1)

In this equation,DG,q,r
c+ (·) represents the Hilfer cotangent fractional derivative (HCFD), and I1−σ,r

c+ (·)
denotes the cotangent fractional integral (CFI) with an order of 1−σ > 0. Here, ci belongs to the set of
real numbers, f : L × R → R is a continuous function, and τi are elements of the interval L satisfying
c < τ1 < · · · < τm < d, i = 1, . . . ,m. The Hilfer fractional model, along with other fractional calculus
models, provides a powerful mathematical framework for describing and understanding complex
systems and processes that do not conform to traditional integer-order calculus. Its applications are
diverse and span various scientific and engineering disciplines. Notably, the existence and uniqueness
of solutions for Eq (1.1) have not been previously discussed using this new fractional definition.

The Hilfer fractional model, named after the mathematician Rudolf Gorenflo Hilfer, is a
mathematical framework used to describe systems and processes that exhibit non-integer order
fractional behavior. Unlike traditional integer-order calculus, fractional calculus, including the Hilfer
fractional model, deals with derivatives and integrals of non-integer orders, which allows it to capture
more complex dynamics in various domains. Here are some applications of the Hilfer fractional model:

• Anomalous diffusion: The Hilfer fractional model is often used to describe anomalous diffusion,
where particles or information spread in a non-standard way. This can be applied to fields
like physics (e.g., diffusion in porous media), biology (e.g., cell migration), and finance (e.g.,
modeling price movements in financial markets).

AIMS Mathematics Volume 8, Issue 12, 28334–28352.



28336

• Viscoelasticity: The Hilfer fractional model is used to describe the behavior of viscoelastic
materials, which exhibit both viscous (liquid-like) and elastic (solid-like) properties. This is
relevant in materials science and engineering, especially for modeling polymers and complex
fluids.
• Fractional differential equations (FDEs): FDEs based on the Hilfer fractional model are used to

describe a wide range of dynamic systems, such as electrical circuits, mechanical systems, and
chemical reactions. These equations can capture non-standard responses and memory effects in
these systems.
• Control systems: The Hilfer fractional model has applications in control theory for describing

and controlling complex systems with fractional dynamics. It’s used in areas like robotics,
automation, and mechatronics to design controllers for systems with non-integer order behavior.
• Signal processing: Fractional calculus, including the Hilfer fractional model, is applied to signal

processing for tasks like noise reduction, image processing, and data compression, where it can
capture long-range dependencies in signals.
• Biomedical engineering: The Hilfer fractional model is used in modeling biological and

physiological systems, such as modeling drug delivery in the human body or describing the
dynamics of neurons in the brain.
• Geophysics: In geophysics, the Hilfer fractional model can be applied to model seismic

phenomena, groundwater flow, and other geological processes that exhibit complex, non-integer
order behavior.
• Environmental science: Environmental processes that exhibit anomalous behavior, such as

pollutant transport in groundwater, can be described using the Hilfer fractional model.
• Economics: Fractional calculus models, including the Hilfer fractional model, have been applied

to financial time series analysis and modeling to capture long-term dependencies and improve
predictions in financial markets.
• Renewable energy: The modeling of energy storage systems, battery behavior, and renewable

energy generation can benefit from the Hilfer fractional model to account for the complex and
non-standard behavior of these systems.

The remainder of the manuscript is structured as follows. In Section 2, we provide a review of
essential definitions and theoretical results necessary for our subsequent analysis. In Section 3, we
introduce our proposed derivatives, namely the Hilfer cotangent fractional derivatives, along with their
preliminary properties. Additionally, we explore the connection between an initial value problem and
a cotangent Volterra integral equation, establishing uniqueness and the existence of the solution using
Banach’s fixed point theorem and Kransnoselskii’s fixed point theorem. Furthermore, we present two
examples to illustrate our findings. Finally, we conclude the paper in Section 4.

2. Preliminaries of cotangent fractional derivative

In this section, we present preliminary information, definitions, and results related to cotangent
fractional derivative, which is fundamental for the rest of the paper. Let us consider finite and infinite
intervals −∞ < c < d < ∞ within the real numbers R+. We denote the space of continuous functions x
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defined on [c, d] as C[c, d]. The norm for this space is defined as in [4]:

‖x‖C[c,d] = max
`∈[c,d]

|x(`)|.

Additionally, we define ACn[c, d], the space of functions x that are n times absolutely continuous
differentiable, as:

ACn[c, d] =
{
x : (c, d]→ R; xn−1 ∈ AC([c, d])

}
.

The weighted space Cσ[c, d] for functions f on (c, d] is defined as:

Cσ[c, d] = {x : (c, d]→ R; (` − c)σx(`) ∈ C([c, d])} , 0 ≤ σ < 1,

where the corresponding norm:

‖x‖Cσ[c,d] = ‖(` − c)σx(`)‖C[c,d] = max
`∈[c,d]

|(` − c)σx(`)| .

