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1. Introduction

Statistical convergence, built on the density of natural numbers, was independently defined by
Steinhaus [1] and Fast [2] in 1951. Statistical convergence as a summability method was also
proposed by Schoenberg [3]. Since its introduction, statistical convergence has been applied in a great
diversity of fields, including summability theory [4], locally convex sequence spaces [5], trigonometric
series [6], number theory [7] and measurement theory [8].

Statistical convergence is associated with the natural density of positive integer sets, while sets with
a natural density of zero represent an ideal. Building on this idea, Kostryko et al. [9] introduced “ideal
convergence” in 2000, which generalizes statistical convergence.

They have also investigated the closely related concept of I∗-convergence and the condition (AP).
Later, Dems [10] extended statistical Cauchy sequences [11] to ideals and proposed ideal Cauchy
(I-Cauchy) sequences. Nabiyev et al. [12] further introduced I∗-Cauchy sequences and analyzed the
relationship between current sequences and I-Cauchy sequences. In 2003, Mursaleen and Edely [13]
studied statistical convergence for double sequences. Moreover, Triphaty and Triphaty [14] coined and
characterized I-convergence and I-Cauchy sequences for double sequences. Afterward, Kumar [15]
developed I and I∗-convergence for double sequences, providing a more straightforward method to
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prove results for I and I∗-convergence. In 2008, Das et al. [16] presented I and I∗-convergence of
double sequences in a metric space by exemplifying the relationships between them. Subsequently,
some results on I-convergence of double sequences were presented in [17, 18].

Fuzzy sets were first introduced by Zadeh [19] and have since been utilized by many mathematicians
in topology and analysis. Fuzzy metric spaces (FMSs) extend the notion of metric spaces by
introducing degrees of membership or fuzziness of points. Kramosil and Michalek [20] and Kaleva
and Seikkala [21] were among the first to investigate FMSs. Building on Kramosil and Michalek’s [20]
work, George and Veeramani [22] redefined the concept of FMSs by utilizing a continuous t-norm and
obtained the Hausdorff topology of these spaces.

Recently, Mihet [23] has studied the concept of point convergence (p-convergence), a weaker
concept than ordinary convergence. Additionally, Gregori et al. [24] proposed the concept of s-
convergence. Standard convergence (std-convergence) was presented by Morillas and Sapena [25].
Gregori and Miňana [26] have proposed strong convergence (st-convergence), which is a stronger
concept than ordinary convergence. Statistical convergence and statistical Cauchy sequences in FMSs
were proposed by Li et al. [27] and they have examined some of their basic properties. Moreover,
Savaş [28] has introduced statistical convergence for double sequences in FMSs.

Inspired by previous research, we focus on ideal convergence for double sequences in FMSs. We
propose I- and I∗-convergence and I- and I∗-Cauchy sequences for double sequences in FMSs and
investigate some of their basic properties. We define I-limit points and I-cluster points of a double
sequence in FMSs.

Our study is significant in that it provides a new approach to studying the convergence behavior of
double sequences in FMSs. Ideal convergence has not been analyzed in this context, and our research
contributes to filling this gap in the literature. Moreover, our results can be useful for applications in
various fields.

The present paper can be summarized as follows: In Section 2 of our article, we present basic
definitions and properties that are essential for the following sections. We also provide necessary
background information about FMSs and the notion of convergence. In Section 3, we define I- and
I∗-convergence for double sequences in FMSs, and I- and I∗-Cauchy sequences. We investigate some
of their basic features, such as other types of convergence and their relations with Cauchy sequences.
In Section 4, we introduce I-limit points and I-cluster points of double sequences in FMSs. Finally,
in the concluding section, we summarize our findings and discuss the need for further research in this
area.

2. Preliminaries

This part thoroughly introduces the fundamental concepts, definitions and properties required to
understand FMSs and convergence fully.

Definition 2.1. [21] Let ◦ : [0, 1]2 → [0, 1] be a binary operation. We say that ◦ is a triangular norm
(t-norm) if it satisfies the following conditions:

(1) ◦ is both associative and commutative;
(2) t ◦ 1 = t for all t ∈ [0, 1];
(3) Whenever t1 ≤ t3 and t2 ≤ t4 for each t1, t2, t3, t4 ∈ [0, 1], it holds that t1 ◦ t3 ≤ t2 ◦ t4.
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Example 2.2. [19] According to the above definition, the following operators are a t-norm:

(1) σ ◦ τ = στ,
(2) σ ◦ τ = min{σ, τ}.

Definition 2.3. [20] Let ϑ be a fuzzy set on X2 × (0,∞), where X is an arbitrary set and ◦ be a
continuous t-norm. If the following requirements must be fulfilled for all an u, v > 0 and x1, x2, x3 ∈ X,
then ϑ is referred to as a fuzzy metric on X,

(1) ϑ(x1, x2, u) > 0;
(2) ϑ(x1, x2, u) = 1⇔ x1 = x2;
(3) ϑ(x1, x2, u) = ϑ(x2, x1, u);
(4) ϑ(x1, x3, u + v) ≥ ϑ(x1, x2, u) ◦ ϑ(x2, x3, v);
(5) The function ϑx1 x2 : (0,∞)→ [0, 1], defined by ϑx1 x2(u) = ϑ(x1, x2, u) is continuous.

