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Abstract: In this paper, the circular system of Riccati type complex difference equations of the form

u( j)
n+1 =

a ju
( j−1)
n + b j

c ju
( j−1)
n + d j

, n = 0, 1, 2, · · · , j = 1, 2, · · · , k,

where u(0)
n := u(k)

n for all n, is investigated. First, the forbidden set of the equation is given. Then the
solvability of the system is examined and the expression of the solutions, given in terms of their initial
values. Next, the asymptotic behaviour of the solutions is studied. Finally, in case of negative Riccati
real numbers

R j :=
a jd j − b jc j

[a j + d j]2 , j ∈ 1, k,

it is shown that there exists a unique positive fixed point which attracts all solutions starting from
positive states.
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1. Introduction

In the Classroom Notes section of American Mathematical Monthly, Louis Brand [5] in 1955
presented an analysis of the so called Riccati real difference equation

xn+1 =
axn + b
cxn + d

, (1.1)

where c , 0 and ad − bc , 0. By setting

α :=
a + d

c
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and β := d
c2 , Brand transformed Eq (1.1) into

yn+1 = α −
β

yn
, (1.2)

where

yn := xn +
d
c
.

Next, putting

yn :=
zn+1

zn

from Eq (1.2) the linear difference equation

zn+2 − αzn+1 + βzn = 0

is obtained. If k1, k2 are the roots of its characteristic quadratic k2 − αk + β = 0, the general solution is
determined and, finally, among others, it is shown the following results:

i) If α , 0, α2 > 4β and y1 , k1, then yn+1 → k2, when |k2| > |k1|.

ii) If α2 = 4β and k1 = k2(= 1
2α), then yn → k1.

iii) If α2 < 4β, then k1, k2 are complex conjugate and let θ := cos−1 ( α
2
√
β

)
. If θ/π is rational, then the

sequence (yn) is periodic. If θ/π is irrational, then the set {yn : n = 1, 2, · · · } is dense in the real line.
In the complex case, Eq (1.1) can be written in the form

xn+1 = f (xn),

where f (x) := ax+b
cx+d . This is the Möbius transformation in the complex plane which include dilations,

rotations, translations, and complex inversion.
We would, also, like to refer to the work done by Elaydi and Sacker [10], where for Eq (1.1), they

give the same convergence results as by Brand. Moreover, discuss the equation where the coefficients
are periodic having the same period. A special case which they discuss is the so called Beverton-Holt
stock-recruitment equation

xn+1 =
µKxn

K + (µ − 1)xn
, x0 > 0, K > 0, (1.3)

which has wide applications in population dynamics [4]. For µ ∈ (0, 1), the point 0 is globally
asymptotically stable, whereas, for µ > 1, the fixed point K is globally asymptotically stable.
Furthermore, they investigated the existence of a periodic solution of (1.3), when the parameter K is
replaced by the term Kn of a periodic sequence. Notice that this form of equation has been investigated
by Cushing and Henson in [9]. See, also, [8, 25].

For b = 0 and c = 1, Eq (1.1) describes a population model and it is refereed in [12], p. 43.
In [1], the global asymptotic stability of the difference equation

xn+1 =
A + Bxn−1

C + Dx2
n
, n = 0, 1, · · · ,
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where A, B are nonnegative real numbers and C,D > 0. In [15] Kocić, Ladas and Rondrigues studied
the k + 1-order rational difference equation of the form

xn+1 =
a + bxn

A + xn−k
, (1.4)

where a, A, b are nonnegative real numbers and k is a positive integer. They proved that the positive
equilibrium point of Eq (1.4) is globally asymptotically stable. In addition, they showed that all positive
solutions oscillate about the positive equilibrium point.

The first thing we shall discuss is the forbidden set F. For Eq (1.1) in the real case, the forbidden set
consists of all initial values x0 which lead to a solution (xn) such that, for some index n, the denominator
cxn + d becomes zero. This means that the term xn+1 becomes infinity and so it is not a finite number.
An interesting study of the forbidden set of Eq (1.1), in the real case, is given by Kulenović and Ladas
in their informative book [16], pp. 17–24. Also, the authors describe in detail the long and short
term behavior of the solutions when the initial value does not belong to the forbidden set. The book
provides a very rich reference list. The same equation, or some of its variants, is studied by many
authors, e.g. [2], p. 122, [20, 21, 22, 26]. See, also the references therein.

In this paper we are dealing with the circular system of Riccati difference equations of the form

u( j)
n+1 =

a ju
( j−1)
n + b j

c ju
( j−1)
n + d j

, n = 0, 1, 2, · · · , j = 1, 2, · · · , k, (1.5)

with complex coefficients. Circular systems of rational real difference equations are investigated in a
great number of papers, such as [3, 6, 14, 11, 17, 23, 24] and in the references therein. Notice that such
systems were first presented by Laplace in 1773 ([18], p. 140), in his attempt to present the solution of
a differential equation in a series form.

By the term solution of Eq (1.5) we mean a (finite, or infinite) sequence of complex numbers
satisfying it by choosing suitable initial values. As we shall see, system (1.5) can be written in the
form

y( j+1)
n+1 = 1 −

R j

y( j)
n

, n = 0, 1, 2, · · · , j ∈ 1, k, (1.6)

where the complex numbers R j, j = 1, 2, · · · , k are the so called Riccati numbers for the system,
defined by

R j :=
a jd j − b jc j

[a j + d j]2 , j ∈ 1, k.

In this new form the forbidden set consists of k-tuples, F j, j = 1, 2, · · · , k where F j corresponds to the
j-th coordinate. More facts about them we will see in the text. Next we show that for each index j and
some values of R j we get properties analogous to those described by Brand, as above. But notice that
we shall work on the complex plane.