Similarly, the weighted space Cn
σ[c, d] for functions x on (c, d] is defined as:

Cn
σ[c, d] =

{
x : (c, d]→ R; x(`) ∈ Cn−1([c, d]); xn(`) ∈ Cσ([c, d])

}
, 0 ≤ σ < 1,

where the corresponding norm:

‖x‖Cn
σ[c,d] =

n−1∑
k=0

∥∥∥xk
∥∥∥
C[c,d]

+ ‖xn‖Cσ[c,d] .

It is worth noting that C0
σ[c, d] = Cσ[c, d] when n = 0.

Definition 2.1. [4] Suppose that x ∈ L1([c, d],R). Then the RL integral of order G > 0 of the function
x is defined by

IG
c+ x(`) =

1
Γ(G)

∫ `

c
(` − µ)G−1x(µ)dµ, ` > c,

with Γ(·) is the gamma function.

Definition 2.2. [4] Let x ∈ C([c, d]). The RL fractional derivative of order G such that n − 1 < G <

n, n ∈ N of the function x is defined by

LDG
c+ x(`) =

1
Γ(n −G)

dn

d`n

∫ `

c
(` − µ)n−G−1x(µ)dµ, ` > c.

Definition 2.3. [4] Let x ∈ Cn([c, d]) and p > 0 such that n − 1 < G < n, n ∈ N. Then the Caputo
fractional derivative of order G of the function x is defined by

CDG
c+ x(`) =

1
Γ(n −G)

∫ `

c
(` − µ)n−G−1xn(µ)dµ,

where xn(µ) =
dn x(µ)

dµn .
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Definition 2.4. [24] Let G ∈ C,Re(G) > 0 and r ∈ (0, 1]. The CFI of order G of the function x is
defined by

IG,r
c+ x(`) =

1
sin(r π2 )GΓ(G)

∫ `

c
e− cot(r π2 )(`−µ)(` − µ)G−1x(µ)dµ, ` > c. (2.1)

Remark 2.5. [24] Let
Dr x(`) = cos(r

π

2
)x(`) + sin(r

π

2
)x′(`),

and
(Dn,r x) (`) = (Dr Dr · · ·Dr︸         ︷︷         ︸

n times

x)(`).

Definition 2.6. [24] The left cotangent fractional derivative of order G ∈ C (Re(G) > 0) and r ∈ (0, 1]
of a function x is defined by

DG,r
c+ x(`) =

Dn,r

sin(r π2 )n−GΓ(n −G)

∫ `

c
e− cot(r π2 )(`−µ)(` − µ)n−G−1x(µ)dµ, (2.2)

where n = [G] + 1.

Definition 2.7. [24] Let r ∈ (0, 1]. Then the left-sided cotangent fractional derivative in the sense of
Caputo of order G of the function x is defined by

CDG,r
c+ x(`) =

1
sin(r π2 )n−pΓ(n −G)

×

∫ `

c
e− cot(r π2 )(`−µ)(` − µ)n−G−1 (Dn,r x) (µ)dµ, G ∈ C,Re(G) > 0,

(2.3)

where n = [G] + 1.

Remark 2.8. For r = 1, Definitions 2.4–2.7 coincide the Definitions 2.1–2.3, respectively.

The cotangent fractional derivative and integral exhibit the following significant properties:

Proposition 2.9. [24] Let r ∈ (0, 1] and δ,G ∈ C such that Re(δ) > 0 and Re(G) ≥ 0. Then we have(
IG,r
c+ e− cot(r π2 )(s−c)(s − c)δ−1

)
(`) =

Γ(δ)
sin(r π2 )GΓ(δ + G)

e− cot(r π2 )(`−c)(` − c)δ+G−1,

(
DG,r

c+ e− cot(r π2 )(s−c)(s − c)δ−1
)

(`) =
sin(r π2 )GΓ(δ)

Γ(δ −G)
e− cot(r π2 )(`−c)(` − c)δ−G−1,(

IG,r
d e− cot(r π2 )(d−s)(d − s)δ−1

)
(`) =

Γ(δ)
sin(r π2 )GΓ(δ + G)

e− cot(r π2 )(d−`)(d − `)δ+G−1,

(
DG,r

d e− cot(r π2 )(d−s)(d − s)q−1
)

(`) =
sin(r π2 )GΓ(δ)

Γ(δ −G)
e− cot(r π2 )(d−`)(d − `)δ−G−1.

(2.4)

Theorem 2.10. [24] Let r ∈ (0, 1],Re(G) > 0, Re(q) > 0 and x ∈ C([c, d],R), then we have

IG,r
c+

(
Iq,r
c+ x

)
(`) = Iq,r

c+

(
IG,r
c+ x

)
(`) =

(
IG+q,r
c+ x

)
(`), ` ≥ c. (2.5)
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Theorem 2.11. [24] Let x ∈ L1([c, d]). Suppose that r ∈ (0, 1] and 0 ≤ m < [Re(G)] + 1. Then

Dm,r
c+

(
IG,r
c+ x

)
(`) =

(
IG−m,r
c+ x

)
(`), ` > c. (2.6)

Corollary 2.12. [24] Let 0 < Re(q) < Re(G) and m − 1 < Re(q) ≤ m. Then we get

Dq,r
c+ IG,r

c+ x(`) = IG−q,r
c+ x(`).