The 3-tuple (X, ϑ, ◦) is called fuzzy metric space.

Example 2.4. [20] Consider the set X = R and define the binary operation ◦ as σ ◦ τ = στ.
Additionally, we define the fuzzy set ϑ as follows:

ϑ(x1, x2, u) =
[
exp

(
|x1 − x2|

u

)]−1

,∀x1, x2 ∈ X, u > 0.

Therefore, we can conclude that (X, ϑ, ◦) is an FMS.

Definition 2.5. [22] Let (X, ϑ, ◦) be an FMS. If a ∈ X, then the open ball centered at a with radius
ε, 0 < ε < 1 is the set of points x ∈ X contained in

Bεa(x) = {x ∈ X : ϑ(a, x, u) > 1 − ε}, u > 0.

Definition 2.6. [28] A double sequence (x jk) in X is said to be convergent to x0 ∈ X with respect to
fuzzy metric ϑ if, for all ε ∈ (0, 1) and u > 0, there exists Nε ∈ N such that j, k ≥ Nε implies

ϑ(x jk, x0, u) > 1 − ε

or equivalently
lim

j,k→∞
ϑ(x jk, x0, u) = 1

and is denoted by ϑ − lim
j,k→∞

x jk = x0 or x jk
ϑ
−→ x0 as j, k → ∞.

Definition 2.7. [13] Let E ⊆ N2 and Emn = {( j, k) ∈ E : j ≤ m and k ≤ n}. The set E is said to have
double natural density, denoted by δ2(E), is defined as:

δ2(E) = lim
m,n→∞

|Emn|

mn
,

if the limit exists. It can be observed that if the set E is finite, then δ2(E) = 0.
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Definition 2.8. [28] A double sequence (x jk) in X is referred to as statistically convergent to x0 ∈ X

with respect to fuzzy metric ϑ if, for all ε ∈ (0, 1) and u > 0,

δ2({( j, k) ∈ N2 : ϑ(x jk, x0, u) ≤ 1 − ε}) = 0

and is denoted by st2 − lim
j,k→∞

x jk = x0.

The definitions of ideal and filter are provided below to explain the main results regarding ideal
convergence. Then, the concepts needed in the sequel of the study are mentioned.

Definition 2.9. [16] Let X , ∅. An ideal on X is a collection of subsets of X such that
(a) The empty set ∅ is an element of I.
(b) IfU andV are set in I, then their unionU ∪V is also an element of I.
(c) IfU is a set in I andV is a subset of X such thatV ⊆ U, thenV is an element of I.
If X < I and I , ∅, then I is called a non-trivial ideal. Additionally, if I is a non-trivial ideal in X

and
{{x} : x ∈ X} ⊆ I,

then I is referred to as an admissible ideal.

In the current study, I2 denotes a non-trivial admissible ideal of N2.

Definition 2.10. [16] A strongly admissible ideal on I2 is a collection of subsets of N2 such that
(a) {r} × N ∈ I2,
(b) N × {r} ∈ I2.

For example, I0
2 = {P ⊆ N

2 : (∃l(P) ∈ N)( j, k ≥ l(P) ⇒ ( j, k) < P)} is a non-trivial strongly
admissible ideal. Any strongly admissible ideal is an admissible ideal.

Definition 2.11. [16] Let I2 ⊆ 2N
2

be an admissible ideal, (Pi) be a sequence of mutually disjoint sets
of I2 and (Ri) be a subset of N2. Then, I2 satisfies the condition (AP2) if, for all (Pi), there is a sequence
(Ri) such that, for all i ∈ N, Pi∆Ri ∈ I0

2 i.e., Pi∆Ri is included in limited quantities union of rows and
columns in N2 and R =

⋃
i

Ri ∈ I2. Here, ∆ denotes the symmetric difference. Note that Ri ∈ I2.

Definition 2.12. [16] Let X , ∅. A filter on X is a collection of subsets of X such that
(a) The empty set ∅ is not an element of F .
(b) IfU andV are sets in F , then their intersectionU ∩V is also an element of F .
(c) IfV is a set in F andU is a subset of X such thatV ⊆ U, thenU is an element of F .
Furthermore, let I2 be a non-trivial ideal. Then the collection F (I2) = {N2 \ S : S ∈ I2} is a filter on

N2 and is referred to as the filter associated with the ideal I2.

Proposition 2.13. [17] Let (Pi) be a countable collection of subsets of N2 such that (Pi) ∈ F (I2),
for all i, where F (I2) is a filter associated with a strongly admissible ideal I2 with the property (AP2).
Then, there exists a set P that belongs to the filter F (I2) and has the property that the set of elements
in P that do not belong to Pi is finite for every index i.