The paper is organized as follows: In Section 2, we describe the collection of the forbidden sets
F j, j = 1, 2, · · · , k of system (1.5) and then we proceed to the solvability of the system. We do
that by leaving all coefficients and the initial values to be complex numbers, thus the solutions are
complex, too. We work further to express the solutions in terms of their initial values. Then, by
using the expression of the solutions, we discuss the asymptotic behavior of them, and show that the
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solutions either converge to a fixed point, are periodic, or their range is dense in a line or in a circle of
the complex plane. Periodicity of nonlinear difference equations is a very significant subject studied
elsewhere, e.g. [13] and the references therein. In Section 3, we consider the case of negative Riccati
real numbers and we derive the set where the unique positive fixed point belongs, which attracts all
solutions starting from positive states.

2. The complex case

In this section, we shall study the system when all coefficients are complex numbers. Due to the
fact that we have to deal with a circular system, in order to simplify our presentation, we start with the
following convention: For any m ∈ Z and l, k ∈ N, we shall use the symbol mod∗(k) as in the type

m = l(mod∗(k)) :=

l(mod(k)), l ∈ {1, 2, · · · , k − 1}
k, i f l = 0.

2.1. The forbidden sets

To better understand the forbidden set we can use the Riemann sphere S and the stereographic
projection P of the extended complex plane onto S , when the primitive circle of the plane is the equator
of the sphere. As it is known, this function is given by

P(z) =
( z + z̄
|z|2 + 1

,
z − z̄
|z|2 + 1

,
|z|2 − 1
|z|2 + 1

)
.

Obviously we have
P(0) = (0, 0,−1) the south pole of the sphere

and
P(∞) = (0, 0, 1) the north pole of the sphere.

Now, consider Eq (2.2) and assume* that

c j(a j + b j) , 0, j ∈ 1, k. (2.1)

By defining the sequence y( j)
n := 1

a j+d j
(c ju

( j)
n + d j), j ∈ 1, k, system (1.5) is written in the form

y( j+1)
n+1 = 1 −

R j

y( j)
n

, n = 0, 1, 2, · · · , j ∈ 1, k, (2.2)

where y(k+1)
n := y(1)

n . The first thing we must do is to obtain the forbidden set F j of each coordinate j of
system (1.5), namely the set of all initial values u( j)

0 , which lead to the solution with a zero denominator
c ju

( j)
n + d j. Actually, we are interested in the complement of the forbidden set, namely in the set of all

values u( j)
0 of the complex plane, which lead to solutions defined on the whole set of natural numbers.

We call this set the active set of the system. Making the transformation from u( j)
n to y( j)

n , it is enough to
seek for the active sets of the new sequences, namely for the vectors (y(1)

0 , y
(2)
0 , · · · , y

(k)
0 ), which produce

*The special case c j(a j + b j) = 0, for some or for all indices j, will be discussed in a forthcoming work.
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solutions of the system (2.2) with no zero terms. Taking the stereographic projection P, we see that
a term y( j)

n vanishes when P(y( j)
n ) is the south pole of the Riemann sphere. Then P(y( j+1)

n+1 ) reaches the
north pole, P(y( j+2)

n+2 ) reaches the south pole, etc.
To continue, for any j ∈ 1, k, consider the sequence of complex numbers q( j)

n , n = 1, 2, · · · defined
inductively as

q( j)
0 := 0, q( j)

n+1 :=
R j

1 − q( j+1)
n

, j ∈ 1, k

where q(k+1)
n := q(1)

n and, for all n ≥ 0 for which the terms of the sequence are defined. Our first result
is the following.

Theorem 2.1. Let j ∈ {1, 2, · · · , k}. The forbidden set for the jth coordinate of the system (2.2) is the
set F j = {q

( j)
n , n = 0, 1, 2, · · · ,N}, where N ∈ N ∪ {+∞}.

Proof. To prove the theorem, assume that y( j)
0 = q( j)

n , for some j ∈ 1, k and n ≥ 1. Then, we have

y( j)
0 =

R j

1 − q( j+1)
n−1

.

Hence
y( j+1)

1 = 1 −
R j

y( j)
0

= 1 −
R j

q( j)
n

= q( j+1)
n−1 .

This relation gives

y( j+2)
2 = 1 −

R j+1

y( j+1)
1

= 1 −
R j+1

q( j+1)
n−1

= q( j+2)
n−2 .

Continue in this way, inductively, to obtain

y( j+n−1)
n−1 = q( j+n−1)

1 = R j+n−1.

Therefore,

y( j+n)
n = 1 −

R j+n−1

y( j+n−1)
n−1

= 0.

If ĵ is the (unique) index in the interval of integers {1, 2, · · · , k} such that j + n = ĵ(mod∗(k)), then
y( ĵ)

n = 0. Actually, this is the pre-image of q( j)
n through the Möbius transformation.

Conversely, assume that for some indices j, n it holds y( j)
n = 0. Then, we have

1 −
R j−1

y( j−1)
n−1

= 0 and so R j−1 = y( j−1)
n−1 .

This implies that

1 −
R j−2

y( j−2)
n−2

= y( j−1)
n−1 = R j−1 = q( j−1)

1 = 1 −
R j−2

q( j−2)
2

,

which gives

1 −
R j−3

y( j−3)
n−3

= y( j−2)
n−2 = q( j−2)

2 = 1 −
R j−3

q( j−3)
3

.

The last step of this procedure is the relation y( j−n)
0 = q( j−n)

n . If j̃ is the index in the set {1, 2, · · · , k} such
that j − n = j̃(mod∗(k)), then we obtain y( j̃)

0 = q( j̃)
n ∈ F j̃. The proof of the theorem is complete. □
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Since the system is circular, if the initial value of the jth- coordinate of the solution is taken from
the forbidden set F j, then the evolution of the whole vector solution (y(1)

n , y
(2)
n , · · · , y

(k)
n ) is completely

determined.

Example 1. Consider the circular system

y(1)
n+1 = 1 −

i

y(2)
n

, y(2)
n+1 = 1 −

1 + i

y(1)
n

, n = 0, 1, · · · .