Theorem 2.13. [24] Let x ∈ L1([c, d]),Re(G) > 0, n = [Re(G)] + 1 and r ∈ (0, 1]. Then

DG,r
c+ IG,r

c+ x(`) = x(`), ` ≥ c.

Lemma 2.14. [24] Let m ∈ Z+, G > 0 and r ∈ (0, 1]. Then

(
IG,r
c+ Dm,r

c+ x
)

(`) =
(
Dm,r

c+ IG,r
c+ x

)
(`) −

m−1∑
k=0

e− cot(r π2 )(`−c)(` − c)G−m+k

sin(r π2 )G−m+kΓ(G + k − m + 1)

(
Dk,r

c+ x
)

(c). (2.7)

In particular, if m = 1, we get

(
IG,r
c+ Dr

c+ x
)

(`) =
(
Dr

c+ IG,r
c+ x

)
(`) −

e− cot(r π2 )(`−c)(` − c)G−1

sin(r π2 )G−1Γ(G)
x(c). (2.8)

Theorem 2.15. [24] Let x ∈ L1(c, d) and
(
IG,r
c+ x

)
(`) ∈ ACn[c, d], Re(G) > 0, n = −[−Re(G)]. Then

(
IG,r
c+ DG,r

c+ x
)

(`) = x(`) − e− cot(r π2 )(`−c)
n∑

j=1

(` − c)G− j

sin(r π2 )G− jΓ(G − j + 1)

(
Icc j−G,r x

) (
c+) . (2.9)

3. Main results

In this section, we present the HCFD and explore its properties. Furthermore, we establish the
equivalence between the given problem (1.1) and a cotangent fractional integral equation of Volterra
type. By utilizing fixed point theorems, we then demonstrate the existence and uniqueness of solutions
for Eq (1.1).

Definition 3.1. Let n ∈ N such that n − 1 < G < n, r ∈ (0, 1] and 0 ≤ q ≤ 1. The left/right HCFD of
order G and type q of a function x is defined by(

D
G,q,r
c± x

)
(`) = I

q(n−G),r
c±

[
Dr

(
I

(1−q)(n−G),r
c± x

)]
(`), (3.1)

where I is the CFI defined in Eq (2.1).

In particular, if n = 1, Eq (3.1) is equivalent with(
D

G,q,r
c± x

)
(`) = I

q(1−G),r
c±

[
Dr

(
I

(1−q)(1−G),r
c± x

)]
(`). (3.2)

Thus, throughout this work, we discuss the case where 0 < G < 1, n = 1, 0 ≤ q ≤ 1 and σ =

G + q −Gq.
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This definition can be used in many ways, including: A robust scheme for variable-order time-
fractional diffusion-type equations [38], a fractal-fractional-order modified predator-prey mathematical
model with immigrations [39], a pseudo-operational collocation method for variable-order time-space
fractional KdV-Burgers-Kuramoto equation [40], Leffler-Galerkin method to solve Riccati differential
equation of fractional order [41], stability of fractional linear systems [42], and controllability,
observability of fractional linear systems [43].

Remark 3.2. It is important to mention that:
(1) If q = 0, we get Definition 2.6.
(2) If q = 1, we get Definition 2.7.
(3) The parameter σ satisfies

0 < σ ≤ 1, σ ≥ G, σ > q, 1 − σ < 1 − q(1 −G).

Proposition 3.3. We have

D
G,q,r
c+ x = I

q(1−G),r
c+ DrI

(1−σ),r
c+ x = I

q(1−G),r
c+ D

σ,r
c+ x, σ = G + q −Gq.

Proof. From Eq (3.2) and Definition 2.6, we get(
D

G,q,r
c+ x

)
(`) = I

q(1−G),r
c+

[
Dr

(
I

(1−q)(1−G),r
c+ x

)]
(`)

= I
q(1−G),r
c+

{
Dr

sin(r π2 )(1−σ)Γ((1 − σ))

∫ `

c
e− cot(r π2 )(`−τ)(` − τ)(1−σ)−1x(τ)dτ

}
=

(
I

q(1−G),r
c+ Dσ,r x

)
(`).

�

Let us examine the weighted function spaces defined on (c, d] as follows:

C
G,q
1−σ[c, d] =

{
x ∈ C1−σ[c, d],DG,q,r

c+ x ∈ C1−σ[c, d]
}
,

and
Cσ1−σ[c, d] =

{
x ∈ C1−σ[c, d],Dσ,r

c+ x ∈ C1−σ[c, d]
}
,

since
D

G,q,r
c+ = I

q(1−G),r
c+ D

σ,r
c+ , C

σ
1−σ[c, d] ⊂ CG,q

1−σ[c, d].

Lemma 3.4. Suppose r ∈ (0, 1], 0 < G < 1, 0 ≤ σ < 1 and x ∈ Cσ[c, d], then

I
G,r
c+ x(c) = lim

`→c+
I

G,r
c+ x(`) = 0, 0 ≤ σ < G.