Definition 2.14. [16] Let I2 ⊂ 2N
2

be a non-trivial ideal. A double sequence (x jk) in a metric space

(X, ρ) is called ideal convergent (I2-convergent) to x0 ∈ X, written as I2 − lim
j,k→∞

x jk = x0 or x jk
I2
−→ x0 as

j, k → ∞ if, for all ε > 0,
A(ε) = {( j, k) ∈ N2 : ρ(x jk, x0) ≥ ε} ∈ I2.
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If we choose I2 =
{
S ⊆ N2 : S is of the form (N × A) ∪ (A × N)

}
, where A is a finite subset of N,

then I2-convergent coincides with ordinary convergence of double sequences.
If we choose I2 =

{
S ⊆ N2 : δ2(S ) = 0

}
, then I2-convergent is equivalent to the statistical

convergence of double sequences.

Definition 2.15. [16] A double sequence (x jk) in a metric space (X, ρ) is referred to as I∗2-convergent
to x0 ∈ X, where I2 ⊂ 2N

2
be a non-trivial ideal if exists a set

H = {( jt, kt) ∈ N2 : j1 < j2 < . . . < jt < . . . ; k1 < k2 < . . . < kt < . . .} ∈ F (I2)

such that

lim
jt ,kt→∞

ρ(x jtkt , x0) = 0.

We abbreviate it as I∗2 − lim
j,k→∞

x jk = x0 or x jk
I∗2
−→ x0.

Definition 2.16. [10] A double sequence (x jk) in a metric space (X, ρ) is referred to as an ideal Cauchy
(I2-Cauchy) sequence in X, where I2 ⊆ 2N

2
be a strongly admissible ideal if, for all ε > 0, there exists

an (p, q) ∈ N2 such that

A(ε) = {( j, k) ∈ N2 : ρ(x jk, xpq) ≥ ε} ∈ I2.

Definition 2.17. [17] Let I2 be a strongly admissible ideal in N2. A double sequence (x jk) in a metric
space (X, ρ) is called an I∗2-Cauchy sequence in X if there exists a set

H = {( jt, kt) ∈ N2 : j1 < j2 < . . . < jt < . . . ; k1 < k2 < . . . < kt . . .} ∈ F (I2)

such that

lim
jt ,kt ,pt ,qt→∞

( jt ,kt),(pt ,qt)∈H

ρ(x jtkt , xptqt) = 0.

Definition 2.18. [18] Let (X, ρ) be a metric space and (x jk) be a double sequence in X. Then, an
element x0 ∈ X is referred to as an I2-limit point of (x jk) if there is a set

H = {( jt, kt) ∈ N2 : j1 < j2 < . . . < jt < . . . ; k1 < k2 < . . . < kt < . . .} < I2,

and

lim
jt ,kt→∞
( jt ,kt)∈H

ρ(x jtkt , x0) = 0.

Definition 2.19. [18] Let (X, ρ) be a metric space and (x jk) be a double sequence in X. Then, an
element x0 ∈ X is called an I2-cluster point of (x jk) if, for all ε > 0, {( j, k) ∈ N2 : ρ(x jk, x0) ≤ ε} < I2.

The set of all I2-limit points and I2-cluster points of a double sequence x are denoted by I2(Λx) and
I2(Γx), respectively.
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3. ϑ(I2)-convergence and ϑ(I2)-Cauchy sequence

In this chapter, we define the notions of ideal convergence and ideal Cauchy sequences for double
sequences in FMSs and discuss some of their basic properties. Throughout this chapter, for brevity, we
shall often write X instead of “(X, ϑ, ◦)” and (x jk) instead of a “double sequence (x jk)”.

Definition 3.1. Let I2 ⊆ 2N
2

be a non-trivial ideal. A sequence (x jk) is referred to as ϑ(I2)-convergent
to x0 ∈ X if, for all u > 0 and ε ∈ (0, 1),

A(u, ε) = {( j, k) ∈ N2 : ϑ(x jk, x0, u) ≤ 1 − ε} ∈ I2,

and is denoted by ϑ(I2)− lim
j,k→∞

x jk = x0 or x jk
ϑ(I2)
−−−→ x0 as j, k → ∞. The number x0 is called the I2-limit

of (x jk).

Example 3.2. If we choose I2 = I0 and I2 = Iδ = {A ⊆ N2 : δ2(A) = 0}, then I2-convergence is the
same as ordinary convergence and statistical convergence, respectively.

The following theorem presents, well-known in ordinary convergence, which gives whether the
following expressions satisfy at ideal convergence:

I. Every constant double sequence converges to yourself.
II. The limit of converged double sequences can be determined by uniquely.
III. Every subsequence of the converged double sequence is convergent and has the same limit.

Theorem 3.3. Let I2 ⊆ 2N
2
.

(1) The I2-convergence satisfies (I) and (II).
(2) Every subsequence of an I2-convergent sequence is not I2-convergent if I2 is a strongly admissible

ideal and contains an infinite set.

Proof.

