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Abstract: The adjacent vertex-distinguishing edge-coloring of a graph G is a proper edge-coloring
of G such that each pair of adjacent vetices receives a distinct set of colors. The minimum number of
colors required in an adjacent vertex-distinguishing edge-coloring of G is called the adjacent vertex-
distinguishing chromatic index. In this paper, we determine the adjacent vertex distinguishing
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1. Introduction

All graphs considered in this paper are simple, finite and undirected. Let G = (V, E) be a graph
with maximum degree ∆ and c : E → {1, 2, . . . , k} be an edge-coloring of G. For each vertex v ∈ V ,
the neighborhood N(v) of v is N(v) = {u : u ∈ V, uv ∈ E}, we define the palette of v as S (v) =
{c(uv) : u ∈ N(v)}, and denote by S c(v) the complementary set of S (v) in {1, 2, . . . , k}. We call c a
proper edge-coloring if it assigns distinct colors to adjacent edges. The minimum number of colors
needed in a proper edge-coloring is the chromatic index of G, denoted by χ′(G). An adjacent vertex-
distinguishing edge-coloring (AVD edge-coloring for short) of G is a proper edge-coloring c such that
S (v) , S (u) for each uv ∈ E. The smallest integer k such that G has an AVD edge-coloring with k colors
is called the adjacent vertex-distinguishing chromatic index (AVD chormatic index for short), denoted
by χ′avd(G). Note that G has an AVD edge-coloring if and only if G has no isolated edges, we call this
graph a normal graph. From the definition, for a normal graph G, we have χ′avd(G) ≥ χ′(G) ≥ ∆, and if
G contains two adjacent vertices of maximum degree, then χ′avd(G) ≥ ∆ + 1.

The concept of AVD edge-coloring was first introduced by Zhang et al. [1], they completely
determined χ′avd(G) for some special graphs such as paths, cycles, trees, complete graphs, and complete
bipartite graphs, and proposed the following conjecture.
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Conjecture 1.1. [1] If G is a normal connected graph with |V(G)| ≥ 3 and G , C5. Then χ′avd(G) ≤
∆(G) + 2.

Balister et al. [2] comfirmed Conjecture 1.1 for all graphs with maximum degree 3.

Theorem 1.1. [2] If G is a graph with no isolated edges and ∆ = 3, then χ′avd(G) ≤ 5.

They showed that Conjecture 1.1 is also true for bipartite graphs, and if the chromatic number
of G is k, then χ′avd(G) ≤ ∆(G) + O(logk). By using probabilistic method, Hatami [3] proved that
χ′avd(G) ≤ ∆(G)+ 300 for graphs G with maximum degree ∆ ≥ 1020. Joret et al. [4] reduced this bound
to ∆+19. Horňák et al. [5] showed that Conjecture 1.1 holds for planar graphs with maximum degree at
least 12. Yu et al. [6] verified this conjecture for graphs with maximum degree at least 5 and maximum
average degree less than 3. In addition, there are many graphs with adjacent vertex-distinguishing
chromatic indices at most ∆(G) + 1. Hocquard and Montassier [7] showed that χ′avd(G) ≤ ∆(G) + 1 for
graphs with ∆(G) ≥ 5 and mad(G) < 2 − 2

∆(G) . Bonamy and Przybyło [8] proved that for any planar
graph G with ∆(G) ≥ 28 and no isolated edges, χ′avd(G) ≤ ∆(G) + 1. Huang et al. [9] showed that
χ′avd(G) ≤ ∆(G) + 1 holds for every connected planar graph G without 3-cycles and with maximum
degree at least 12.

Wang et al. [10] proved that χ′avd(G) ≤ max{6,∆(G) + 1} for any 2-degenerate graph G without
isolated edges. Wang and Wang [11] characterized the adjacent vertex-distinguishing chromatic
indices for K4-minor graphs. Cubic Halin graphs is an important class of graphs, Chang and Liu [12]
considered the strong edge-coloring of cubic Halin graphs. In this paper, we will study the adjacent
vertex-distinguishing edge-coloring of cubic Halin graphs.

A Halin graph G is a plane embedding of a tree T and a cycle C, where the inner vertices of T
have minimum degree at least 3, and the cycle C connects all the leaves of T in such a way that C is
the boundary of the exterior face. The tree T and the cycle C are called the characteristic tree and the
adjoint cycle of G, respectively.

A caterpillar is a tree whose removal of leaves results in a path P (called spine of the caterpillar).
Let Gr be the set of all cubic Halin graphs whose characteristic trees are caterpillars with r + 2 leaves.
For a Halin graph G = T ∪C in Gr, denote the spine P of T as P = v1v2 . . . vr, let u0, u1 be the neighbors
of v1 other than v2, and ur, ur+1 be the neighbors of vr other than vr−1. For 2 ≤ i ≤ r − 1, let ui be the
neighbor of vi that is a leaf of T . Moreover, assume that u1u2 ∈ E(G) and ur−1ur ∈ E(G). Let v be a
vertex of P. We call u a leaf-neighbor of v if u is adjacent to v and is of degree 1 in T , and the edge uv
is called the leaf-edge. We draw G on the plane by putting the spine P vertically in the middle, and the
leaf-edges incident with vi, 2 ≤ i ≤ r − 1, either left or right edges horizontally to P. See Figure 1 for
an example of G8.
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Figure 1. The graph H0.

In particular, if all the leaf-neighbors are on the same side of P, then we call this graph G a necklace
and denote by Nr. We give configurations of N4 and N5 in Figure 2.

 

Figure 2. The necklace N4 and N5.

It’s easy to see that χ′avd(G) ≥ 4 for any cubic graph G. By Theorem 1.1, the adjacent vertex-
distinguishing chromatic index for any cubic Halin graph is at most 5. Hence, for any cubic Halin
graph G, we have either χ′avd(G) = 4 or χ′avd(G) = 5. Thus it is interesting to determine the exact value
of χ′avd(G). In this paper, we consider the cubic Halin graphs in Gr, and show that there are only two
graphs in Gr with the AVD chromatic index 5.

Theorem 1.2. Let r ≥ 2 be an integer and G ∈ Gr. Then χ′avd(G) = 4 if G < {N4,N5}; otherwise
χ′avd(G) = 5.