Proof. If we consider x ∈ C[c, d], it indicates that x belongs to Cσ[c, d] and (` − c)σ belongs to C[c, d].
Consequently, there exists a positive constant M such that

(` − c)σx(`) < M, for all ` ∈ [c, d],

and ∣∣∣IG,r
c+ e− cot(r π2 )`x(`)

∣∣∣ < M
[
I

G,r
c+ e− cot(r π2 )`(` − c)−σ

]
(`).
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It follows from Proposition 2.9, that

∣∣∣IG,r
c+ e− cot(r π2 )`x(`)

∣∣∣ < M
[

Γ(1 − σ)
Γ(G + 1 − σ)

e− cot(r π2 )`(` − c)G−σ

]
,

this implies that as ` approaches to a from the right, the right-hand side tends to zero. �

Lemma 3.5. Let 0 < G < 1, 0 ≤ q ≤ 1, r ∈ (0, 1], σ = G + q −Gq and x ∈ Cσ1−σ[c, d], then

I
σ,r
c+ D

σ,r
c+ x = IG,r

c+ D
µ,q,r
c+ x,

and
D

σ,r
c+ I

G,r
c+ x = D

q(1−G),r
c+ x.

Proof. By utilizing Theorem 2.10 and Proposition 3.3, we can proceed to

I
σ,r
c+ D

σ,r
c+ x = Iσ,rc+

(
I
−q(1−G),r
c+ D

G,q,r
c+ x

)
= I

G+q−Gq,r
c+ I

−q(1−G),r
c+ D

G,q,r
c+ x = IG,r

c+ D
G,q,r
c+ x.

Moreover, considering Theorem 2.10 and Eq (3.2), it is evident that

D
σ,r
c+ I

G,r
c+ x = Dr

c+I
1−σ,r
c+ I

G,r
c+ x = Dr

c+I
1−q+Gq,r
c+ x = D

q(1−G),r
c+ x.

�

Lemma 3.6. Suppose x ∈ L1(c, d) such thatDq(1−G),p
c+ x exists in L1(c, d). Then

D
G,q,r
c+ I

G,r
c+ x = I

q(1−G),r
c+ D

q(1−G),r
c+ x.

Proof. By utilizing Definition 2.6 and Eq (3.2), we can deduce that

D
G,q,r
c+ I

G,r
c+ x = I

q(1−G),r
c+ Dr

c+I
(1−q)(1−G),r
c+ x = I

q(1−G),r
c+ Dr

c+I
1−q(1−G),r
c+ x = I

q(1−G),r
c+ D

q(1−G),r
c+ x.

�

Lemma 3.7. Let 0 < G < 1 and 0 ≤ σ < 1, r ∈ (0, 1]. Let x ∈ Cσ[c, d] and I1−p,r
c+ x ∈ C1

σ[c, d], then

I
G,r
c+ D

G,r
c+ x(`) = x(`) − e− cot(r π2 )(`−c) (` − c)G−1

sin(r π2 )G−1Γ(G)

(
I1−G,r
c x

) (
c+) ,

for all ` ∈ (c, d].

Proof. The proof follows a similar approach to the ones presented in [24]. �

Lemma 3.8. Let 0 < G < 1, r ∈ (0, 1], 0 ≤ q ≤ 1 and σ = G + q −Gq. Let x ∈ C1−σ[c, d] and DG,q,r
c+ x

thenDG,q,r
c+ I

G,r
c+ x exists in (c, d) and

D
G,q,r
c+ I

G,r
c+ x(`) = x(`), ` ∈ (c, d].
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Proof. By employing Lemmas 3.4, 3.6, and 3.7, we obtain the following result(
D

G,q,r
c+ I

G,r
c+ x

)
(`) =

(
I

q(1−G),r
c+ D

q(1−G),r
c+ x

)
(`)

= x(`) − e− cot(r π2 )(`−c) (` − c)q(1−G)−1

sin(r π2 )q(1−G)−1Γ(q(1 −G))

(
I1−q(1−G),r
a x

) (
c+)

= x(`).

�

Lemma 3.9. Let r ∈ (0, 1], 0 < G < 1, 0 ≤ q ≤ 1, 0 < σ < 1, x ∈ C1−σ[c, d] and I1−σ,r
c+ x, then

I
G,r
c+ D

G,q,r
c+ x(`) = x(`) − e− cot(r π2 )(`−c) (` − c)σ−1

sin(r π2 )σ−1Γ(σ)

(
I1−σ,r
c x

) (
c+) , ` ∈ (c, d].

Proof. From Definition 3.1 and Lemma 3.7 we have(
I

G,r
c+ D

G,q,r
c+ x

)
(`) = IG,r

c+

(
I
σ−G,r
c+ D

σ,r
c+ x

)
(`)

= Iσ,rc+ D
σ,r
c+ x(`)

= x(`) − e− cot(r π2 )(`−c) (` − c)σ−1

sin(r π2 )σ−1Γ(σ)

(
I1−σ,r
c x

) (
c+) .

�

3.1. Cotangent Volterra integral equation (CVIE)

The subsequent lemma establishes the equivalence between the proposed Eq (1.1) and a CVIE.