(1) It is clear that ϑ(I2)-convergence satisfies proposition (I). We prove that it satisfies (II) as well.
Suppose that ϑ(I2) − lim

j,k→∞
x jk = x0, ϑ(I2) − lim

j,k→∞
x jk = x1 and x0 , x1. Then, by assumption and

Remark 2.12, the sets
N2 \ A = {( j, k) ∈ N2 : ϑ(x jk, x0, u) > 1 − ε}

and
N2 \ B = {( j, k) ∈ N2 : ϑ(x jk, x1, u) > 1 − ε}

are elements of F (I2). Hence, the set K = (N2 \ A) ∩ (N2 \ B) is an element of F (I2). Choose
u > 0 and ε = 1

n , (n = 2, 3, . . .). Thus, there exists a (t, s) ∈ K such that

ϑ(xts, x0, u) > 1 − ε and ϑ(xts, x1, u) > 1 − ε.

From this ϑ(x0, x1, u) = 1 which is a contradiction to x0 , x1.
(2) Suppose that an infinite set A = {( jt, kt) ∈ N2 : j1 < j2 < . . . < jt < . . . ; k1 < k2 < . . . < kt <

. . .} ⊆ N2 belongs to I2. We put

N2 \ A = {(pt, qt) ∈ N2 : p1 < p2 < . . . < pt < . . . ; q1 < q2 < . . . < qt < . . .}.
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The set N2 \ A is infinite because in the opposite case N2 would belong to I2. Define the sequence
(x jk) as follows

x jtkt = x0, xptqt = x1 (t = 1, 2, . . .).

Obviously ϑ(I2) − lim
j,k→∞

x jk = x1. In addition, the subsequence y = (x jtkt) of (x jk) is stationary

and thus ϑ(I2) − lim y = x0 (see proposition (I)). Hence, I2-convergence does not satisfy the
proposition (III).

□

Proposition 3.4. Let I2 be a non-trivial ideal given that{
S ⊆ N2 : r ∈ N, S = N × {r} ∨ S = {r} × N

}
⊆ I2,

then lim
j,k→∞

ϑ(x jk, x0, u) = 1 implies ϑ(I2) − lim
j,k→∞

x jk = x0.

Proof. Suppose that I2 be a non-trivial ideal such that{
S ⊆ N2 : r ∈ N, S = N × {r} ∨ S = {r} × N

}
⊆ I2,

and lim
j,k→∞

ϑ(x jk, x0, u) = 1. Let u > 0 and ε ∈ (0, 1) be given. Since (x jk) is convergent to x0 ∈ X, then

there exists a Nε ∈ N such that ϑ(x jk, x0, u) > 1 − ε whenever j, k ≥ Nε. Hence, there exists a set

P =
{
( j, k) ∈ N2 : ϑ(x jk, x0, u) ≤ 1 − ε

}
⊂ U ∪V,

whereU = N × {1, 2, 3 . . .Nε − 1} andV = {1, 2, 3 . . .Nε − 1} × N. From the hypothesisU ∪V ∈ I2.
Since I2 is an ideal, then P ∈ I2. Consequently, ϑ(I2) − lim

j,k→∞
x jk = x0. □

Definition 3.5. A sequence (x jk) is referred to as Cauchy sequence in X if, for all u > 0 and ε ∈ (0, 1),
exists an integer Nε ∈ N such that

ϑ(x jk, xpq, u) > 1 − ε,

whenever j, k, p, q ≥ Nε or equivalently

lim
j,k,p,q→∞

ϑ(x jk, xpq, u) = 1.

Definition 3.6. A sequence (x jk) is said to be ϑ(I2)-Cauchy sequence in X, where I2 is a strongly
admissible ideal if, for all u > 0 and ε ∈ (0, 1), there exists an integer (p, q) ∈ N2 such that

A(u, ε) = {( j, k) ∈ N2 : ϑ(x jk, xpq, u) ≤ 1 − ε} ∈ I2.

Proposition 3.7. Let I2 be a strongly admissible ideal in N2. If (x jk) is a Cauchy sequence in X, then it
is a ϑ(I2)-Cauchy sequence.

Proof. Let u > 0 and ε ∈ (0, 1) be given. Since (x jk) is Cauchy sequence in X, for all j, k, p, q ≥ Nε,
there exists an integer Nε ∈ N such that ϑ(x jk, xpq, u) > 1 − ε. Hence, there exists a set

P =
{
( j, k) ∈ N2 : ϑ(x jk, xpq, u) ≤ 1 − ε

}
⊂ U ∪V,

where U = N × {1, 2, 3 . . .Nε − 1} and V = {1, 2, 3 . . .Nε − 1} × N. Since I2 is a strongly admissible
ideal,U ∪V ∈ I2. Therefore P ∈ I2. Consequently, (x jk) is a ϑ(I2)-Cauchy sequence in X. □
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Theorem 3.8. For any double sequence, ϑ(I2)-convergent implies ϑ(I2)-Cauchy sequence if I2 is a
strongly admissible ideal in N2.

Proof. Let ϑ(I2) − lim
j,k→∞

x jk = x0. Then, for all u > 0 and ε ∈ (0, 1), we have

A(u, ε) = {( j, k) ∈ N2 : ϑ(x jk, x0, u) ≤ 1 − ε} ∈ I2.

Because of the definition of a strongly admissible ideal, there exists a (p, q) < A(u, ε). Assume that

B = {( j, k) ∈ N2 : ϑ(x jk, xpq, u) ≤ δ(ε)}.