2. Proof of Theorem 1.2

Let G be a cubic Halin graph in Gr. We define the subgraphs induced by
{u1v1, u0u1, u0v1, u1u2, v1v2, u0ux} and {urur+1, urvr, vrur+1, ur−1ur, vr−1vr, uyur+1} as end-graphs of
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G, where ux and uy are the neighbors of u0 and ur+1, see Figure 3 for an illustration. We denote these
two subgraphs by G1 and Gr, respectively. For a vertex ui (2 ≤ i ≤ r − 1), we will use u′i and u′′i
to denote the neighbors of ui that are on the cycle if the neighbors of ui are uncertain, where u′i is
closer to the end-graph G1. For 2 ≤ i ≤ r − 1, if the leaf-neighbors of vi, vi+1, . . . , vi+k−1 are on the
same side of P, while vi−1 and vi+k have leaf-neighbors on the other side. Then the subgraph induced
by {vi, vi+1, . . . , vi+k−1, ui, ui+1, . . . , ui+k−1} accompanied by the extra edges vi+k−1vi+k and ui+k−1u′′i+k−1 is
called a k-block, denoted by Gi,k. If a k-block contains the vertex vr, then the block is a bottom block
of G. See the graph H0 in Figure 1, the subgraph induced by {u6, v6, u7, v7} accompanied by the edges
u7u8 and v7v8 is the 2-block G6,2 and it is a bottom block. For two blocks Gi,k and G j,t, if vi+k = v j or
v j+t = vi, then we say Gi,k and G j,t are adjacent. If vi+k ≤ v j, then we say Gi,k is before G j,t. We call
a subgraph obtained from the union of k adjacent 1-block a k-crossing block, or crossing block for
short, of G. We denote the k-crossing block obtained from the union of Gi,1, Gi+1,1, . . . , Gi+k−1,1 as
Gi,k,c. In Figure 1, the graph induced by the edges {v4u4, v4v5, u4u6, v5u5, v5v6, u5u9} is the 2-crossing
block G4,2,c.

Figure 3. The end graphs G1 and Gr.

A coloring of G is good, if it is an AVD-edge-coloring of G using colors in {1, 2, 3, 4}. To prove
Theorem 1.2, we will give a good coloring of G by coloring the edges of G from the top down. Initially
we establish a good coloring of the end-graph G1, then we extend this coloring to the block that contains
u2v2. By analyzing the coloring of G1 and the block containing u2v2, we proceed to color the block
that is adjacent to the block containing u2v2. Repeat this process until we complete the coloring of the
bottom block and the end-graph Gr.

In the following, given an edge-coloring c of a graph G, we define a vertex coloring c respect to
c as follows: for each vertex v ∈ V(G), let c(v) be an element in S c(v), that is, c(v) is the color that
is not appeared at the edges incident with v. Note that if c is a good coloring of G, uv ∈ E(G), and
d(u) = d(v) = 3, then c(u) and c(v) are unique, and c(u) , c(v). Now we consider the colorings of the
end-graphs.

Proposition 2.1. Let G1 be an end-graph with vertex set {u1, u2, v1, v2, u0, ux}. If G1 admits a good
coloring, then at least two edges of u1u2, v1v2, and u0ux are colored the same. Moreover, there are four
types of good colorings of G1:

(1) c(u1u2) = c(v1v2) = c(u0ux), c(u1v1) = c(u0), c(u0v1) = c(u1), c(u0u1) = c(v1);
(2) c(u1u2) = c(v1v2) , c(u0ux), c(u0v1) = c(u1), c(u0u1) = c(v1), c(u1u2) = c(u0);
(3) c(u1u2) = c(u0ux) , c(v1v2), c(u1v1) = c(u0), c(u0v1) = c(u1), c(u1u2) = c(v1);
(4) c(v1v2) = c(u0ux) , c(u1u2), c(u1v1) = c(u0), c(u0u1) = c(v1), c(v1v2) = c(u1).
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Proof. Suppose that G1 has a good coloring ϕ. If u1u2, v1v2, and u0ux are colored with distinct colors,
without loss of generality, assume that ϕ(u1u2) = 1, ϕ(v1v2) = 2 and ϕ(u0ux) = 3, then ϕ(u0u1) ∈ {2, 4}.
If ϕ(u0u1) = 4, then ϕ(u1v1) = 3 and ϕ(u0v1) = 1. But then S (u0) = S (u1), contradicts that ϕ is a good
coloring. Hence ϕ(u0u1) = 2. No matter what color of u1v1 is, we always have S (u1) = S (v1), so ϕ
cannot be a good coloring. Therefore, at least two edges of u1u2, v1v2, and u0ux are colored the same.

There are four types of colorings on the edges u1u2, v1v2 and u0ux such that at least two of them
are colored the same, each type we will obtain a good coloring of G1. Let c be a coloring of the edges
u1u2, v1v2 and u0ux.

Type (1): c(u1u2) = c(v1v2) = c(u0ux). Then color u0u1, u0v1, v1u1 with three distinct colors
in {1, 2, 3, 4} that are different from c(u1u2). Thus, c is a good coloring of G1, and c(u1v1) = c(u0),
c(u0v1) = c(u1), c(u0u1) = c(v1).

Type (2): c(u1u2) = c(v1v2) , c(u0ux). Then color u0u1, u0v1 with distinct colors
in {1, 2, 3, 4}\{c(u1u2), c(u0ux)}, and color u1v1 with c(u0ux). Thus, c is a good coloring of G1, and
c(u0v1) = c(u1), c(u0u1) = c(v1), c(u1u2) = c(u0).

Type (3): c(u1u2) = c(u0ux) , c(v1v2). Then color u1v1, u0v1 with distinct colors
in {1, 2, 3, 4}\{c(v1v2), c(u0ux)}, and color u0u1 with c(v1v2). Thus, c is a good coloring of G1, and
c(u1v1) = c(u0), c(u0v1) = c(u1), c(u1u2) = c(v1).

Type (4): c(v1v2) = c(u0ux) , c(u1u2). Then color u0u1, u1v1 distinct colors
in {1, 2, 3, 4}\{c(u1u2), c(v1v2)}, and color u0v1 is with c(u1u2). Thus, c is a good coloring of G1, and
c(u1v1) = c(u0), c(u0u1) = c(v1), c(v1v2) = c(u1).

Therefore, we complete the proof of this proposition. □

Remark 2.1. The results of Proposition 2.1 is also holds for the end-graph Gr, that is, if Gr admits a
good coloring, then at least two edges of ur−1ur, vr−1vr, uyur+1 are colored the same.

Lemma 2.1. Let G be a graph inGr, and G′ be the graph obtained from G by deleting edges urvr, vrur+1,
and urur+1. Suppose that G′ has a good coloring c, then c can be extended to a good coloring of G if
and only if one of the following statements holds:

(1) c(ur−1ur) = c(vr−1vr) = c(uyur+1);
(2) c(ur−1ur) = c(vr−1vr) , c(uyur+1) and c(uy) , c(ur−1ur);
(3) c(ur−1ur) = c(uyur+1) , c(vr−1vr) and c(vr−1) , c(ur−1ur), moreover, if c(ur−1) = c(uy), then they

are equal to c(vr−1vr);
(4) c(vr−1vr) = c(uyur+1) , c(ur−1ur) and c(ur−1) , c(vr−1vr), moreover, if c(vr−1) = c(uy), then they

are equal to c(ur−1vr).

Proof. Suppose c is extended to a good coloring of G, then c is a good coloring of Gr. By Remark 2.1,
at least two edges of ur−1ur, vr−1vr, and uyur+1 are colored the same. If all three edges ur−1ur, vr−1vr,

and uyur+1 are colored the same, then statement (1) holds. Otherwise, exactly two edges of them are
colored the same.