The first five elements of the forbidden sets for this system are the following:

F1 = {0, i,−1,
−1 + i

2
,−1 + i, · · · }, F2 = {0, 1 + i, i,

1 + i
2
,

2(1 + 2i)
5

, · · · }.

If we consider the point 1+i
2 as the initial value y(2)

0 for the 2-coordinate, we obtain y(1)
1 = −1, y(2)

2 =

1 + i, y(1)
3 = 0.

Now the question which arises is what happens in case 1 − q( j0)
n0 = 0, for some indices j0, n0. Our

answer is that the result of the theorem remains in force. Indeed, all steps in the proof of the theorem
are made between finite numbers among those quantities q( j)

n which exist. Moreover, it is easy to see
that if for some indices j0, n0 it holds q( j0)

n0 = 1, then the quantity q( j0−1)
n0+1 does not exist, and therefore the

forbidden sets are finite.

Example 2. Consider the system

y(1)
n+1 = 1 −

2

y(2)
n

, y(2)
n+1 = 1 −

1

y(1)
n

.

Here, we observe that q(2)
1 = 1. Therefore the forbidden sets are finite. Indeed, they are defined by

F1 = {0, 2} and F2 = {0, 1,−1}.

2.2. Solvability

Solvability of a difference equation, in general, is a not easy problem, and it has attracted the interest
of many authors. Actually, Brand [5] was the first to show how to solve a scalar difference equation,
where the map is a Möbius transformation. See, also, [3, 14, 11, 19, 21, 23, 26] and the references
therein. In this subsection, we shall present a way of expressing, in a closed form, the solution of the
circular system of difference equations (1.5), when the initial values do no belong to the forbidden sets.
An advantage of the expression of the solutions is the fact that it helps us to describe its asymptotic
behaviour.

In the sequel, we assume that assumption (2.1) holds which guarantees that circular system (1.5) is
transformed into (2.2).

First, our plan is to give the general expression of each coordinate of the solution, in terms of general
parameters. This is the easy part of the problem. The second step is to express the general parameters
in terms of the initial values (y( j)

0 ), j = 1, 2, · · · , k, so that the expression of the solutions are in terms
of their initial values.

The central role in all the sequel will be played by the k- triples of parameters (a( j)
m , b

( j)
m , c

( j)
m ) defined

inductively as follows:
a( j)

0 = 1, b( j)
0 = R j−1, c( j)

0 = 0,

AIMS Mathematics Volume 8, Issue 11, 28033–28050.
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and, for any index m = 1, 2, · · · , k − 1 as

a( j)
m = a( j)

m−1 −
b( j)

m−1

1 − c( j)
m−1

, b( j)
m =

b( j)
m−1R j−m−1

(1 − c( j)
m−1)2

, c( j)
m =

R j−m−1

1 − c( j)
m−1

,

where R0 := Rk.

It is clear that in order, these items to be well defined, the condition

c( j)
m , 1, j ∈ 1, k,m = 1, 2, · · · , k − 2 (2.3)

must be satisfied†.
To continue, we are firstly going to express the term y( j)

n+1 of the jth- coordinate as a function of the
term y( j)

n+1−k of the same coordinate. To do that, we observe that the transformed system (2.2), for all
n = 0, 1, 2, · · · and j ∈ 1, k , becomes

y( j)
n+1 = 1 −

R j−1

y( j−1)
n

= a( j)
0 −

b( j)
0

y( j−1)
n − c( j)

0

. (2.4)

Then,

y( j)
n+1 = 1 −

R j−1

1 − R j−2

y( j−2)
n−1

= 1 − R j−1 −
R j−1R j−2

y( j−2)
n−1 − R j−2

= a( j)
1 −

b( j)
1

y( j−2)
n−1 − c( j)

1

.

To predict the rule, we do one more substitution and obtain that, for n = 2, 3, · · · ,

y( j)
n+1 = a( j)

2 −
b( j)

2

y( j−3)
n−2 − c( j)

2

.

Inductively, for n = k − 1, k, · · · , we obtain

y( j)
n+1 = a( j)

m −
b( j)

m

y( j−m−1)
n−m − c( j)

m

, m = 0, 1, 2, · · · , k − 1. (2.5)

The final step we arrive at is

y( j)
n+1 = a( j)

k−1 −
b( j)

k−1

y( j−k)
n−k+1 − c( j)

k−1

= a( j)
k−1 −

b( j)
k−1

y( j)
n−k+1 − c( j)

k−1

, (2.6)

because j−k = j(mod∗(k)). Before we continue to our discussion, we must notice that the relation (2.6)
gives a well defined value whenever y( j)

n−k+1 , c( j)
k−1, for all j ∈ 1, k and n = k − 2, k − 1, · · · . Indeed, if

this statement is not true, then due to (2.4) the value y( j−1)
0 is equal to c( j)

0 = 0, which contradicts the
fact that y( j−1)

0 belongs to the active set.
The advantage of relation (2.6) is that it is a relation involving the jth-coordinate only.
Next, we set

z( j)
n = y( j)

n − c( j)
k−1.

†The case c( j)
m = 1, for some indices j,m, will be discussed later at the end of this work.
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Since the system has k coordinates, it is convenient to define the two-parameter sequence

r(l, j)
n := z( j)

kn+l, l = 0, 1, 2, · · · , k − 1,

which, obviously, satisfies the relation

r(l, j)
n+1 = −c( j)

k−1 + a( j)
k−1 −

b( j)
k−1

r(l, j)
n

, l = 0, 1, · · · , k − 1, j ∈ 1, k.

Finally, we make one more substitution by setting s(l, j)
n :=

∏n
j=0 r(l, j)

j . Then, we have

r(l, j)
0 = s(l, j)

0 , r(l, j)
n =

s(l, j)
n

s(l, j)
n−1

, n ≥ 1.