Considering the following inequality

ϑ(x jk, xpq, u) ≥ ϑ
(
x jk, x0,

u
2

)
◦ ϑ

(
xpq, x0,

u
2

)
,

we observe that if ( j, k) ∈ B, then

δ(ε) ≥ (1 − ε) ◦ (1 − ε) ≥ ϑ
(
x jk, x0,

u
2

)
◦ ϑ

(
xpq, x0,

u
2

)
.

Moreover, we have ϑ(xpq, x0, u) > 1 − ε because (p, q) < A(u, ε). Hence, ϑ(x jk, x0, u) ≤ 1 − ε, then
( j, k) ∈ A(u, ε). In this case, for all u > 0 and ε ∈ (0, 1), B ⊆ A(u, ε) ∈ I2. Consequently, (x jk) is a
ϑ(I2)-Cauchy sequence. □

Definition 3.9. A sequence (x jk) is referred to as ϑ(I∗2)-convergent to x0 ∈ X if there exists a set

H = {( jt, kt) ∈ N2 : j1 < j2 < . . . < jt < . . . ; k1 < k2 < . . . < kt < . . .} ∈ F (I2)

such that
lim

jt ,kt→∞
x jtkt = x0, (3.1)

and is denoted by ϑ(I∗2) − lim
j,k→∞

x jk = x0 or x jk
ϑ(I∗2)
−−−→ x0 as j, k → ∞.

Theorem 3.10. ϑ(I∗2) − lim
j,k→∞

x jk = x0 implies ϑ(I2) − lim
j,k→∞

x jk = x0 that if I2 is a strongly admissible

ideal in N2.

Proof. By hypothesis, there is a set K ∈ I2 such that (3.1) holds, where

H = N2 \ K = {( jt, kt) ∈ N2 : j1 < j2 < . . . < jt < . . . ; k1 < k2 < . . . < kt < . . .}.

Let u > 0 and ε ∈ (0, 1). Then, there exists an integer n0 ∈ N such that ϑ(x jpkp , x0, u) > 1 − ε for
jp, kp > n0. Hence,

A(u, ε) =
{
( jt, kt) ∈ N2 : ϑ

(
x jtkt , x0, u

)
≤ 1 − ε

}
⊂ K ∪ (H ∩ ((B × N) ∪ (N × B))) ,

where B = {1, 2, . . . , (n0 − 1)}. Since K∪ (H ∩ ((B × N) ∪ (N × B))) ∈ I2, then A(u, ε) ∈ I2. As a result,
ϑ(I2) − lim

j,k→∞
x jk = x0. □
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The following Example 3.11 states that the converse of Theorem 3.10 does not always hold.

Example 3.11. Let (R, |.|) be a metric space and x ◦ y = xy, for all x, y ∈ [0, 1]. If, for every x, y ∈ R
and s > 0,

ϑ(x, y, u) =
u

u + |x − y|
,

then (R, ϑ, ◦) is an FMS. Let ∆ j = {(m, n) : min{m, n} ∈ K j} such that K j = {2 j−1(2s − 1) : s = 1, 2, ...}
be a decomposition of N. Besides, {∆ j} j∈N is a decomposition of N2 and

I2 := {A ⊆ N2 : A ⊂ ∆1 ∪ ∆2 ∪ ... ∪ ∆ j, j = 1, 2, ...}.

is a strongly admissible ideal. We define a sequence (xst) by

xst :=

 1
j , (s, t) ∈ ∆ j

0, N2\∆ j
.

On the other hand,
A(ε,u) = {(s, t) : ϑ(xst, 0, u) ≤ 1 − ε} ∈ I2.

Hence, ϑ(I2) − lim
s,t→∞

xst = 0. However, this sequence does not ϑ(I∗2) convergent to zero.

Theorem 3.12. Let I2 be an admissible ideal, (x jk) be a sequence in X and x0 ∈ X.

(1) If the I2 ideal has the condition (AP2), then ϑ(I2) − lim
j,k→∞

x jk = x0 implies ϑ(I∗2) − lim
j,k→∞

x jk = x0.

(2) If X has at least one accumulation point and ϑ(I2) − lim
j,k→∞

x jk = x0 implies ϑ(I∗2) − lim
j,k→∞

x jk = x0,

then I2 has the property (AP2).

Proof.

(1) Let x jk
ϑ(I)
−−→ x0 and I2 satisfy the condition (AP2). Then, for all u > 0 and ε ∈ (0, 1) the set

A(u, ε) = {( j, k) ∈ N2 : ϑ(x jk, x0, u) ≤ 1 − ε} ∈ I2.

Put

P1 =

{
( j, k) ∈ N2 : ϑ(x jk, x0, u) ≤

1
2

}
,

Pt =

{
( j, k) ∈ N2 :

t − 1
t
< ϑ(x jk, x0, u) ≤

t
t + 1

}
t ≥ 2.