If c(ur−1ur) = c(vr−1vr) , c(uyur+1), then c(vrur+1) , c(ur−1ur) since c(vrur+1) , c(vr−1vr).
Furthermore, c(urur+1) , c(ur−1ur) and c(uyur+1) , c(ur−1ur), hence c(ur−1ur) does not appear at
the edges incident with ur+1, it follows that c(ur+1) = c(ur−1ur). Because c(uy) , c(ur+1), we have
c(uy) , c(ur−1ur).

If c(ur−1ur) = c(uyur+1) , c(vr−1vr), without loss of generality, assume that c(ur−1ur) = c(uyur+1) = 1,
c(vr−1vr) = 2, then c(urvr) , 1 and c(vrur+1) , 1, hence c(vr) = 1, which implies that c(vr−1) , 1,
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that is, c(vr−1) , c(ur−1ur). Furthermore, if c(ur−1) = c(uy), then c(ur−1) must appear on urur+1. If
c(ur−1) , c(vr−1vr), then c(ur−1) ∈ {3, 4}. If c(ur−1) = 3, then c(urur+1) = 3, so c(urvr) = 4, and vrur+1

cannot be colored. If c(ur−1) = 4, then c(urur+1) = 4, so c(urvr) = 3, and vrur+1 cannot be colored.
Therefore, c(ur−1) = c(vr−1vr).

If c(vr−1vr) = c(uyur+1) , c(ur−1ur), by the same analysis as case c(ur−1ur) = c(uyur+1) , c(vr−1vr),
we have c(ur−1) , c(vr−1vr), and if c(vr−1) = c(uy), then they must equal to c(ur−1vr).

Therefore, if c is extended to a good coloring of G, then one of the statements (1)–(4) holds.
On the other hand, we show that if c satisfies one of the statements (1)–(4), then c can be extended

to a good coloring of G.
Suppose that c satisfies statment (1), that is, c(ur−1ur) = c(vr−1vr) = c(uyur+1). Since ur−1vr−1 ∈

E(G′), we have c(ur−1) , c(vr−1). If c(uy) is distinct from c(ur−1) and c(vr−1), then let c(urvr) =
c(ur−1), c(vrur+1) = c(vr−1), c(urur+1) = c(uy). It is easy to see that c is a good coloring of G. If
c(uy) is equal to c(ur−1) or c(vr−1), without loss of generality, assume that c(uy) = c(ur−1), then let
c(urur+1) = c(uy), c(urvr) = c(vr−1), c(vrur+1) = {1, 2, 3, 4}\{c(uy), c(vr−1), c(vr−1vr)}. Then c is a good
coloring of G.

Now suppose that c satisfies statment (2), that is, c(ur−1ur) = c(vr−1vr) , c(uyur+1). Without loss
of generality, assume that c(ur−1ur) = c(vr−1vr) = 1 and c(uyur+1) = 2. By statement (2), c(uy) , 1.
If c(ur−1) = 2, then let c(urvr) = 2, c(vrur+1) = c(vr−1), and c(urur+1) = {1, 2, 3, 4}\{1, 2, c(vr−1)}. If
c(vr−1) = 2, then let c(urvr) = 2, c(urur+1) = c(ur−1), and c(vrur+1) = {1, 2, 3, 4}\{1, 2, c(ur−1)}. If
c(ur−1) , 2 and c(vr−1) , 2, then let c(urvr) = 2, c(urur+1) = c(ur−1), and c(vrur+1) = c(vr−1). Note that
c(ur−1) , 1, c(vr−1) , 1, and c(ur−1) , c(vr−1), hence all the colorings above are good colorings of G.

Next suppose that c satisfies statment (3), that is, c(ur−1ur) = c(uyur+1) , c(vr−1vr). Without
loss of generality, assume that c(ur−1ur) = c(uyur+1) = 1 and c(vr−1vr) = 2. If c(ur−1) =
c(uy), by statement (3), c(ur−1) = c(uy) = 2, then let c(urur+1) = 2, c(urvr) = c(vr−1), and
c(vrur+1) = {1, 2, 3, 4}\{1, 2, c(vr−1)}. If c(ur−1) = 2, c(uy) , 2, then let c(urur+1) = 2, c(urvr) = c(vr−1),
and c(vrur+1) = {1, 2, 3, 4}\{1, 2, c(vr−1)}. If c(ur−1) , 2, then let c(urvr) = c(ur−1), c(vrur+1) = c(vr−1)
and c(urur+1) ∈ {1, 2, 3, 4}\{1, c(ur−1), c(vr−1)}. Note that c(vr−1) , 2, and by statement (3), we have
c(vr−1) , 1, hence c(vr−1) ∈ {3, 4}. Therefore, we can check that the colorings above are good colorings
of G.

The argument for statement (4) is similar as the argument for statement (3), hence we omit the proof
here. □

Next we consider the coloring of the blocks. Let Gi,k (Gi,k,c) be a k-block (k-crossing block), we
define the associated subgraph Hi,k (Hi,k,c) of Gi,k (Gi,k,c) as the subgraph obtained by the union of G1

and all the blocks before Gi,k (Gi,k,c). To color Gi,k or Gi,k,c, we assume that the associated subgraph Hi,k

has a good coloring c. Let v ju j be an edge with j ≤ i. We define {c(v j−1v j), c(u′ju j), c(v j−1), c(u′j)}
as the total-set of v ju j. If the total-set of v ju j is {1, 2, 3, 4}, then we call v ju j a full-edge. If
c(v j−1v j) , c(u′ju j), c(v j−1v j) = c(u′j), c(u′ju j) , c(v j−1), then we call v ju j an in-half-edge. If
c(v j−1v j) , c(u′ju j), c(u′ju j) = c(v j−1), c(v j−1v j) , c(u′j), then we call v ju j an out-half-edge. A half-
edge means a in-half-edge or out-half-edge. The edge v ju j is a crossing-edge if c(u′ju j) = c(v j−1v j).
Note that, if v ju j is a crossing-edge, then c(u ju′′j ) = c(v j) and c(v jv j+1) = c(u j), and vice versa. For
two edges v ju j and v j+1u j+1, assume that u j and u j+1 are on the different sides of P, we call v ju j an
outer-crossing-edge if c(v jv j+1) = c(u j) and c(u ju′′j ) = c(u′j+1). If c(u ju′′j ) ∈ {c(v j), c(u′j+1)}, then we
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call the color c(u ju′′j ) suitable. Note that if v ju j is a crossing-edge or outer-crossing-edge, then c(u ju′′j )
is suitable.

Lemma 2.2. Let Gi,k be a k-block with k ≥ 2, suppose Hi,k ∪Gi,k has a good coloring c such that v ju j

is an in-half-edge(out-half-edge) for some j, i ≤ j < i + k − 1, then for any t, j < t ≤ i + k − 1, vtut is
also an in-half-edge(out-half-edge).