The new sequence satisfies the linear difference equation

s(l, j)
n+1 + (c( j)

k−1 − a( j)
k−1)s(l, j)

n + b( j)
k−1s(l, j)

n−1 = 0, n = 1, 2, · · · , (2.7)

for all l = 0, 1, 2, · · · , k − 1 and j = 1, 2, · · · , k. To solve this equation, we consider its characteristic
equation

λ2 + (c( j)
k−1 − a( j)

k−1)λ + b( j)
k−1 = 0 (2.8)

and obtain its (complex) characteristic roots λ( j)
1 , λ( j)

2 . We distinguish the following cases.
Case 1: Assume that the characteristic values are not equal. Then, the general solution of Eq (2.7)

can be written in the form

s(l, j)
n = σ

(l, j)
1 (λ( j)

1 )n + σ
(l, j)
2 (λ( j)

2 )n, n = 0, 1, 2, · · · , l = 0, 1, 2, · · · , k − 1,

where the coefficients σ(l, j)
1 , σ

(l, j)
2 are complex numbers being not both equal to zero, and they depend

on the initial values of the solution. So, in order to express them in terms of the initial value Y0 :=
(y(1)

0 , y
(2)
0 , · · · , y

(k)
0 )T we observe that

r(l, j)
0 = s(l, j)

0 = σ
(l, j)
1 + σ

(l, j)
2

and

r(l, j)
n =

s(l, j)
n

s(l, j)
n−1

=
σ

(l, j)
1 (λ( j)

1 )n + σ
(l, j)
2 (λ( j)

2 )n

σ
(l, j)
1 (λ( j)

1 )n−1 + σ
(l, j)
2 (λ( j)

2 )n−1
. (2.9)

Since σ(l, j)
1 , σ

(l, j)
2 are not both equal to zero, it follows that one of the two fractions σ(l, j)

1 /σ
(l, j)
2 , and

σ
(l, j)
2 /σ

(l, j)
2 is a finite number. If we assume that the quantity ξ(l, j) = σ

(l, j)
1 /σ

(l, j)
2 is a finite number, we

can write the previous relation as

r(l, j)
n =

ξ(l, j)(λ( j)
1 )n + (λ( j)

2 )n

ξ(l, j)(λ( j)
1 )n−1 + (λ( j)

2 )n−1
, n = 1, 2, · · · . (2.10)

If the fraction ζ(l, j) := σ(l, j)
2 /σ

(l, j
1 is a finite number, we can write it as

r(l, j)
n =

(λ( j)
1 )n + ζ(l, j)(λ( j)

2 )n

(λ( j)
1 )n−1 + ζ(l, j)(λ( j)

2 )n−1
, n = 1, 2, · · ·

AIMS Mathematics Volume 8, Issue 11, 28033–28050.
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and we can work analogously.
To proceed, we keep in mind (2.10) and discuss the two cases n = 0 and n ≥ 1, separately. First, we

observe that

y( j)
l = z( j)

l + c( j)
k−1 = r(l, j)

0 + c( j)
k−1 = s(l, j)

0 + c( j)
k−1 = σ

(l, j)
1 + σ

(l, j)
2 + c( j)

k−1, l = 0, 1, · · · , k − 1 (2.11)

and

y( j)
kn+l = z( j)

kn+l + c( j)
k−1 = r(l, j)

n + c( j)
k−1 =

ξ(l, j)(λ( j)
1 )n + (λ( j)

2 )n

ξ(l, j)(λ( j)
1 )n−1 + (λ( j)

2 )n−1
+ c( j)

k−1, l = 0, 1, · · · , k − 1, n ≥ 1. (2.12)

Setting n = 1 and l = 0 in relation (2.12) and taking into account (2.6), we obtain

ξ(0, j)λ
( j)
1 + λ

( j)
2

ξ(0, j) + 1
+ c( j)

k−1 = y( j)
k = a( j)

k−1 +
b( j)

k−1

y( j)
0 − c( j)

k−1

.

From this equation, we obtain

ξ(0, j) =
(y( j)

0 − c( j)
k−1)(a( j)

k−1 − c( j)
k−1 − λ

( j)
2 ) + b( j)

k−1

(y( j)
0 − c( j)

k−1)(λ( j)
1 − a( j)

k−1 + c( j)
k−1) − b( j)

k−1

. (2.13)

Substitute this value in (2.12) and get the expression of the values of the sequence (y( j)
kn ).

Next, fix any l ∈ {1, 2, . . . , k − 1}. Setting l = m in the place of n + 1 in (2.5), we get

a( j)
l−1 −

b( j)
l−1

y( j−l)
0 − c( j)

l−1

= y( j)
l = σ

(l, j)
1 + σ

(l, j)
2 + c( j)

k−1, (2.14)

due to (2.11). Therefore,

σ
(l, j)
1 + σ

(l, j)
2 = a( j)

l−1 − c( j)
k−1 −

b( j)
l−1

y( j−l)
0 − c( j)

l−1

=: d( j)
l . (2.15)

On the other hand, from (2.12), for n = 1, (2.6) and (2.11) we have

σ
(l, j)
1 λ

( j)
1 + σ

(l, j)
2 λ

( j)
2

σ
(l, j)
1 + σ

(l, j)
2

+ c( j)
k−1 = y( j)

k+i = y( j)
(k+l−1)+1 = a( j)

k−1 −
b( j)

k−1

y( j)
i − c( j)

k−1

= a( j)
k−1 −

b( j)
k−1

σ
(l, j)
1 + σ

(l, j)
2

,

namely
σ

(l, j)
1 λ

( j)
1 + σ

(l, j)
2 λ

( j)
2

d( j)
l

+ c( j)
k−1 = a( j)

k−1 −
b( j)

k−1

d( j)
l

.