Obviously, Pt ∩ Ps = ∅ for t , s and Pt ∈ I2 (t = 1, 2, . . .). Since I2 satisfies (AP2), there exists
sets Rs ⊆ N

2 such that, for all s ∈ N, Ps∆Rs is contained in limited quantities union of rows and

columns in N2 and R =
∞⋃

s=1
Rs ∈ I2.

It suffices to prove that
lim

j,k→∞
( j,k)∈H

ϑ(x jk, x0, u) = 1, (3.2)

where H = N2 \ R.
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Let η ∈ (0, 1) and u > 0. Choose m ∈ N such that 1
m < η. Then,

{( j, k) ∈ N2 : ϑ(x jk, x0, u) ≤ 1 − η} ⊆
m+1⋃
s=1

Ps.

The set on the right hand side belongs to I2 by the additivity of I2. Since, for all s ∈ N, Ps∆Rs is
included in limited quantities union of rows and columns, there is an n0 ∈ N such that

m+1⋃
s=1

Rs ∩ {( j, k) ∈ N2 : j, k > n0} =

m+1⋃
s=1

Ps ∩ {( j, k) ∈ N2 : j, k > n0}.

If ( j, k) < R and j, k > n0, then ( j, k) <
m+1⋃
s=1

Rs. Hence, ( j, k) <
m+1⋃
s=1

Ps. However,

ϑ(x jk, x0, u) <
1

m + 1
< r.

Consequently, (3.2) holds.
(2) Suppose x0 ∈ X is an accumulation point of X. Then, there exists a sequence (yn) of distinct

elements of X such that yn , x0 for any n, lim
n→∞
ϑ(yn, x0, u) = 1. Let {P1, P2, . . .} be a disjoint

family of nonempty sets in I2. Define a sequence (x jk) in the following way: x jk = yn if ( j, k) ∈ Pt

and x jk = x0 if ( j, k) < Pt, for all t. Let η ∈ (0, 1) and u > 0. Choose n ∈ N such that 1
n < η. Then,

A(u, η) =
{
( j, k) ∈ N2 : ϑ(x jk, x0, u) ≤ 1 − η

}
⊂ P1 ∪ P2 · · · ∪ Pn.

Hence, A(u, η) ∈ I2 and ϑ(I2) − lim
j,k→∞

x jk = x0. By virtue of our assumption, we have

ϑ(I∗2) − lim
j,k→∞

x jk = x0. Therefore, there exists a set R ∈ I2 such that H = N2 \ R ∈ F (I2) and

lim
jn,kn→∞
( jn,kn)∈H

ϑ(x jnkn , x0, u) = 1. (3.3)

Put Rt = Pt ∩ R for t ∈ N. Then, Rt ∈ I2 for all t ∈ N. Moreover,
∞⋃

t=1
Rt = R ∩

∞⋃
t=1

Pt ⊂ R and

thus
∞⋃

t=1
Rt ∈ I2. Let t be a fixed element in N. Suppose the intersection Pt ∩ H is not contained in

the limited quantities union of rows and columns in N2. In that case, there must exist an infinite
sequence of elements {( jn, kn)} in H such that both jn and kn tend to infinity, and x jnkn = yt , x0 for
all n ∈ N. This contradicts (3.3). Therefore, Pt ∩ H should be included in the limited quantities
union of rows and columns in N2. Consequently, the set Pt∆Rt = Pt \ Rt = Pt \ R = Pt ∩ H is
also included in the limited quantities union of rows and columns. This proves that the ideal I2

satisfies property (AP2).

□

Theorem 3.13. Let I2 be a strongly admissible ideal in N2. If X has no accumulation point, then
ϑ(I2)-convergence coincides with ϑ(I∗2)-convergence.
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Proof. Let x0 ∈ X and x jk
ϑ(I2)
−−−→ x0. Thanks to Theorem 3.10, it suffices to prove that x jk

ϑ(I∗2)
−−−→ x0 as

j, k → ∞. Since X has no accumulation points, there exists u > 0 and ε ∈ (0, 1) such that

Bεx0
(x) = {x ∈ X : ϑ(x, x0, u) > 1 − ε} = {x0}.

From the assumption {( j, k) ∈ N2 : ϑ(x jk, x0, u) ≤ 1 − ε} ∈ I2. Hence,

{( j, k) ∈ N2 : ϑ(x jk, x0, u) > 1 − ε} = {( j, k) ∈ N2 : x jk = x0} ∈ F (I2)

and obviously x jk
ϑ(I∗2)
−−−→ x0. □

Theorem 3.14. Let I2 satisfy the condition (AP2) and x = (x jk) be a sequence in X. Then, the
assumptions below are equivalent:

(1) ϑ(I2) − lim
j,k→∞

x jk = x0;

(2) There exist y = (y jk), z = (z jk) in X such that x = y + z, lim
j,k→∞

ϑ(y jk, x0, u) = 1 and suppz ∈ I2,

where suppz = {( j, k) ∈ N2 : z jk , θX}.

Proof. Assume that ϑ(I2) − lim
j,k→∞

x jk = x0. In that case, by Theorem 3.12, there exists a set H ∈ F (I2),

H = {( jt, kt) ∈ N2 : j1 < j2 < . . . < jt < . . . ; k1 < k2 < . . . < kt < . . .} such that lim
jt ,kt→∞

ϑ(x jtkt , x0, u) = 1.