Moreover, if Gi,k is a bottom block and v ju j is a half-edge, then c can be extended to a good coloring
of G if and only if c(ui−1ur+1) = c(ur−1ur) when v ju j is an in-half-edge or c(ui−1ur+1) = c(vr−1vr) when
v ju j is an out-half-edge.

Proof. We assume that v ju j is an in-half-edge. Without loss of generality, suppose c(v j−1v j) =
c(u′j) = 1, c(u′ju j) = 2, and c(v j−1) = 3. Since c(u′j) must appear at the edges incident with u j

and c(v ju j) , 1, we have that c(u ju j+1) = 1. If c(v jv j+1) = 2, then S (v j) = S (u j), contradicts that
c is good coloring. So c(v jv j+1) ∈ {3, 4}. If c(v jv j+1) = 3, then c(v ju j) = 4. If c(v jv j+1) = 4, then
c(v ju j) = 3. No matter v jv j+1 is colored with 3 or 4, we have c(v jv j+1) , c(u ju j+1), c(v jv j+1) = c(u j),
and c(u ju j+1) , c(v j). That is, the edge v j+1u j+1 is a in-half-edge. By the same argument, we have
that for any t, j < t ≤ i + k − 1, vtut is an in-half-edge. Furthermore, if Gi,k is a bottom block,
then c(vr−1vr) , c(ur−1ur), c(vr−1vr) = c(ur−1), and c(ur−1ur) , c(vr−1). Statement (1), (2) and (4) of
Lemma 2.1 can not hold. Hence c can be extended to a good coloring of G if and only if statement (3)
of Lemma 2.1 holds. Since c(ur−1ur) , c(vr−1), we have c(ui−1ur+1) = c(ur−1ur).

By the same argument as above, we can show that if v ju j is an out-half-edge, then for any t, j < t ≤
i + k − 1, vtut is also an out-half-edge. And if Gi,k is a bottom block, then c can be extended to a good
coloring of G if and only if c(ui−1ur+1) = c(vr−1vr). □

Lemma 2.3. Let Gi,k be a k-block with k ≥ 4. Suppose Hi,k has a good coloring c such that viui is an
in-half-edge (out-half-edge), then for any α ∈ {1, 2, 3, 4}, c can be extended to a good coloring of Gi,k

such that c(ui+k−1u′′i+k−1) = α (c(vi+k−1vi+k) = α).

Proof. Suppose viui is an in-half-edge, without loss of generality, assume that c(vi−1vi) =

c(u′i) = 1, c(u′iui) = 2, and c(vi−1) = 3. Then we have c(uiui+1) = 1, and c(vivi+1) < {1, 2}.
We color vivi+1 with a color in {3, 4} and color vi+k−2vi+k−1 with α. For i + 1 ≤ j ≤ i + k − 3,
we color v jv j+1 with a color in {1, 2, 3, 4} that is different from the colors of v j−2v j−1, v j−1v j and α,
and color vi+k−1vi+k with a color different from the colors of vi+k−3vi+k−2 and vi+k−2vi+k−1. Then set
c(u ju j+1) = c(v j−1v j) for i ≤ j ≤ i + k − 2 and c(ui+k−1u′′i+k−1) = α. Finally, for i ≤ j ≤ i + k − 1, set
c(v ju j) = {1, 2, 3, 4}\{c(v j−1v j), c(u′ju j), c(v jv j+1}. It is easy to see that this coloring c is a good coloring
of Gi,k and c(ui+k−1u′′i+k−1) = α.

By symmetry, if viui is an out-half-edge, then for any α ∈ {1, 2, 3, 4}, c can be extended to a good
coloring of Gi,k such that c(vi+k−1vi+k) = α. □

Lemma 2.4. Let Gi,k be a bottom block with k ≥ 1. If Hi,k has a good coloring c such that viui is a
crossing-edge, then c cannot be extended to a good coloring of G.

Proof. First assume that k = 1, then i = r−1. If vr−1ur−1 is a crossing-edge, then c(ur−1ur) = c(vr−1) and
c(vr−1vr) = c(ur−1). Hence statement (3) and (4) of Lemma 2.1 can not hold. Since c(ur−1) , c(ur−1ur),
we have c(ur−1ur) , c(vr−1vr). It follows that statement (1) and (2) of Lemma 2.1 can not hold.
Therefore, by Lemma 2.1, c cannot be extended to a good coloring of G.
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Suppose k ≥ 2. If viui is a crossing-edge, then c(uiui+1) = c(vi) and c(vivi+1) = c(ui). Without loss
of generality, assume that c(uiui+1) = c(vi) = 1 and c(vivi+1) = c(ui) = 2, then ui+1u′′i+1 must be colored
with 2 and vi+1vi+2 must be colored with 1. But then S (ui+1) = S (vi+1) no matter what color of ui+1vi+1

is, which shows that c cannot be extended to a good coloring of G. □

Theorem 2.1. If G is a necklace in Gr for r ≥ 2, then χ′avd(G) = 4 if r < {4, 5}, otherwise χ′avd(G) = 5.

Proof. If r = 2, then G is the graph depicted in Figure 4. Let c(u0v1) = c(u2v2) = 1, c(u0u1) =
c(v2u3) = 2, c(u1v1) = c(u2u3) = 3, and c(u0u3) = c(v1v2) = c(u1u2) = 4. It is easy to check that c is a
good coloring of G.

Figure 4. The necklace N2.

Now we assume that r ≥ 3. Note that G is the union of end-graphs G1, Gr, and a (r − 2)-bottom
block. We first give a good coloring of G1. By Proposition 2.1, there are four types of colorings on
G1. In type (1) and (2), c(u1u2) = c(v1v2), which means u2v2 is a crossing edge, by Lemma 2.4, this
coloring cannot be extended to a good coloring of G.

In type (3), c(u1u2) = c(u0ur+1), c(u1u2) , c(v1v2), c(u1u2) = c(v1), and c(u0v1) = c(u1). Since
c(u0v1) , c(v1v2), we have c(v1v2) , c(u1), which means that v2u2 is an out-half-edge. By Lemma 2.2,
c can be extended to a good coloring of G if and only if c(u0ur+1) = c(vr−1vr).

If r = 3, then since v2u2 is an out-half-edge, c(v2v3) = c(u1u2) = c(u0u4), hence c can be extended
to a good coloring of G.

If r = 4, then by Lemma 2.2, v3u3 is an out-half-edge, hence c(v3v4) = c(u2u3). Since c(u2u3) ,
c(u1u2), it follows that c(u0ur+1) , c(v3v4), hence c cannot be extended to a good coloring of G.

If r = 5, then c(v4v5) = c(u3u4) and c(u3u4) = c(v3) since v4u4 is still an out-half-edge. Note that
c(v3) , c(v2v3) and c(v2v3) = c(u1u2), it follows that c(v4v5) , c(u1u2), that is, c(u0ur+1) , c(v4v5),
hence c cannot be extended to a good coloring of G.