Solving the system of these last two equations in terms of the initial value y( j−i)
0 , we obtain

σ
(l, j)
1 =

1

λ
( j)
1 − λ

( j)
2

(
− b( j)

k−1 + (a( j)
k−1 − c( j)

k−1 − λ
( j)
2 )d( j)

l

)
(2.16)
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and
σ

(l, j)
2 =

1

λ
( j)
1 − λ

( j)
2

(
b( j)

k−1 + (λ( j)
1 − a( j)

k−1 + c( j)
k−1)d( j)

l

)
(2.17)

from which the value of the item ξ(i, j) = σ
(1, j)
i /σ

(i, j)
2 is obtained. Taking into account the values ξ(0, j)

from (2.13) and relations (2.16) and (2.17), from (2.12), the expression of the solution y( j)
n follows.

Case 2: Next, assume that λ( j)
1 = λ

( j)
2 =: λ( j). Then the solution can be written in the form

s(l, j)
n = (σ(l, j)

1 + nσ(l, j)
2 )(λ( j))n, n = 0, 1, 2, · · · , l = 0, 1, 2, · · · , k − 1,

where, again, the coefficients σ(l, j)
1 , σ

(l, j)
2 are complex numbers and not both equal to zero.

In this case we have r(l, j)
0 = s(l, j)

0 = σ
(l, j)
1 and

r(l, j)
n =

s(l, j)
n

s(l, j)
n−1

=
(σ(l, j)

1 + nσ(l, j)
2 )(λ( j))n

(σ(l, j)
1 + (n − 1)σ(l, j)

2 )(λ( j))n−1
=

s(l, j)
n

s(l, j)
n−1

=
(σ(l, j)

1 + nσ(l, j)
2 )λ( j)

σ
(l, j)
1 + (n − 1)σ(l, j)

2

.

If we assume, as previously, that the quantity

ξ(l, j) =
σ

(l, j)
1

σ
(l, j)
2

is a finite complex number, we can write the previous relation as

r(l, j)
n =

(ξ(l, j) + n)λ( j)

ξ(l, j) + (n − 1)
.

The case where σ(l, j)
2 /σ

(l, j)
1 is finite, is analogous.

Now, we observe that

y( j)
l = z( j)

l + c( j)
k−1 = r(l, j)

0 + c( j)
k−1 = s(l, j)

0 + c( j)
k−1 = σ

(l, j)
1 + c( j)

k−1, l = 0, 1, · · · , k − 1 (2.18)

and

y( j)
kn+l = z( j)

kn+l + c( j)
k−1 = r(l, j)

n + c( j)
k−1 =

(ξ(l, j) + n)λ( j)

ξ(l, j) + (n − 1)
+ c( j)

k−1, l = 0, 1, 2, · · · , k − 1, n ≥ 1. (2.19)

Setting n = 1 and l = 0 in relations (2.6) and (2.19) we obtain

(ξ(0, j) + 1)λ( j)

ξ(0, j) + c( j)
k−1 = y( j)

k = a( j)
k−1 −

b( j)
k−1

y( j)
0 − c( j)

k−1

.

Therefore

ξ(0, j) =
(y( j)

0 − c( j)
k−1)λ( j)

(y( j)
0 − c( j)

k−1)(a( j)
k−1 − c( j)

k−1 − λ
( j)) − b( j)

k−1

. (2.20)

Next, fix any l ∈ {1, 2, . . . , k − 1}. Setting in (2.5), l = m in the place of n + 1 we get

a( j)
l−1 −

b( j)
l−1

y( j−l)
0 − c( j)

l−1

= y( j)
l = σ

(l, j)
1 + c( j)

k−1,
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due to (2.18). Therefore,

σ
(l, j)
1 = a( j)

l−1 − c( j)
k−1 −

b( j)
l−1

y( j−l)
0 − c( j)

l−1

= d( j)
l . (2.21)

On the other hand, from (2.19), for n = 1, and from (2.6) and (2.18) we have

λ( j) +
σ

(l, j)
2

σ
(l, j)
1

λ( j) + c( j)
k−1 = y( j)

k+l = y( j)
(k+l−1)+1 = a( j)

k−1 −
b( j)

k−1

y( j)
l − c( j)

k−1

= a( j)
k−1 −

b( j)
k−1

σ
(l, j)
1

.

From here, due to (2.21), we obtain

σ
(l, j)
2 =

1
λ( j)

(
− b( j)

k−1 + (a( j)
k−1 − c( j)

k−1 − λ
( j))d( j)

l

)
(2.22)

Taking into account the values ξ(0, j) from (2.20) and ξ(l, j) from relations (2.21), (2.22), we can go
to (2.19) and obtain the expression of the jth-coordinate of the solution.

The results we derived so far are summarised in the following theorem:

Theorem 2.2. Assume that (2.3) is satisfied and consider the algebraic equation (2.8).
1) If Eq (2.8) has unequal roots, the solution of the system is given by (2.11) and (2.12) where

ξ(l, j) = σ
(l, j)
1 /σ

(l, j)
2 and σ(l, j)

1 , σ
(l, j)
2 are given in (2.16), (2.17) and d( j)

l is defined in (2.15).
2) If Eq (2.8) has equal roots, then the solution of system (2.2) is given by (2.18) and (2.19), where

σ
(l, j)
1 , σ

(l, j)
2 are given by (2.21) and (2.22).

Remark. Here and in all the sequel the reader can see that analogous results hold if we use the item
ζ(l, j) := σ(l, j)

2 /σ
(l, j)
1 .

Before we close the subject of the solvability of the solutions, we must notice that one could ask
how many initial values we need to express the solutions. Indeed, as we have seen the number of the
quantities d( j)

l is equal to k2, though we need only k of them. But we can observe that each d( j)
l depends

on the initial value y( j−l)
0 . Therefore this initial value determines all parameters of the form d( j+m)

l+m , for
any m = 0, 1, 2, · · · , k − 1.