Let us define a sequence y = (y jk) in X such that

y jk :=

x jk, n ∈ H,

x0, n ∈ N \ H.
(3.4)

It is clear that lim
j,k→∞

ϑ(y jk, x0, u) = 1. Further, let z jk = x jk − y jk, ( j, k) ∈ N2. We have {( jt, kt) ∈ N2 :

z jtkt , 0} ∈ I2, because we have

suppz = {( jt, kt) ∈ N2 : x jk , y jk} ⊂ N
2 \ H ∈ I2.

In addition, suppz ∈ I2 and by (3.4), we write x = y + z.
Now, let y = (y jk) and z = (z jk) be two sequences in X. This sequences satisfy x = y + z,

lim
j,k→∞

ϑ(y jk, x0, u) = 1 and suppz ∈ I2. We prove that

ϑ(I2) − lim
j,k→∞

x jk = x0. (3.5)

Assume that H = {( jt, kt) ∈ N2 : z jtkt = θX} ⊂ N
2. We have H ∈ F (I2), because

suppz = {( jt, kt) ∈ N2 : z jtkt , θX} ∈ I2.

Hence, x jk = y jk if ( j, k) ∈ H. Therefore, we achieve that there exists a set

H = {( jt, kt) ∈ N2 : j1 < j2 < . . . < jt < . . . ; k1 < k2 < . . . < kt < . . .} ∈ F (I2)

such that
lim

jt ,kt→∞
ϑ(x jtkt , x0, u) = 1.

By Theorem 3.12, (3.5) is hold. □
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Definition 3.15. Let I2 be a strongly admissible ideal on N2. If exists a set

H = {( jt, kt) ∈ N2 : j1 < j2 < . . . < jt < . . . ; k1 < k2 < . . . < kt < . . .} ∈ F (I2)

such that
lim

jt ,kt ,pt ,qt→∞
ϑ(x jtkt , xptqt , u) = 1, (3.6)

then a sequence (x jk) in X is referred to as ϑ(I∗2)-Cauchy sequence.

Theorem 3.16. Let I2 be a strongly admissible ideal on N2. If a sequence (x jk) in X is a ϑ(I∗2)-Cauchy
sequence, then it is a ϑ(I2)-Cauchy.

Proof. Assume that (x jk) be an ϑ(I∗2)-Cauchy sequence. In that case, there exists a set

H = {( jt, kt) ∈ N2 : j1 < j2 < . . . < jt < . . . ; k1 < k2 < . . . < kt < . . .} ∈ F (I2)

such that lim
jt ,kt ,pt ,qt→∞

ϑ(x jtkt , xptqt , u) = 1. Hence, there exists a positive integer n0 such that for

jt, kt, pt, qt > n0 implies ϑ(x jtkt , xptqt , u) > 1 − ε , where u > 0 and ε ∈ (0, 1). In other words,

A(u, ε) =
{
( jp, kp) ∈ N2 : ϑ

(
x jpkp , xptqt , u

)
≤ 1 − ε

}
⊂ K ∪ (H ∩ ((B × N) ∪ (N × B))) ,

where B = {1, 2, . . . , (n0 − 1)}. Since K ∪ (H ∩ ((B × N) ∪ (N × B))) ∈ I2, then A(u, ε) ∈ I2.
Consequently, the sequence (x jk) is a ϑ(I2)-Cauchy. □

Theorem 3.17. Let I2 be a strongly admissible ideal on N2. If the I2 ideal has the condition (AP2),
then ϑ(I2)-Cauchy sequence and ϑ(I∗2)-Cauchy sequence coincide.

Proof. In Theorem (3.16), it was shown that while the (x jk) sequence is the ϑ(I∗2)-Cauchy sequence, it is
the ϑ(I2)-Cauchy sequence without requiring the (AP2) condition. Therefore, if the I2 ideal satisfies the
(AP2) condition, showing that the ϑ(I2)-Cauchy sequence is the ϑ(I∗2)-Cauchy sequence will complete
the proof. Now, assume that (x jk) be a ϑ(I2)-Cauchy sequence in X. Then, for all ε ∈ (0, 1) and u > 0,
there exists (p(ε), q(ε)) ∈ N2 such that

A(u, ε) =
{
( j, k) ∈ N2 : ϑ

(
x jk, xpq, u

)
≤ 1 − ε

}
∈ I2.

Let

Ps =

{
( j, k) ∈ N2 : ϑ

(
x jk, xpsqs , u

)
>

s − 1
s

}
; (s = 1, 2, . . .),

where ps = p( s−1
s ), qs = q( s−1

s ). It is evident that Ps ∈ F (I2) for s = 1, 2, . . .. Since I2 satisfy the
property (AP2), according to Proposition (2.13), there exists a set P such that P ∈ F (I2) and has the
property that the set of elements in P that do not belong to Ps is a limited quantity for every index s.