If r ≥ 6, then r− 2 ≥ 4. By Lemma 2.3, let α = c(u0ur+1), then c can be extended to a good coloring
of G2,r−2 such that c(vr−1vr) = c(u0ur+1), hence c can be extended to a good coloring of G.

By symmetry, if the coloring of G1 is of type (4), then the edge v2u2 is an in-half-edge. By the same
argument, we will obtain a good coloring of G if r , 4 and r , 5.

In summary, if r < {4, 5}, we could obtained a good coloring of G, and for r = 4 or r = 5,
χ′avd(G) ≥ 5. Since G is cubic, χ′avd(G) ≥ 4, thus χ′avd(G) = 4 if r < {4, 5}. For r = 4 or r = 5, from
Theorem 1.1, we have χ′avd(G) = 5. □
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Lemma 2.5. Suppose Gi,k is a bottom block, and Hi,k has a good coloring c such that viui is a full-edge.
If k = 1 or k ≥ 3, then c can be extended to a good coloring of G. If k = 2, then c can be extended to a
good coloring of G if and only if c(ui−1ur+1) is suitable.

Proof. Without loss of generality, let c(vi−1vi) = 1, c(u′iui) = 2, c(vi−1) = 3 and c(u′i) = 4. We will
consider the following two cases.

Case 1. k = 1. Then i = r− 1. Let c(vr−1vr) = c(ur−1ur) = 3, c(vr−1ur−1) = 4. If c(ur−2ur+1) = 3, then
statement (1) of Lemma 2.1 holds. If c(ur−2ur+1) , 3, we have c(ur−2) , c(ur−1ur) since c(ur−2) , c(vr−2)
and c(vr−2) = 3. Hence statement (2) of Lemma 2.1 holds. Therefore, we will obtain a good coloring
of G by Lemma 2.1.

Case 2. k ≥ 2. Note that c(vi−1) must appear on the edges incident with vi, that is, viui or vivi+1 is
colored with 3.

Subcase 2.1. viui is colored with 3. Then uiui+1 is colored with 4. If vivi+1 is colored with 4, then
vi+1ui+1 is a crossing-edge, by Lemma 2.4, this coloring cannot be extended to a good coloring of G.
Hence vivi+1 is colored with 2. It follows that c(vi) = 4 and c(ui) = 1. Thus vi+1ui+1 is an out-half-edge.
By Lemma 2.2, c can be extended to a good coloring of G if and only if c(ui−1ur+1) = c(vr−1vr).

If k = 2, then r = i + 2, c(vr−1vr) = c(vi+1vi+2). Since c(vi+1vi+2) = c(uiui+1) = 4, c can be extended
to a good coloring of G if and only if c(ui−1ur+1) = 4 = c(u′i).

If k = 3, then r = i + 3. Denote c(ui−1ur+1) = α. If α ∈ {1, 3}, then let c(vi+2vi+3) = c(ui+1ui+2) = α,
c(vi+1vi+2) = 4, c(vi+1ui+1) = {1, 3}\{α}, c(ui+2vi+2) ∈ {1, 2, 3}\{α}, c(ui+2ur) = {1, 2, 3}\{α, c(ui+2vi+2)}.
Now we obtain a good coloring of Gi,k such that c(ui−1ur+1) = c(vi+2vi+3) = c(vr−1vr).

If k = 4, then r = i + 4. Denote c(ui−1ur+1) = α. If α ∈ {1, 2, 3}, then let c(vi+1vi+2) = 4,
c(vi+3vi+4) = c(ui+2ui+3) = α, c(vi+2vi+3) = c(ui+1ui+2) ∈ {1, 3}\{α}, c(ui+3ur) ∈ {1, 2, 3, 4}\{c(vi+2vi+3), α},
c(v ju j) = {1, 2, 3, 4}\{c(v j−1v j), c(v jv j+1), c(u ju j+1)} for j = i + 1, i + 2, i + 3. Now we obtain a good
coloring of Gi,k such that c(ui−1ur+1) = c(vi+3vi+4) = c(vr−1vr).

If k ≥ 5, by Lemma 2.3, let α = c(ui−1ur+1), then we can obtain a good coloring of Gi,k such that
c(vr−1vr) = α = c(ui−1ur+1).

Subcase 2.2. vivi+1 is colored with 3. If uiui+1 is colored with 4, then the edge viui cannot be colored
to obtain a good coloring. Hence viui is colored with 4. If uiui+1 is colored with 3, then vi+1ui+1 is a
crossing-edge, by Lemma 2.4, this coloring cannot be extended to a good coloring of G. Hence uiui+1 is
colored with 1. It follows that c(vi) = 2 and c(ui) = 3. Thus vi+1ui+1 is an in-half-edge. By Lemma 2.2,
c can be extended to a good coloring of G if and only if c(ui−1ur+1) = c(ur−1ur).

If k = 2, then r = i + 2, c(ur−1ur) = c(ui+1ui+2). Since c(ui+1ui+2) = c(vivi+1) = 3, c can be extended
to a good coloring of G if and only if c(ui−1ur+1) = 3 = c(vi−1).

If k = 3, then r = i + 3. Denote c(ui−1ur+1) = α. If α ∈ {2, 4}, then let c(ui+2ui+3) = c(vi+1vi+2) = α,
c(ui+1ui+2) = 3, c(vi+1ui+1) = {2, 4}\{α}, c(ui+2vi+2) ∈ {1, 2, 4}\{α}, c(vi+2vr) = {1, 2, 4}\{α, c(ui+2vi+2)}.
Now we obtain a good coloring of Gi,k such that c(ui−1ur+1) = c(ui+2ui+3) = c(ur−1ur).

If k = 4, then r = i + 4. Denote c(ui−1ur+1) = α. If α ∈ {1, 2, 4}, then let c(ui+1ui+2) = 3,
c(ui+3ui+4) = c(vi+2vi+3) = α, c(ui+2ui+3) = c(vi+1vi+2) ∈ {2, 4}\{α}, c(vi+3vr) ∈ {1, 2, 3, 4}\{c(ui+2ui+3), α},
c(v ju j) = {1, 2, 3, 4}\{c(u j−1u j), c(u ju j+1), c(v jv j+1)} for j = i + 1, i + 2, i + 3. Now we obtain a good
coloring of Gi,k such that c(ui−1ur+1) = c(ui+3ui+4) = c(ur−1ur).

If k ≥ 5, by Lemma 2.3, let α = c(ui−1ur+1), then we can obtain a good coloring of Gi,k such that
c(ur−1ur) = α = c(ui−1ur+1).
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Combining Subcase 2.1 and Subcase 2.2, for k ≥ 3, we can obtain a good coloring of G. But for
k = 2, c can be extended to a good coloring of G if and only if c(ui−1ur+1) ∈ {c(u′i), c(vi−1)}, that is
c(ui−1ur+1) is suitable. □

Lemma 2.6. Let Gi,k,c be a k-crossing block. Suppose the associated subgraph Hi,k,c has a good
coloring c such that viui is a full-edge.