Lemma 3.10. Consider 0 < G < 1, 0 ≤ q ≤ 1, and σ = G + q − Gq. Let f : L × R → R such that
f ∈ C1−σ[L,R] for any x ∈ C1−σ[L,R]. If x ∈ Cσ1−σ[L,R], then x satisfies Eq (1.1) if and only if it
satisfies the CVIE given by:

x(`) =
Λ

sin(r π2 )GΓ(G)
e− cot(r π2 )(`−c)(` − c)σ−1

m∑
i=1

ci

∫ τi

c+

e− cot(r π2 )(τi−s) (τi − s)G−1 f (s, x(s))ds

+
1

sin(r π2 )GΓ(G)

∫ `

c+

e− cot(r π2 )(`−s)(` − s)G−1 f (s, x(s))ds,

(3.3)

where
Λ =

1
sin(r π2 )σ−1Γ(σ) −

∑m
i=1 cie− cot(r π2 )(τi−c) (τi − c)σ−1 . (3.4)

Proof. Let x ∈ Cσ1−σ[L,R] be a solution of (1.1). We aim to demonstrate that x is also a solution
of (3.3). Based on Lemma 3.9, we can conclude that

x(`) =
(` − c)σ−1

sin(r π2 )σ−1Γ(σ)
e− cot(r π2 )(`−c)I

1−σ,r
c+ x

(
c+)

+
1

sin(r π2 )GΓ(G)

∫ `

c+

e− cot(r π2 )(`−s)(` − s)G−1 f (s, x(s))ds.
(3.5)
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By substituting ` = τi and multiplying both sides of Eq (3.5) by ci, we obtain

cix (τi) =
(τi − c)σ−1

sin(r π2 )σ−1Γ(σ)
e− cot(r π2 )(τi−c)ciI

1−σ,r
c+ x

(
c+) + ciI

G,r
c+ f (τi)

which implies that

m∑
i=1

cix (τi) =
1

sin(r π2 )σ−1Γ(σ)

m∑
i=1

cie− cot(r π2 )(τi−c) (τi − c)σ−1
I

1−σ,r
c+ x

(
c+)

+
1

sin(r π2 )GΓ(G)

m∑
i=1

ci

∫ τi

c+

e− cot(r π2 )(τi−s) (τi − s)G−1 f (s, x(s))ds.

(3.6)

From the initial condition I1−σ,r
c+ x(c) =

∑m
i=1 cix (τi), we get

I
1−σ,r
c+ x

(
c+) =

sin(r π2 )σ−1Γ(σ)
sin(r π2 )GΓ(G)

Λ

m∑
i=1

ci

∫ τi

c+

e− cot(r π2 )(τi−s) (τi − s)G−1 f (s, x(s))ds. (3.7)

Hence, by substituting Eq (3.7) into Eq (3.5), we can conclude that x(`) satisfies Eq (3.3).
Conversely, let us assume that x ∈ Cσ1−σ satisfies Eq (3.3). Our goal is to show that x also satisfies

Eq (1.1).
By applying Dσ,r

c+ of Eq (3.3), and considering Proposition 2.9, Theorem 2.11, and Definition 3.1,
we obtain

D
σ,r
c+ x(`)

= Dσ,r
c+

(
Λ

sin(r π2 )GΓ(G)e
− cot(r π2 )(`−c)(` − c)σ−1 ∑m

i=1 ci

∫ τi

c+ e− cot(r π2 )(τi−s) (τi − s)G−1 f (s, x(s))ds
)

+Dσ,r
c+

(
1

sin(r π2 )GΓ(G)

∫ `

c+ e− cot(r π2 )(`−s)(` − s)G−1 f (s, x(s))ds
)

=
(
D

q(1−G),r
c+ f (`, x(`))

)
(`).

(3.8)

SinceDG,q,r
c+ x ∈ C1−σ[L,R], by the definition of Cσ1−σ[L,R] Eq (3.8) implies that

D
q(1−G),r
c+ f = DrI

1−q(1−r),r
c+ f ∈ C1−σ,r[L,R].

Considering f ∈ C1−σ[L,R] and using Theorem 2.13, we observe that I1−q(1−G),r
c+ f ∈ C1−σ,r[L,R].

Consequently, we can conclude that I1−q(1−G),r
c+ f ∈ C1

1−σ[L,R] based on the definition of Cn
σ[L,R].

By applying Iq(1−G),r
c+ to both sides of Eq (3.8), considering Proposition 2.9, Lemma 3.7, and

Definition 3.1, we obtain

I
q(1−G),r
c+ D

σ,r
c+ x(`) = I

q(1−G),r
c+ D

q(1−G),r
c+ f (`, x(`)).

= f (`, x(`)) −

(
I

1−q(1−G),r
c+ f

)
(c)

Γ(q(1 −G))
(` − c)q(G−1)−1

= f (`, x(`)).