2.3. Asymptotic behaviour of the solutions

In this subsection we assume, again, that the initial values of the solutions do not belong to the
forbidden sets. Then, we can use the expression of the solutions as it is obtained above. We have the
following result.

Theorem 2.3. Let λ( j)
− , λ

( j)
+ be the roots of the algebraic equation (2.8) and let (y( j)

n ) be the j-th
coordinate of the solution of system (2.2) with initial value in the active set.

1) a) If |λ( j)
− | < |λ

( j)
+ | and ξ(l, j) , 0, then it holds

lim
n→+∞

y( j)
kn+l = λ

( j)
+ + c( j)

k−1,

while if ξ(l, j) = 0, then
lim

n→+∞
y( j)

kn+l = λ
( j)
− + c( j)

k−1.
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b) If |λ( j)
+ | < |λ

( j)
− |, and ξ(l, j) , 0, then

lim
n→+∞

y( j)
kn+l = λ

( j)
− + c( j)

k−1,

while if ξ(l, j) = 0, then
lim

n→+∞
y( j)

kn+l = λ
( j)
+ + c( j)

k−1.

2) If the roots are equal, say, to λ( j), then limn→+∞ y( j)
kn+l = λ

( j) + c( j)
k−1.

3) If the roots are of the form λ( j)
1 = q jeiω j and λ( j)

2 = q jeiϕ j , then, the jth- coordinate of the solution
has the form

y( j)
kn+l =

σ
(l, j)
1 + σ

(l, j)
2 + c( j)

k−1, n = 0,

q jeiω j ξ
(l, j)+ein(ϕ j−ω j)

ξ(l, j)+ei(n−1)(ϕ j−ω j)
+ c( j)

k−1, n ≥ 1.

Hence, if ξ(l, j) = 0, then
y( j)

kn+l = q jeiϕ j ,

for all l, n, namely, it is constant.
Assume that ξ(l, j) , 0.
i) If (ϕ j − ω j)/π is a rational number, the sequence (y( j)

n )|n≥k is periodic.
ii) Let θ j/π := (ϕ j−ω j)/π be irrational. Then the terms of the sequence form a subset of the complex

plane, which is dense in the straight line

ζ(t) = q jeiω j
(
t + i

1 − cos(θ j)
sin(θ j)

t
)
+ c( j)

k−1, t ∈ R, (2.23)

in case |ξ(l, j)| = 1, dense in the circle q jeiω jC + c( j)
k−1, where C is the circle

|z|2 + 2
cos(θ j) + sin(θ j) − |ξ(l, j)|2

|ξ(l, j)|2 − 1
z +

cos(θ j) − sin(θ j) − |ξ(l, j)|2

|ξ(l, j)|2 − 1
z̄ + 1 = 0, (2.24)

in case |ξ(l, j)| , 1.

Proof. 1) a) Assume that |λ( j)
− | < |λ

( j)
+ |. From (2.12), we observe that for each n and l, j, it holds

lim
n→+∞

y( j)
kn+l = lim

n→+∞

ξ(l, j)(λ( j)
+ )n + (λ( j)

− )n

ξ(l, j)(λ( j)
+ )n−1 + (λ( j)

− )n−1
+ c( j)

k−1 = lim
n→+∞

ξ(l, j)λ
( j)
+ + λ

( j)
− (λ

( j)
−

λ
( j)
+

)n−1

ξ(l, j) + (λ
( j)
−

λ
( j)
+

)n−1
+ c( j)

k−1 = λ
( j)
+ + c( j)

k−1.

b) If it holds |λ( j)
+ | < |λ

( j)
− |, then, from the previous relation, we obtain

lim
n→+∞

y( j)
kn+l = λ

( j)
− + c( j)

k−1.

2) If the roots are equal to λ( j), then, from (2.19), we obtain

lim
n→+∞

y( j)
kn+l = lim

n→+∞

(ξ(l, j) + n)λ( j)

ξ(l, j) + (n − 1)
+ c( j)

k−1 = lim
n→+∞

ξ(l, j)

n + 1
ξ(l, j)

n +
n−1

n

λ( j) + c( j)
k−1 = λ

( j) + c( j)
k−1.
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3) In the third case, the expression of the solutions follows from (2.11) and (2.12).
Let ξ(l, j) , 0.
i) Assume that θ j/π is a rational real number p j/r j, say. Define the positive integer N j := 2kr j and

consider an index m ≥ k. Then, we can write it in the form m = kn + l, for some indices n, l. From the
expression

y( j)
kn+l = q jeiω j

ξ(l, j) + einθ j

ξ(l, j) + ei(n−1)θ j
+ c( j)

k−1,

we obtain
y( j)

m+N j
= y( j)

k(n+2r j)+l = y( j)
kn+l = y( j)

m ,

due to the fact that ei(n+2r j)θ j = einθ jei2πp j = einθ j . This proves that the sequence y( j) is periodic.
ii) Next, assume that θ j/π is irrational. Then, it is well known (see, for instance, Prop. 4.1, p. 10

in [7]) that the set {einθ j : n = 1, 2, · · · } is dense in the unit circle C. Let z ∈ C. Then z is the limit of a
sequence of the form einmθ j , m = 1, 2, · · · . First we are going to find the set of all ζ j ∈ C such that

ξ(l, j) + z
ξ(l, j) + ze−iθ j

= ζ j.