(1) If vi−1ui−1 is an outer-crossing-edge, then c can be extended to a good coloring of Gi,k,c such that
for each j, i + 1 ≤ j ≤ i + k, v ju j is a full-edge and v j−1u j−1 is an outer-crossing-edge.

(2) If vi−1ui−1 is a crossing-edge, then for each j, i + 1 ≤ j ≤ i + k, we can extend c such that v ju j is
a full-edge and c(u j−1u′′j−1) = c(v j−1).

Proof. Without loss of generality, assume that c(vi−1vi) = 1, c(u′iui) = 2, c(vi−1) = 3 and c(u′i) = 4.
Considering the case that vi−1ui−1 is an outer-crossing-edge, that is, c(vi−1vi) = c(ui−1) and

c(ui−1ui+1) = c(u′i). So c(ui−1) = 1, c(ui−1ui+1) = 4. We set c(vivi+1) = 3, c(uiu′′i ) = 1, and c(viui) = 4.
Then c(vi) = 2 and c(ui) = 3. Hence, the edge vi+1ui+1 is a full-edge, and viui is an outer-crossing-edge.
Note that the edge vi+1ui+1 has the same property as viui, then we can do the similar coloring such that
for each j, i + 1 ≤ j ≤ i + k, v ju j is a full-edge and v j−1u j−1 is an outer-crossing-edge.

Considering the case that vi−1ui−1 is a crossing-edge, that is, c(vi−1vi) = c(ui−1) and c(ui−1ui+1) =
c(vi−1). So c(ui−1) = 1, c(ui−1ui+1) = 3. If k = 1, we set c(vivi+1) = 2, c(uiu′′i ) = 4, and c(viui) = 3.
Then c(vi) = 4 and c(ui) = 1. Hence, the edge vi+1ui+1 is a full-edge, and c(uiu′′i ) = c(vi). If k ≥ 2,
then we reset the coloring such that c(vi+1ui+1) = 1, c(vi+1vi+2) = 2, c(vivi+1) = c(uiui+2) = 3, c(viui) =
c(ui+1u′′i+1) = 4. Then c(vi+1) = 4, c(ui+1) = 2, and c(ui) = 1. Hence, the edge vi+2ui+2 is a full-edge,
and vi+1ui+1 is a crossing-edge, which shows that c(ui+1u′′i+1) = c(vi+1). Note that the edge vi+2ui+2

has the same property as viui, then we can do the similar coloring such that v ju j is a full-edge and
c(u j−1u′′j−1) = c(v j−1) for i + 1 ≤ j ≤ i + k. □

Lemma 2.7. Let Gi,k be a k-block with k ≥ 2. Suppose Hi,k has a good coloring c such that viui is a
full-edge, then

(1) If Gi,k is adjacent to a t-block Gi+k,t, then we can extend the coloring c such that vi+kui+k is a
full-edge. Moreover, if c(ui+k−1u′′i+k−1) is not suitable and the Gi+k,t is a bottom block with t = 2, then c
can be extended to a good coloring of G.

(2) If Gi,k is adjacent to a t-crossing block Gi+k,t,c with t ≥ 2, then we can extend the coloring c such
that vi+k+t−1ui+k+t−1 is a full-edge and c(ui+k+t−2u′′i+k+t−2) is suitable.

Proof. Without loss of generality, suppose c(vi−1vi) = 1, c(u′iui) = 2, c(vi−1) = 3 and c(u′i) = 4. Then we
have c(ui−1) , 3. If c(ui−1u′′i−1) = 2 and c(ui−1) = 4, then c(vi−2vi−1) = 4 and c(u′i−1ui−1) = 3, it follows
that the edge vi−1ui−1 cannot be AVD-edge-colored with 4 colors. Similarly for the case c(ui−1u′′i−1) = 4
and c(ui−1) = 2. Hence, we have ⟨c(ui−1u′′i−1), c(ui−1)⟩ ∈ {⟨1, 2⟩, ⟨2, 1⟩, ⟨1, 4⟩, ⟨4, 1⟩, ⟨3, 1⟩, ⟨3, 2⟩, ⟨3, 4⟩},
where ⟨a, b⟩ is an ordered pair and ⟨a, b⟩ = ⟨c, d⟩ if and only if a = c and b = d.

Now we divide the proof into the following three cases depending on k.
Case 1. k = 2. Then u′′i−1 = ui+2.
Subcase 1.1. ⟨c(ui−1ui+2), c(ui−1)⟩ ∈ {⟨1, 2⟩, ⟨2, 1⟩}.
First considering the case that Gi,2 is adjacent to a t-block. Set c(vi+1ui+1) = 1, c(vivi+1) = 2, c(viui) =

c(ui+1u′′i+1) = 3, c(uiui+1) = c(vi+1vi+2) = 4, then c(vi+1) = 3 and c(ui+1u′′i+1) = c(vi+1). It is easy to see
that vi+2ui+2 is a full-edge and c(ui+1u′′i+1) is suitable.

AIMS Mathematics Volume 8, Issue 11, 27820–27839.



27830

Now considering the case that Gi,2 is adjacent to a t-crossing block. Set
c(vi+1ui+1) = 1, c(vi+1vi+2) = 2, c(viui) = c(ui+1u′′i+1) = c(vi+2ui+2) = 3, c(vivi+1) = c(uiui+1) =
c(vi+2vi+3) = 4. If ⟨c(ui−1ui+2), c(ui−1)⟩ = ⟨1, 2⟩, then set c(ui+2u′′i+2) = 2. It is easy to see that
vi+3ui+3 is a full-edge and vi+2ui+2 is an outer-crossing-edge. If ⟨c(ui−1ui+2), c(ui−1)⟩ = ⟨2, 1⟩, then set
c(ui+2u′′i+2) = 1. It follows that vi+3ui+3 is a full-edge and vi+2ui+2 is a crossing-edge. By Lemma 2.6,
we can extend the coloring c such that vi+2+t−1ui+2+t−1 is a full-edge and c(ui+2+t−2u′′i+2+t−2) is suitable.

Subcase 1.2. ⟨c(ui−1ui+2), c(ui−1)⟩ ∈ {⟨1, 4⟩, ⟨4, 1⟩}.

In this case, set c(vi+1ui+1) = 1, c(ui+1u′′i+1) = 2, c(viui) = c(vi+1vi+2) = 3, c(vivi+1) = c(uiui+1) = 4.
Then c(vi+1) = 2, vi+2ui+2 is a full-edge and vi+1ui+1 is a crossing-edge. Hence, if Gi,2 is adjacent to a
t-block, then we have shown that vi+2ui+2 is a full-edge and c(ui+1u′′i+1) is suitable. If Gi,2 is adjacent
to a t-crossing block, then by Lemma 2.6, we can extend the coloring c such that vi+2+t−1ui+2+t−1 is a
full-edge and c(ui+2+t−2u′′i+2+t−2) is suitable.