(3.9)
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Hence, its remains to show that if x ∈ Cσ1−σ[L,R] satisfies (3.3), it also satisfies the initial condition.
So, by applying I1−σ,r

c+ to both sides of Eq (3.3) and using Proposition 2.9, Theorem 2.10 and
Corollary 2.12, we obtain

I
1−σ,r
c+ x(`)

=I1−σ,r
c+

 Λ

sin(r π2 )GΓ(G)
e− cot(r π2 )(`−c)(` − c)σ−1

m∑
i=1

ci

∫ τi

c+

e− cot(r π2 )(τi−s) (τi − s)G−1 f (s)ds


+ I

1−σ;ϕ
c+

(
1

sin(r π2 )GΓ(G)

∫ `

c+

e− cot(r π2 )(`−s)(` − s)G−1 f (s)ds
)

=
sin(r π2 )σ−1Γ(σ)
sin(r π2 )GΓ(G)

Λe− cot(r π2 )(`−c)
m∑

i=1

ci

∫ τi

c+

e− cot(r π2 )(τi−s) (τi − s)G−1 f (s)ds

+ I
1−q(1−G),r
c+ f (`).

(3.10)

Taking the limit as ` → c+in Eq (3.10) and the fact that 1 − q < 1 −G(1 − r) get

I
1−σ,r
c+ x

(
c+) =

sin(r π2 )σ−1Γ(σ)
sin(r π2 )GΣ(G)

Λ

m∑
i=1

ci

∫ τi

c+

e− cot(r π2 )(τi−s) (τi − s)G−1 f (s, x(s))ds. (3.11)

Substituting t = τi and multiplying through by ci in Eq (3.3),

cix (τi) =
Λ

sin(r π2 )GΓ(G)
e− cot(r π2 )(τi−c) (τi − c)σ−1

m∑
i=1

ci

∫ τi

c+

e− cot(r π2 )(τi−s) (τi − s)G−1 f (s)ds

+
ci

sin(r π2 )GΓ(G)

∫ τi

c+

e− cot(r π2 )(τi−s) (τi − s)G−1 f (s, x(s))ds,

(3.12)

which implies that

m∑
i=1

cix (τi) = Λ

m∑
i=1

ciI
G,r
c+ f (τi)

m∑
i=1

cie− cot(r π2 )(τi−c) (τi − c)σ−1 +

m∑
i=1

ciI
G,r
c+ f (τi)

=

m∑
i=1

ciI
G,r
c+ f (τi)

1 + Λ

m∑
i=1

cie− cot(r π2 )(τi−c) (τi − c)σ−1

 . (3.13)

Thus
m∑

i=1

cix (τi) =
sin(r π2 )σ−1Γ(σ)
sin(r π2 )GΓ(G)

Λ

m∑
i=1

ci

∫ τi

c+

e− cot(r π2 )(τi−s) (τi − s)G−1 f (s, x(s))ds. (3.14)

So, in view of (3.11) and (3.14), we have

I
1−σ,r
c+ x

(
c+) =

m∑
i=1

cix (τi) . (3.15)

�

Remark 3.11. The introduced Hilfer cotangent fractional derivative (as defined in Definition 3.1)
consolidates the previously existing Riemann-Liouville, cotangent, and Hilfer fractional derivatives.
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3.2. Uniqueness

In this subsection, we will present a comprehensive proof of the uniqueness of solutions for the
given Eq (1.1) by employing the principles of the Banach contraction. To accomplish this, we rely on
the following assumptions:

(H1) Let f : L × R→ R such that f ∈ Cq(1−G)
1−σ [L,R] for any x ∈ Cσ1−σ[L,R].

(H2) There exists a constant K > 0 such that

| f (`, z) − f (`, z̄)| ≤ K|z − z̄|,

for any z, z̄ ∈ R and ` ∈ L.
(H3) Suppose that Kψ < 1, where

ψ =
B(σ,G)

sin(r π2 )GΓ(G)

|Λ| m∑
i=1

ci (τi − c)G+σ−1 + (d − c)G

 , (3.16)

and B(σ,G) is the Beta function [4]

B(σ,G) =

∫ 1

0
`σ−1(1 − `)G−1d`.

Theorem 3.12. Let 0 < G < 1, 0 ≤ q ≤ 1, and σ = G+q−Gq. Assuming that the conditions (H1)–(H3)
hold. Then the Eq (1.1) possesses a unique solution within the space Cσ1−σ[L,R].

Proof. Let the operator T : C1−σ[L,R]→ C1−σ[L,R] by

(T x)(`) =
Λ

sin(r π2 )GΓ(G)
e− cot(r π2 )(`−c)(` − c)σ−1

m∑
i=1

ci

∫ τi

c
e− cot(r π2 )(τi−s) (τi − s)G−1 f (s, x(s))ds

+
1

sin(r π2 )GΓ(G)

∫ `

c
e− cot(r π2 )(`−s)(` − s)G−1 f (s, x(s))ds.

(3.17)

Consequently, the operator T is unambiguously defined. For arbitrary x1, x2 ∈ C1−σ[L,R] and ` ∈ L,
the following expression holds:

∣∣∣((T x1) (`) − (T x2) (`)) (` − c)1−σ
∣∣∣

≤
|Λ|

sin(r π2 )GΓ(G)

∣∣∣e− cot(r π2 )(`−c)
∣∣∣ m∑

i=1

bi

∫ τi

c

∣∣∣e− cot(r π2 )(τi−s)
∣∣∣ (τi − s)G−1

| f (s, x1(s)) − f (s, x2(s))| ds

+
1

sin(r π2 )GΓ(G)

∫ `

c

∣∣∣e− cot(r π2 )(`−s)
∣∣∣ (` − s)G−1 | f (s, x1(s)) − f (s, x2(s))| ds.

