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1. Introduction

The main subject of this note is the Caffarelli-Kohn-Nirenberg inequalities of the form(∫
RN

|∇u|2

|x|2b dx
) 1

2
(∫
RN

|u|2

|x|2a dx
) 1

2

≥ C(N, a, b)
∫
RN

|u|2

|x|a+b+1 dx, u ∈ C∞0 (RN \ {0}, (1.1)

where a, b ∈ R are given constants. Clearly, the sharp constant in (1.1) was naturally defined by

C(N, a, b) := inf
u∈C∞0 (RN\{0})

(∫
RN
|∇u|2

|x|2b dx
) 1

2
(∫
RN
|u|2

|x|2a dx
) 1

2∫
RN

|u|2

|x|a+b+1 dx
.

We note that (1.1) contains some important inequalities in the literature such as the Heisenberg
uncertainty principle (a = −1, b = 0), the hydrogen uncertainty principle (a = b = 0), the Hardy
inequalities (a = 1, b = 0), and more. It is also worth mentioning that (1.1) belongs to a more general
family of Caffarelli-Kohn-Nirenberg inequalities that were first introduced and studied in [1,2] as tools
to investigate well-posedness and regularity of solutions to certain Navier-Stokes equations. Because
of their important roles in many areas of mathematics, the Caffarelli-Kohn-Nirenberg type inequalities
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and their applications have been investigated intensively and extensively in the literature. We refer the
interested reader to [4, 5, 7, 9–21], to name just a few.

(1.1) was first investigated by Costa in [8] with C(N, a, b) = |N−(a+b+1)|
2 using the method of

expanding the square. However, this constant is not optimal for certain parameter values. More
precisely, if we introduce the following regions in the plane:

A1 := {(a, b) | b + 1 − a > 0, b ≤ (N − 2)/2},

A2 := {(a, b) | b + 1 − a < 0, b ≥ (N − 2)/2},

A := A1 ∪A2,

B1 := {(a, b) | b + 1 − a < 0, b ≤ (N − 2)/2},

B2 := {(a, b) | b + 1 − a > 0, b ≥ (N − 2)/2},

B := B1 ∪ B2,

then it is shown in [8] that in the regionA, the best constant is C(N, a, b) = |N−(a+b+1)|
2 and it is achieved

by the functions u(x) = D exp( t|x|b+1−a

b+1−a ), with t < 0 in A1 and t > 0 in A2, and D a nonzero constant.
We note that the method in [8], which is very simple, does not lead to the optimal constant C(N, a, b)
in the region B.

In [3], in order to obtain the sharpness of (1.1) in the region B, Catrina and Costa used some
advanced and technical tools such as the Emden-Fowler transformation, the spherical harmonics
decomposition and the Kelvin-type transform. In particular, the main results in [3, 8] claim that

Theorem 1.1. [3, Theorem 1], [8, Theorem 2.1] According to the location of the points (a, b) in the
plane, we have:

(a) In the region A the best constant is C(N, a, b) = |N−(a+b+1)|
2 and it is achieved by the functions

u(x) = D exp( t|x|b+1−a

b+1−a ), with t < 0 inA1 and t > 0 inA2, and D a nonzero constant.

(b) In the region B the best constant is C(N, a, b) = |N−(3b−a+3)|
2 and it is achieved by the functions

u(x) = D|x|2(b+1)−N exp( t|x|b+1−a

b+1−a ), with t > 0 in B1 and t < 0 in B2.

(c) In addition, the only values of the parameters where the best constant is not achieved are those on
the line a = b + 1, where C(N, b + 1, b) = |N−2(b+1)|

2 .

Recently, the authors in [6] presented a direct proof to the aforementioned results using a clever
way of expanding the square.

The principal goal of this note is to provide a new simple and straightforward method to derive the
optimal constant of a refined version of (1.1). Our proof is based on the divergence theorem and is
elementary.

2. Main result

The main result of our paper is the following sharp Caffarelli-Kohn-Nirenberg inequality:
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Theorem 2.1. Let (a, b) ∈ A ∪ B. Then for all u ∈ C∞0 (RN \ {0}), there holds(∫
RN

|∇u|2

|x|2b dx
) 1

2
(∫
RN

|u|2

|x|2a dx
) 1

2

≥

∫
RN

| x
|x| · ∇u|2

|x|2b dx


1
2 (∫

RN

|u|2

|x|2a dx
) 1

2

≥ C(N, a, b)
∫
RN

|u|2

|x|a+b+1 dx. (2.1)

Here
C(N, a, b) = max{

|N − (a + b + 1)|
2

,
|N − (3b − a + 3)|

2
}.