Subcase 1.3. ⟨c(ui−1ui+2), c(ui−1)⟩ ∈ {⟨3, 1⟩, ⟨3, 2⟩, ⟨3, 4⟩}.

First set c(viui) = 4, c(vivi+1) = c(uiui+1) = 3. If ⟨c(ui−1ui+2), c(ui−1)⟩ = ⟨3, 1⟩, then set
c(vi+1ui+1) = 1, c(vi+1vi+2) = 2, c(ui+1u′′i+1) = 4. If ⟨c(ui−1ui+2), c(ui−1)⟩ = ⟨3, 2⟩, then set
c(vi+1ui+1) = 2, c(vi+1vi+2) = 4, c(ui+1u′′i+1) = 1. If ⟨c(ui−1ui+2), c(ui−1)⟩ = ⟨3, 4⟩, then set
c(vi+1ui+1) = 4, c(vi+1vi+2) = 2, c(ui+1u′′i+1) = 1. In all these cases, we have that vi+2ui+2 is a full-
edge and vi+1ui+1 is a crossing-edge. Therefore, the conclusion holds for these subcases.

Case 2. k = 3. Then u′′i−1 = ui+3.

Subcase 2.1. ⟨c(ui−1ui+3), c(ui−1)⟩ ∈ {⟨1, 2⟩, ⟨2, 1⟩, ⟨1, 4⟩, ⟨4, 1⟩}.

First considering that Gi,3 is adjacent to a t-block. If ⟨c(ui−1ui+3), c(ui−1)⟩ ∈ {⟨1, 2⟩, ⟨2, 1⟩}, then
set c(uiui+1) = c(vi+2ui+2) = 1, c(vi+1vi+2) = c(ui+2u′′i+2) = 2, c(vivi+1) = c(ui+1ui+2) = 3, c(viui) =
c(vi+1ui+1) = c(vi+2vi+3) = 4, denote this coloring as (A). Under this coloring, we have
⟨c(vi+2vi+3), c(vi+2)⟩ = ⟨4, 3⟩, hence vi+3ui+3 is a full-edge. Note that if ⟨c(ui−1ui+3), c(ui−1)⟩ = ⟨1, 2⟩,
then c(ui+2u′′i+2) is suitable, and vi+2ui+2 is an outer-crossing-edge. But if ⟨c(ui−1ui+3), c(ui−1)⟩ = ⟨2, 1⟩,
then c(ui+2u′′i+2) is not suitable. For this case, if Gi+3,t is a bottom block with t = 2, see Figure 5, then we
color the edges of Gi,3 ∪ Gi+3,2 ∪ Gr as follows: c(uiui+1) = c(vi+2vi+3) = c(ui+3ui+4) = c(vi+5ui+6) = 1,
c(vi+1ui+1) = c(vi+2ui+2) = c(vi+4vi+5) = c(ui+5ui+6) = 2, c(vivi+1) = c(ui+1ui+2) = c(vi+3ui+3) =
c(vi+4ui+4) = c(vi+5ui+5) = 3, c(viui) = c(vi+1vi+2) = c(ui+2ui+6) = c(vi+3vi+4) = c(ui+4ui+5) = 4. It
follows that c is a good coloring of G.
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Figure 5. The three colorings of Gi,3.

If ⟨c(ui−1ui+3), c(ui−1)⟩ ∈ {⟨1, 4⟩, ⟨4, 1⟩}, then set c(uiui+1) = c(vi+2ui+2) = 1, c(vi+1ui+1) =
c(vi+2vi+3) = 2, , c(vivi+1) = c(ui+1ui+2) = 3, c(viui) = c(vi+1vi+2) = c(ui+2u′′i+2) = 4, denote this
coloring as (B). Under this coloring, we have ⟨c(vi+2vi+3), c(vi+2)⟩ = ⟨2, 3⟩, hence vi+3ui+3 is a full-
edge. Similarly, if ⟨c(ui−1ui+3), c(ui−1)⟩ = ⟨1, 4⟩, then c(ui+2u′′i+2) is suitable, and vi+2ui+2 is an outer-
crossing-edge. But if ⟨c(ui−1ui+3), c(ui−1)⟩ = ⟨4, 1⟩, then c(ui+2u′′i+2) is not suitable. For this case,
if Gi+3,t is a bottom block with t = 2, see Figure 6, then we color the edges of Gi,3 ∪ Gi+3,2 ∪ Gr

as follows: c(uiui+1) = c(vi+2vi+3) = c(ui+3ui+4) = c(vi+5ui+6) = 1, c(vi+1vi+2) = c(ui+2ui+6) =
c(vi+3vi+4) = c(ui+4ui+5) = 2, c(vivi+1) = c(ui+1ui+2) = c(vi+3ui+3) = c(vi+4ui+4) = c(vi+5ui+5) = 3,
c(viui) = c(vi+1ui+1) = c(vi+2ui+2) = c(vi+4vi+5) = c(ui+5ui+6) = 4. It follows that c is a good coloring of
G.

Figure 6. The 3-block adjacent with a 2-bottom block.

Now considering the case that Gi,3 is adjacent to a t-crossing block. If ⟨c(ui−1ui+3), c(ui−1)⟩ = ⟨1, 2⟩,
then we use coloring (A), under this coloring, vi+3ui+3 is a full-edge and vi+2ui+2 is an outer-crossing-
edge, by Lemma 2.6, we can extend the coloring c such that vi+3+t−1ui+3+t−1 is a full-edge and
c(ui+3+t−2u′′i+3+t−2) is suitable. Similarly, if ⟨c(ui−1ui+3), c(ui−1)⟩ = ⟨1, 4⟩, then we use coloring (B), and
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extend this coloring to the t-crossing block such that vi+3+t−1ui+3+t−1 is a full-edge and c(ui+3+t−2u′′i+3+t−2)
is suitable.

For the case ⟨c(ui−1ui+3), c(ui−1)⟩ = ⟨2, 1⟩, we first use coloring (B), and then set
c(vi+3ui+3) = 4, c(ui+3u′′i+3) = 1, and c(vi+3vi+4) = 3, then c(vi+3) = 1, c(ui+3) = 3, so vi+3ui+3

is a crossing-edge. Note that vi+4ui+4 is a full-edge. By Lemma 2.6, we can extend the coloring
c such that vi+3+t−1ui+3+t−1 is a full-edge and c(ui+3+t−2u′′i+3+t−2) is suitable. Similarly, for the case
⟨c(ui−1ui+3), c(ui−1)⟩ = ⟨4, 1⟩, we first use coloring (A), and then set c(vi+3ui+3) = 2, c(ui+3u′′i+3) = 1,
and c(vi+3vi+4) = 3, which makes vi+3ui+3 a crossing-edge and vi+4ui+4 a full-edge. By Lemma 2.6, the
conclusion holds for this case.