(3.18)
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Since
∣∣∣e− cot(r π2 )`

∣∣∣ < 1, we get∣∣∣((T x1) (`) − (T x2) (`)) (` − c)1−σ
∣∣∣

≤
K|Λ|

sin(r π2 )GΓ(G)

 m∑
i=1

bi

∫ τi

c+

(τi − s)G−1 (s − c)σ−1ds

 ‖x1 − x2‖C1−σ[L,R]

+
K

sin(r π2 )GΓ(G)
(` − c)1−σ

(∫ `

c+

(` − s)G−1(s − c)σ−1ds
)
‖x1 − x2‖C1−σ[L,R]

≤
K|Λ|

sin(r π2 )GΓ(G)
B(σ,G)

m∑
i=1

ci (τi − c)G+σ−1
‖x1 − x2‖C1−σ[L,R]

+
K

sin(r π2 )GΓ(G)
(d − c)GB(σ,G) ‖x1 − x2‖C1−σ[L,R] .

(3.19)

Therefore,

‖(T x1) − (T x2)‖C1−σ[L,R]

≤
K

sin(r π2 )GΓ(G)
B(σ,G)

|Λ| m∑
i=1

ci (τi − c)G+σ−1 + (d − c)G

 ‖x1 − x2‖C1−σ[L,R]

≤ Kψ ‖x1 − x2‖C1−σ[L,R] .

(3.20)

Therefore, by considering (3.16), it can be deduced that T behaves as a contraction map. As a
result of the Banach contraction principle, it can be firmly stated that Eq (1.1) possesses a unique
solution. �

3.3. Existence

We utilize the Kransnoselskii’s fixed point theorem [44] to establish the existence of solutions for
the given Eq (1.1).

(H4) Suppose that K∆ < 1, where

∆ =
B(σ,G)

sin(r π2 )GΓ(G)
|Λ|

m∑
i=1

ci (τi − c)G+σ−1 . (3.21)

Theorem 3.13. Assume that the conditions (H1) , (H2), and (H4) are fulfilled, let 0 < G < 1, 0 ≤ q ≤ 1,
and σ = G + q −Gq. Then problem (1.1) possesses at least one solution within the space Cσ1−σ[L,R].

Proof. In Step 1, we have ‖η‖C1−σ[L,R] = sup`∈L

∣∣∣(` − c)1−ση(`)
∣∣∣ and choose κ ≥ M‖η‖C1−σ[L,R], where

M =
B(σ,G)

sin(r π2 )GΓ(G)

|Λ| m∑
i=1

ci (τi − c)G+σ−1 + (d − c)G

 . (3.22)

Let us Bκ =
{
x ∈ C[L,R] : ‖x‖C1−σ[L,R] ≤ κ

}
and the operators T1 and T2 on Bk by

T1x(`) =
1

sin(r π2 )GΓ(G)

∫ `

c
e− cot(r π2 )(`−s)(` − s)G−1 f (s, x(s))ds,

T2x(`) =
Λ

sin(r π2 )GΓ(G)
e− cot(r π2 )(`−c)(` − c)σ−1

m∑
i=1

ci

∫ τi

c
e− cot(r π2 )(τi−s) (τi − s)G−1 f (s, x(s))ds,
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for each ` ∈ [c, d], the following inequality holds true. Now, considering any x and y belonging to the
set Bk, we have the following:∣∣∣(T1x(`) + T2y(`)) (` − c)1−σ

∣∣∣
≤

(` − c)1−σ

sin(r π2 )GΓ(G)

∫ `

c
(` − s)G−1(s − c)σ−1

∣∣∣ f (s, x(s))(s − c)1−σ
∣∣∣ ds

+
|Λ|

sin(r π2 )GΓ(G)

m∑
i=1

ci

∫ τi

c
(τi − s)G−1 (τi − c)σ−1

∣∣∣ f (s, y(s)) (τi − c)1−σ
∣∣∣ ds

≤ ‖η‖

 B(σ,G)
sin(r π2 )GΓ(G)

|Λ|

m∑
i=1

ci (τi − c)G+σ−1 +
B(σ,G)

sin(r π2 )GΓ(G)
(d − c)G


≤ ‖η‖M

≤ κ < ∞.

(3.23)

This implies that T1x + T2y ∈ Bκ.
In Step 2, we demonstrate that the operator T2 is a contraction.
Now, let x, y ∈ C1−σ[L,R] and ` ∈ L, then∣∣∣(T2x(`) − T2y(`)) (` − c)1−σ

∣∣∣
=

∣∣∣∣∣∣∣Λe− cot(r π2 )(`−c)
m∑

i=1

ciI
G,r
c+ ( f (s, x(s)) − f (s, y(s))) (τi)

∣∣∣∣∣∣∣
≤

K|Λ|
sin(r π2 )GΓ(G)

m∑
i=1

ci

∫ τi

c
(τi − s)G−1 (τi − s)σ−1

|x(s) − y(s)|ds

≤

 K|Λ|
sin(r π2 )GΓ(G)

B(σ,G)
m∑

i=1

ci (τi − c)G+σ−1

 ‖x − y‖C1−σ[L,R]

≤ K∆‖x − y‖C1−σ[L,R].