From here we obtain that

z =
(ζ j − 1)ξ(l, j)

1 − ζ je−iθ j

and so
|ζ j − 1||ξ(l, j)| = |1 − ζ je−iθ j |. (2.25)

This is equivalent to the relation

(|ξ(l, j)|2 − 1)|ζ j|
2 + 2ℜ(ζ j)(cos(θ j) − |ξ(l, j)|2) + 2ℑ(ζ j) sin(θ j) − 1 = 0. (2.26)

Inversely, if ζ is a complex number satisfying Eq (2.25) then, the number (ζ j−1)ξ(l, j)

1−ζ je
−iθ j

is a point in C. Now,

if |ξ(l, j)| = 1, the first factor in (2.26) vanishes, and we get a straight line given by (2.23). Otherwise,
we have the circle given by (2.24). Now, the proof follows by observing that dilations of straight lines
and circles produce straight lines and circles, respectively. □

3. The real case

As we proved in the previous section, in case condition (2.3) holds, there exists a limit of all
solutions of system (1.5). This limit turns out to be a fixed point of the system. In this section, we
restrict ourselves to the case where all Ricatti numbers are negative real numbers and we shall try to
locate the existence of a fixed point of system (1.5) in the positive orthant of the space (R+)k. Moreover,
this fixed point is unique. The method we use relies on the classical fixed point of Brouwer.

By setting p j := −R j, j = 1, 2, · · · , k, we have p j > 0 and system (2.2) is written as

y( j+1)
n+1 = 1 +

p j

y( j)
n

, n = 0, 1, 2, · · · , j = 1, 2, · · · , k. (3.1)
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We shall work on the set

D := [1, 1 + pk] × [1, 1 + p1] × · · · × [1, 1 + pk−1].

The main result of this section refers to the existence and uniqueness of a fixed point of the system
lying in D and it is the following.

Theorem 3.1. Assume that (2.1) holds and the Riccati numbers R j, j = 1, 2, · · · , k are real negative.
Then system (2.2) admits a unique fixed point in the set D, which attracts all solutions starting from
positive states. It turns out that system (1.5) admits a fixed point in the set

× j=0,1,2,··· ,k−1


[a j

c j
,

a2
j+b jc j

c j(a j+d j)

]
, if c j(a j + d j) > 0[ a2

j+b jc j

c j(a j+d j)
,

a j

c j

]
, if c j(a j + d j) < 0,

which attracts all solutions with initial states in

× j=0,1,2,··· ,k−1

(
d j

c j
, +∞), if c j(a j + d j) > 0

(−∞, d j

c j
), if c j(a j + d j) < 0.

Proof. We write the system of Eq (3.1) in the form of an equation in the k-dimensional space. To do
that consider the function

ϕ(w1,w2, · · · ,wk) := (1 +
pk

wk
, 1 +

p1

w1
, · · · , 1 +

pk−1

wk−1
)T

and the sequence of vectors Yn := (y(1)
n , y

(2)
n , · · · , y

(k)
n )T , where the superscript T denotes transposition.

Then, the system (3.1) takes the form

Yn+1 = ϕ(y(1)
n , y

(2)
n , · · · , y

(k)
n ). (3.2)

We observe that for all z ∈ [1, 1 + p j] it holds

1 < 1 +
p j

z
< 1 + p j, j = 1, 2, · · · , k,

which means that the function ϕ maps D into D. Since ϕ is a continuous function and D is a closed,
bounded and convex set, applying Brouwer’s fixed-point theorem, we conclude that there is a fixed
point V ∈ D of equation

ZT = ϕ(Z).

Vector V := (v1, v2, · · · , vk)T is such that

v j = 1 +
p j−1

v j−1
, j = 1, 2, · · · , k,

where v0 := vk and p0 := pk.

Next let Yn := (y(1)
n , y

(2)
n , · · · , y

(k)
n )T be a solution. From (3.1), we have

y( j)
n+1 = 1 +

p j−1

y( j−1)
n

,
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for all j = 1, 2, · · · , k and n = 0, 1, 2, · · · . Here we have put y(0)
n = y(k)

n . If V is a fixed point, as above,
we observe that it holds

|v j − y( j)
n+1| =

p j−1

v j−1y( j−1)
n

|v j−1 − y( j−1)
n | = · · · =

p j−1

v j−1y( j−1)
n

p j−2

v j−2y( j−2)
n

|v j−2 − y( j−2)
n |

=
p j−1

v j−1y( j−1)
n

p j−2

v j−2y( j−2)
n

· · ·
p1

v1y(1)
n

|v1 − y(1)
n | =

p j−1

v j−1y( j−1)
n

p j−2

v j−2y( j−2)
n

· · ·
p1

v1y(1)
n

pk

v1y(k)
n

|vk − y(k)
n |

=
p j−1

v j−1y( j−1)
n

· · ·
p1

v1y(1)
n

pk

v1y(k)
n

pk−1

v1y(k−1)
n

|vk−1 − y(k−1)
n | = · · ·

=

√
p1

v2
1

√
p2

v2
2

· · ·

√
pk

v2
k

√
p1

y(1)
n

2

√
p2

y(2)
n

2 · · ·

√
pk

y(k)
n

2 |v j − y( j)
n |

=

√
v2 − 1

v1

√
v3 − 1

v2
· · ·

√
vk − 1
vk−1

√
v1 − 1

vk

×

√
y(2)

n − 1

y(1)
n

√
y(3)

n − 1

y(2)
n

· · ·

√
y(k)

n − 1

y(k−1)
n

√
y(1)

n − 1

y(k)
n

|v j − y( j)
n |

=

√
v1 − 1

v1

√
v2 − 1

v2
· · ·

√
vk − 1

vk

√
y(1)

n − 1

y(1)
n

√
y(2)

n − 1

y(2)
n

· · ·

√
y(k)

n − 1

y(k)
n

|v j − y( j)
n |

and so |v j − y( j)
n+1| ≤ µ|v j − y( j)

n |, j = 1, 2, · · · , n = 0, 1, 2, · · · where

µ :=

√
v1 − 1

v1

√
v2 − 1

v2
· · ·

√
vk − 1

vk
< 1.

The latter implies that
|v j − y( j)

n+1| ≤ µ
n+1|v j − y( j)

0 |, j = 1, 2, · · · , k,

from which we conclude that limn→+∞ y( j)
n = v j, j = 1, 2, · · · , k.After this fact the proof of the theorem

is complete. □

Remark 1. It is easy to see that in case k = 2, the fixed point has coordinates given by

v1 :=
1 − p1 + p2 + (1 − p1 + p2)2 + 4p1)1/2

2
, v2 :=

1 + p1 − p2 + (1 + p1 − p2)2 + 4p2)1/2

2
.