Let ε ∈ (0, 1), u > 0 and m ∈ N such that m > 1
ε
. If ( j, k), (p, q) ∈ P, then P \ Ps is a limited

quantities set, implying that there exists a n = n(m) such that, for all j, k, p, q > n(m), ( j, k), (p, q) ∈ Ps.

ϑ
(
x jk, xpmqm , u

)
>

m − 1
m

and ϑ
(
xpq, xpmqm , u

)
>

m − 1
m
.
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Hence, it follows that

ϑ
(
x jk, xpq, u

)
≥ ϑ

(
x jk, xpmqm , u

)
◦ ϑ

(
xpq, xpmqm , u

)
>

(
m − 1

m

)
◦

(
m − 1

m

)
= δ(ε),

for all j, k, p, q > n(m). Thus, for all ε ∈ (0, 1) and u > 0, there exists n = n(ε) such that, for
j, k, p, q > n(ε) and ( j, k), (p, q) ∈ P,

ϑ
(
x jk, xpq, u

)
> 1 − ε,

i.e., the sequence (x jk) is a ϑ(I∗2)-Cauchy sequence. □

4. ϑ(I2)-limit points and ϑ(I2)-cluster points

In the current part, we characterize ϑ(I2)-limit points and ϑ(I2)-cluster points of a double sequence
in FMSs. Moreover, we analyze the connection between the concept mentioned earlier and study that
the set of ϑ(I2)-cluster points are closed.

Definition 4.1. Let I2 be a strongly admissible ideal on N2 and (x jk) be a sequence in X. An element
x0 ∈ X is referred to as an ϑ(I2)-limit point of sequence (x jk), if there exists a set

H = {( jt, kt) ∈ N2 : j1 < j2 < . . . < jt < . . . ; k1 < k2 < . . . < kt < . . .}

such that
H < I2 and lim

jt ,kt→∞
( jt ,kt)∈H

ϑ(x jtkt , x0, u) = 1.

Definition 4.2. Let I2 be a strongly admissible ideal on N2 and (x jk) be a sequence in X. An element
x0 ∈ X is called an ϑ(I2)-cluster point of (x jk) if, for all u > 0 and ε ∈ (0, 1),

{( j, k) ∈ N2 : ϑ(x jk, x0, u) ≤ 1 − ε} < I2.

ϑ(I2)(Λx)2 and ϑ(I2)(Γx)2 denote the set of all ϑ(I2)-limit points and ϑ(I2)-cluster points of a
sequence x = (x jk), respectively.

Proposition 4.3. Let (x jk) be a sequence in X and I2 be a strongly admissible ideal on N2. Then,

ϑ(I2)(Λx)2 ⊆ ϑ(I2)(Γx)2.

Proof. Let x0 ∈ ϑ(I2)(Λx)2, then there exists a set

H = { j1 < j2 < . . . < jt < . . . ; k1 < k2 < . . . < kt < . . .} < I2

such that
lim

jt ,kt→∞
( jt ,kt)∈H

ϑ(x jtkt , x0, u) = 1. (4.1)

Let u > 0 and ε ∈ (0, 1). According to (4.1), there exists a Nε ∈ N such that for j, k > Nε implies
ϑ(x jk, x0, u) > 1 − ε. Hence,

H \ { j1 < j2 < . . . < jNε; k1 < k2 < . . . < kNε} ⊂ {( j, k) ∈ N2 : ϑ(x jk, x0, u) > 1 − ε}

and thus {( j, k) ∈ N2 : ϑ(x jk, x0, u) > 1 − ε} < I2 which means that x0 ∈ ϑ(I2)(Γx)2. □
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Theorem 4.4. Let (x jk) be a sequence in X. Then, the set ϑ(I2)(Γx)2 is closed if I2 is a strongly
admissible ideal on N2.

Proof. Let y ∈ ϑ(I2)(Γx)2, u > 0 and ε ∈ (0, 1). Then, there exists an x0 ∈ Bεy(x) ∩ ϑ(I2)(Γx)2, where
Bεy(x) = {x ∈ X : ϑ(y, x, u) > 1 − ε}. Suppose that δ ∈ (0, 1) such that

Bδx0
(x) ⊂ Bεy(x).

Hence,
{( j, k) ∈ N2 : ϑ(x0, x jk, u) > 1 − δ} ⊂ {( j, k) ∈ N2 : ϑ(y, x jk, u) > 1 − ε}.

Consequently, {( j, k) ∈ N2 : ϑ(y, x jk, u) > 1 − ε} < I2 and y ∈ ϑ(I2)(Γx)2. □

5. Conclusions

We showed the ideal convergence of double sequences using the concept of fuzzy metric space in the
sense of George and Veeramani [22]. Besides, we introduced the ϑ(I∗)-convergent of double sequences
and ϑ(I∗)-Cauchy sequence with regards to fuzzy metric ϑ and discussed the relations between them.
In addition, we proved that ϑ(I2)-convergence and ϑ(I∗2)-convergence are equivalent for an I2 ideal with
the condition (AP2). Lastly, we defined ϑ(I2)-limit and ϑ(I2)-cluster points of a double sequence and
showed every ϑ(I2)-limit point to be a ϑ(I2)-cluster point.
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