(3.24)

Consequently, it can be deduced from (H4) that T2 is a contraction.
In Step 3, we establish the continuity and compactness of the operator T1.
Evidently, the operator T1 is continuous since the function f is continuous. Therefore, for any

x ∈ C1−σ[L,R], we obtain:

‖T1x‖ ≤ ‖η‖
B(σ,G)

sin(r π2 )GΓ(G)
(d − c)G < ∞.

This shows that the operator T1 is uniformly bounded on Bk. Thus, it remains to show that T1 is
compact. Let sup(`,x)∈L×BR | f (`, x(`))| = δ < ∞ and for any c < τ1 < τ2 < d,∣∣∣(τ2 − c)1−σ (T1x (τ2)) + (τ1 − c)1−σ (T1x (τ1))

∣∣∣
=|

(τ2 − c)1−σ

sin(r π2 )GΓ(G)

∫ τ2

c
e− cot(r π2 )(τ2−s) (τ2 − s)G−1 f (s, x(s))ds

−
(τ1 − c)1−σ

sin(r π2 )GΓ(G)

∫ τ1

c
e− cot(r π2 )(τ1−s) (τ1 − s)G−1 f (s, x(s))ds |
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≤
1

sin(r π2 )GΓ(G)

∫ τ2

c

[
(τ2 − c)1−σ (τ2 − s)G−1

− (τ1 − c)1−σ (τ1 − s)G−1
]
| f (s, x(s))|ds

+
1

sin(r π2 )GΓ(G)

∫ τ2

τ1

(τ2 − c)1−σ (τ2 − s)G−1
| f (s, x(s))|ds −→ 0, as τ2 → τ1. (3.25)

By applying the Arzelà-Ascoli theorem [45], we can conclude that the operator T1 is compact on
Bκ. Consequently, Eq (1.1) possesses at least one solution. �

3.4. Examples

Example 3.14. Let us consider a fractional differential equation that incorporates the Hilfer cotangent
fractional derivative in the following manner: D

2
3 ,

1
2 ,1

0+ x(`) = 1
25e2`

(
sin2`

1+|x(`)|

)
+ 3

2 , ` ∈ L = [0, 2],
I

1−σ,1
0+ x(0) = 2x

(
2
5

)
.

(3.26)

By comparing (1.1) with (3.26), we get G = 2
3 , q = 1

2 , r = 1, σ = 5
6 , c = 0, d = 2, c1 = 2 since

m = 1, τ1 = 2
5 ∈ L and

f (`, u) =
1

25e2`

(
sin2`
1 + |u|

)
+

3
2
, ` ∈ L, u ∈ R+.

Consequently, the function f is continuous, and for any u, v ∈ R+ and ` ∈ L, the inequality | f (`, u)−
f (`, v)| ≤ 1

25 |u − v| holds. Hence, we can affirm that both conditions (H1) and (H3) are satisfied with
K = 1

25 . Through straightforward calculations, we obtain

|Λ| = 0.8325014764,

and
ψ = 3.363129576.

These values imply that Kψ = 0.1345251830 < 1. As a result, all the requirements of Theorem 3.12
are fulfilled, leading to the conclusion that problem (1.1) possesses a unique solution on L.

Similarly, we determine that
∆ = 1.341257222 > 0,

and
K∆ = 0.05365028888 < 1.

Since all the conditions of Theorem 3.13 are met, we can infer that problem (1.1) has at least one
solution on L.

Example 3.15. Let’s examine the Hilfer cotangent fractional differential equation given by the
following expression:  D

2
3 ,

1
2 ,

1
5

0+ x(`) = 1
25e2`

(
sin2`

1+|x(`)|

)
+ 3

2 , ` ∈ L = [0, 2],

I
1−σ, 1

5
0+ x(0) = 2x

(
2
5

)
.

(3.27)
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By following the same procedure as demonstrated in Example 3.14, we obtain the values

|Λ| = 1.444007299,

ψ = 9.513382270,

and
∆ = 5.089887776.

Consequently, we have
Kψ = 0.3805352908 < 1.

Based on Theorem 3.12, it can be concluded that problem (1.1) possesses a unique solution on L.
Moreover, we have

K∆ = 0.2035955110 < 1,

which implies, according to Theorem 3.13, that problem (1.1) has at least one solution on L.

4. Conclusions

In the present study, we introduced the Hilfer cotangent fractional derivatives within the framework
of fractional calculus. Leveraging well-established theorems from fixed point theory, we were able
to establish the existence and uniqueness of solutions for a particular class of fractional initial
value problems incorporating the Hilfer cotangent fractional derivative. To illustrate the efficacy of
our findings, we provided illustrative examples. Notably, the Hilfer cotangent fractional derivative
encompasses three parameters, offering greater flexibility. This expanded parameter space becomes
particularly valuable when considering stability and other qualitative characteristics of differential
equations involving fractional derivatives.
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