In case k = 3,

v1 =
1 + p1 − p2 + p3 +

√
(1 + p1 − p2 + p3)2 + 4(p1 + 1)p2(p3 + 1)

2(p3 + 1)
,

v2 =
1 + p2 − p3 + p1 +

√
(1 + p2 − p3 + p1)2 + 4(p2 + 1)p3(p1 + 1)

2(p1 + 1)
,

v3 =
1 + p3 − p1 + p2 +

√
(1 + p3 − p1 + p2)2 + 4(p3 + 1)p1(p2 + 1)

2(p2 + 1)
.
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Remark 2. Since the Riccati numbers R j are reals and have negative signs, it is not hard to see that, the
roots λ( j)

− , λ
( j)
+ of the characteristic equation (2.8) are reals and they satisfy the case 1) a) of Theorem 2.3.

This means that the eigenvalues λ( j)
+ (2.8) are the coordinates of the fixed point V .

A special case
The question what can we say when, for some (or for all) indices j and m, it holds c( j)

m = 1? As we
see, if 1 − c( j)

m−1 = 0, the quantity c( j)
m is not defined. If R j−m−1 = 1, then c( j)

m = 1, if c( j)
m−1 = 0. Since

the Riccati numbers cann’t be zero, we have m = 1. So, if R j−2 = 1, then c( j)
1 = 1, and this is the only

value of the sequence of parameters c which exists, after c( j)
0 . As we shall see in this case all solutions

are periodic.
To prove it, consider the circular system

y( j)
n+1 = 1 −

1

y( j−1)
n

, j ∈ 1, k

and we shall discuss the jth- coordinate. Since the system is circular, without loss of generality we can
assume that j = 1. After some manipulations and applying induction‡, we obtain that

y(k)
n = y(k−3)

n−3 = · · · =


= y(0)

n−k = y(k)
n−k, i f k = 0(mod3)

= y(1)
n−k+1 = y(2)

n−2k+2 = y(0)
n−3k = y(k)

n−3k, i f k = 1(mod3)
= y(2)

n−k+2 = y(1)
n−2k+1 = y(2)

n−4k+2 = y(k)
n−3k, i f k = 2(mod3),

for all n ≥ max{4k − 2, 3k}. This means that the sequence (yn) is periodic with period 3k.

4. Discussion

We have discussed a circular system of Riccati type complex difference equations. First, we
presented the forbidden set of the system. Then we discussed the solvability of it, by expressing the
solutions in terms of the initial values. The expression of the solutions helps to obtain their asymptotic
behavior. In the case of negative real Riccati numbers, it is shown that there is a unique fixed point of
the system, which attracts all solutions starting from positive values.

5. Conclusions

The forbidden set of the circular system (1.5) is given in terms of the elements of an auxiliary system
obtained from the Riccati numbers. Also, the expression of the solutions is given by using an auxiliary
finite system of sequences, which follows from these numbers. In the case, of negative real Riccati
numbers, we show the convergence of the solutions (with positive initial values) to a fixed point, which
is unique. In case R j = 1, for all j = 1, 2 · · · , it is shown that the solutions are periodic.

Aknowledgments

The author would like to thank the anonymous referees for their valuable comments and for her/his
helpful suggestions which led to the improvement of this paper.

‡We can find analogous expressions for all coordinates and not only for j = k.

AIMS Mathematics Volume 8, Issue 11, 28033–28050.



28049

Conflict of interest

The author declares that he does not have competing interests.
The Prof. George L. Karakostas is the Guest Editor of special issue “Recent contributions to

difference equations” for AIMS Mathematics. The Prof. George L. Karakostas was not involved in
the editorial review and the decision to publish this article.

References

1. R. Abo-Zeid, Global asymptotic stability of a second order rational difference equation, J. Appl.
Math. Inform., 2 (2010), 797–804.

2. R. P. Agarwal, Differences equations and inequalities, theory, methods and applications, Boca
Raton: CRC Press, 2000. https://doi.org/10.1201/9781420027020

3. K. S. Al-Basyouni, E. M. Elsayed, On some solvable systems of some rational difference equations
of third order, Mathematics, 11 (2023), 1047. https://doi.org/10.3390/math11041047

4. R. J. H. Beverton, S. J. Holt, On the dynamics of exploited fish populations, In: Fishery
investigations, London: H. M. Stationery off., 1957.

5. L. Brand, A sequence defined by a difference equation, Am. Math. Mon., 62 (1955), 489–492.
https://doi.org/10.2307/2307362
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15. V. L. Kocić, G. Ladas, I. W. Rodrigues, On rational recursive sequences, J. Math. Anal. Appl., 173
(1993), 127–157.

AIMS Mathematics Volume 8, Issue 11, 28033–28050.

http://dx.doi.org/https://doi.org/10.1201/9781420027020
http://dx.doi.org/https://doi.org/10.3390/math11041047
http://dx.doi.org/https://doi.org/10.2307/2307362
http://dx.doi.org/https://doi.org/10.1016/S0898-1221(01)00326-1
https://www.ma.imperial.ac.uk/~dcheragh/Teaching/2016-F-DS-MPE.pdf
http://dx.doi.org/https://doi.org/10.1007/978-3-662-44140-4_7
http://dx.doi.org/https://doi.org/10.1080/10236190108808308
http://dx.doi.org/https://doi.org/10.1016/j.jde.2003.10.024
http://dx.doi.org/https://doi.org/10.2298/FIL2004167K


28050
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22. S. Stević, Some representations of the general solution to a difference equation of additive type,
Adv. Differ. Equ., 2019 (2019), 431. https://doi.org/10.1186/s13662-019-2365-0
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