Proof. We will first prove that for all u ∈ C∞0 (RN \ {0}), we have∫
RN

| x
|x| · ∇u|2

|x|2b dx +
∫
RN

|u|2

|x|2a dx ≥ 2C(N, a, b)
∫
RN

|u|2

|x|a+b+1 dx. (2.2)

Indeed, let us first assume that u ∈ C∞0 (RN \ {0}) and u is real-valued. We note that div(|x|αx) =
(N + α)|x|α. Therefore, by the divergence theorem and the AM-GM inequality, we have that

±

[
(N − a − b − 1)

∫
RN

|u|2

|x|a+b+1 dx + γ (N − 2b − 2)
∫
RN

|u|2

|x|2b+2 dx
]

= ±

∫
RN

div
(

x
|x|a+b+1 + γ

x
|x|2b+2

)
|u|2dx

= ∓

∫
RN

(
x

|x|a+b+1 + γ
x
|x|2b+2

)
· ∇|u|2dx

= ∓

∫
RN

2u
(

1
|x|a
+
γ

|x|b+1

) (
x
|x|
· ∇u

)
1
|x|b

dx

≤

∫
RN

| x
|x| · ∇u|2

|x|2b dx +
∫
RN

(
1
|x|a
+
γ

|x|b+1

)2

|u|2dx

=

∫
RN

| x
|x| · ∇u|2

|x|2b dx +
∫
RN

|u|2

|x|2a dx + 2γ
∫
RN

|u|2

|x|a+b+1 dx + γ2
∫
RN

|u|2

|x|2b+2 dx.

This implies∫
RN

| x
|x| · ∇u|2

|x|2b dx +
∫
RN

|u|2

|x|2a dx

≥ (± (N − a − b − 1) − 2γ)
∫
RN

|u|2

|x|a+b+1 dx +
(
±γ (N − 2b − 2) − γ2

) ∫
RN

|u|2

|x|2b+2 dx.

By choosing γ2 = ±γ (N − 2b − 2), that is γ = 0 or γ = ± (N − 2b − 2), so that the last term vanishes,
we obtain ∫

RN

| x
|x| · ∇u|2

|x|2b dx +
∫
RN

|u|2

|x|2a dx ≥ |N − a − b − 1|
∫
RN

|u|2

|x|a+b+1 dx,

and ∫
RN

| x
|x| · ∇u|2

|x|2b dx +
∫
RN

|u|2

|x|2a dx ≥ |N − 3b + a − 3|
∫
RN

|u|2

|x|a+b+1 dx.
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Therefore, we have ∫
RN

| x
|x| · ∇u|2

|x|2b dx +
∫
RN

|u|2

|x|2a dx ≥ 2C(N, a, b)
∫
RN

|u|2

|x|a+b+1 dx,

with
C(N, a, b) = max{

|N − (a + b + 1)|
2

,
|N − (3b − a + 3)|

2
}.

Now, if u is complex-valued, then by using the fact that | x
|x| · ∇u| ≥ | x

|x| · ∇|u|| and noting that |u| is
real-valued, we get∫

RN

| x
|x| · ∇u|2

|x|2b dx +
∫
RN

|u|2

|x|2a dx ≥
∫
RN

| x
|x| · ∇|u||

2

|x|2b dx +
∫
RN

|u|2

|x|2a dx

≥ 2C(N, a, b)
∫
RN

|u|2

|x|a+b+1 dx.

Finally, by applying (2.2) for u(x) ⇝ u(λx), u ∈ C∞0 (RN \ {0}) \ {0}, λ > 0, and making change of
variables, we have

λ2b+2−N
∫
RN

| x
|x| · ∇u|2

|x|2b dx + λ2a−N
∫
RN

|u|2

|x|2a dx ≥ 2C(N, a, b)λa+b+1−N
∫
RN

|u|2

|x|a+b+1 dx.

Equivalently,

λb+1−a
∫
RN

| x
|x| · ∇u|2

|x|2b dx + λa−b−1
∫
RN

|u|2

|x|2a dx ≥ 2C(N, a, b)
∫
RN

|u|2

|x|a+b+1 dx.

Now, by choosing λ =

 ∫
RN

|u|2

|x|2a dx∫
RN

| x
|x| ·∇u|2

|x|2b dx


1

2(b+1−a)

, we obtain (2.1).

3. Conclusions

Caffarelli-Kohn-Nirenberg type inequalities generalize many well-known and important inequalities
in analysis. Due to their important roles in many areas of mathematics, the optimal Caffarelli-Kohn-
Nirenberg type inequalities and their applications have been extensively studied in many settings. In
this paper, we provide a simple proof to a class of the Caffarelli-Kohn-Nirenberg type inequalities
that contain the Heisenberg uncertainty principle, the hydrogen uncertainty principle, and the Hardy
inequalities. Our proof is based on the divergence theorem and is elementary.
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