Subcase 2.2. ⟨c(ui−1ui+3), c(ui−1)⟩ = ⟨3, 4⟩.
Considering that Gi,3 is adjacent to a t-block. Set c(ui+1ui+2) = c(vi+2vi+3) = 1, c(vivi+1) =

c(ui+2u′′i+2) = 2, c(viui) = c(vi+1ui+1) = c(vi+2ui+2) = 3, c(uiui+1) = c(vi+1vi+2) = 4, denote this coloring
as (C). Then ⟨c(vi+2vi+3), c(vi+2)⟩ = ⟨1, 2⟩, hence vi+3ui+3 is a full-edge and c(ui+2u′′i+2) is suitable.

Considering the case that Gi,k is adjacent to a t-crossing block. If t = 2, then let c(uiui+1) =
c(vi+2vi+3) = 1, c(vi+1ui+1) = c(vi+2ui+2) = c(ui+3u′′i+3) = 2, c(vivi+1) = c(ui+1ui+2) =
c(vi+3vi+4) = 3, c(viui) = c(vi+1vi+2) = c(vi+3ui+3) = c(ui+2u′′i+2) = 4. Then vi+4ui+4 becomes a
full-edge and c(ui+3u′′i+3) is suitable. If t ≥ 3, then we first use coloring (C), then set c(vi+4ui+4) =
c(ui+3ui+5) = 1, c(vi+3vi+4) = 2, c(vi+4vi+5) = 3, c(vi+3ui+3) = c(ui+4u′′i+4) = 4. It is easy to see that
vi+5ui+5 is a full-edge and vi+4ui+4 is a crossing-edge. By Lemma 2.6, we can extend the coloring c such
that vi+3+tui+3+t is a full-edge and c(ui+3+t−1u′′i+3+t−1) is suitable.

Subcase 2.3. ⟨c(ui−1ui+3), c(ui−1)⟩ = ⟨3, 2⟩.
Since c(ui−1) = 2 and c(vi−1) = 3, we have c(vi−2vi−1) = 2 and c(vi−1ui−1) = 4. If c(vi−2) , 4,

then we transform c(ui−1ui+3) from 3 to 4 and c(ui−1vi−1) from 4 to 3, which changes c(vi−1) from 3
to 4. Set c(uiui+1) = c(vi+2vi+3) = 1, c(vi+1vi+2) = c(ui+2u′′i+2) = 2, c(vivi+1) = c(ui+1ui+2) = 3, c(viui) =
c(vi+1ui+1) = c(vi+2ui+2) = 4. Then vi+3ui+3 becomes a full-edge and vi+2ui+2 becomes an outer-crossing-
edge. If c(vi−1) = 4, then we transform c(vi−1vi) from 1 to 3, which changes c(vi) from 3 to 1. Note that
viui is still a full-edge, we exchange the color 1 and 3 in coloring (A), it follows that vi+3ui+3 becomes
a full-edge and vi+2ui+2 becomes an outer-crossing-edge. Hence the conclusion holds for this subcase.

Subcase 2.4. ⟨c(ui−1ui+3), c(ui−1)⟩ = ⟨3, 1⟩.
In this case, c(vi−1ui−1) ∈ {2, 4}.
Subcase 2.4.1. c(vi−1ui−1) = 4. Then c(u′i−1ui−1) = c(vi−2vi−1) = 2.
We only need to consider the case that at least one of c(u′i−1) and c(vi−2) is distinct with 4. Otherwise,

if c(u′i−1) = c(vi−2) = 4, then vi−2u′i−1 < E(G), hence vi−2u′i ∈ E(G), but c(u′i) = 4, which is impossible.
Subcase 2.4.1.1. c(u′i−1) , 4.
Consider the coloring c on Hi,3, we transform c(vi−1ui−1) from 4 to 1 and c(vi−1vi) from 1

to 4, then ⟨c(ui−1ui+3), c(ui−1)⟩ = ⟨3, 4⟩, ⟨c(vi−1vi), c(vi−1)⟩ = ⟨4, 3⟩. If Gi,3 is adjacent to a t-
block, then set c(vivi+1) = c(ui+1ui+2) = 1, c(vi+1ui+1) = c(vi+2vi+3) = 2, c(viui) = c(vi+1vi+2) =
c(ui+2u′′i+2) = 3, c(uiui+1) = c(vi+2ui+2) = 4. Then vi+3ui+3 becomes a full-edge, but c(ui+2u′′i+2)
is not suitable. For this case, if Gi+3,t is a bottom block with t = 2, then we color the edges of
Gi,3 ∪ Gi+3,2 ∪ Gr as follows: c(viui) = c(vi+1ui+1) = c(vi+2vi+3) = c(ui+4ui+5) = c(vi+5ui+6) = 1,
c(vi+1vi+2) = c(ui+2ui+6) = c(ui+3ui+4) = c(vi+4vi+5) = 2, c(vivi+1) = c(ui+1ui+2) = c(vi+3vi+4) =
c(ui+5ui+6) = 3, c(uiui+1) = c(vi+2ui+2) = c(vi+3ui+3) = c(vi+4ui+4) = c(vi+5ui+5) = 4. Then c is a
good coloring of G.
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If Gi,3 is adjacent to a t-crossing block, then set c(vivi+1) = c(ui+1ui+2) = c(vi+3vi+4) = 1, c(vi+1vi+2) =
c(ui+2ui+4) = c(vi+3ui+3) = 2, c(viui) = c(vi+1ui+1) = c(vi+2vi+3) = 3, c(vi+2ui+2) = c(ui+3u′′i+3) = 4. Then
vi+4ui+4 becomes a full-edge and vi+3ui+3 becomes a crossing-edge. By Lemma 2.6, we can extending
the coloring c such that vi+3+t−1ui+3+t−1 is a full-edge and c(ui+3+t−2u′′i+3+t−2) is suitable.

Subcase 2.4.1.2. c(vi−2) , 4.
Consider the coloring c on Hi,3, we transform c(ui−1ui+3) from 3 to 4 and c(vi−1ui−1) from 4 to 3,

then ⟨c(ui−1ui+3), c(ui−1)⟩ = ⟨4, 1⟩, ⟨c(vi−1vi), c(vi−1)⟩ = ⟨1, 4⟩. If Gi,3 is adjacent to a t-block, then
we use coloring (B) on Gi,k, under this coloring, vi+3ui+3 is a full-edge, but c(ui+2u′′i+2) is not suitable.
For this case, if Gi+3,t is a bottom block with t = 2, then we give a coloring on the edges of Gi,3 ∪

Gi+3,2 ∪Gr as follows: c(uiui+1) = c(vi+2vi+3) = c(ui+3ui+4) = c(vi+5ui+6) = 1, c(vi+1vi+2) = c(ui+2ui+6) =
c(vi+3vi+4) = c(ui+4ui+5) = 2, c(vivi+1) = c(ui+1ui+2) = c(vi+3ui+3) = c(vi+4vi+5) = c(ui+5ui+6) = 3,
c(viui) = c(vi+1ui+1) = c(vi+2ui+2) = c(vi+4ui+4) = c(vi+5ui+5) = 4. Then c is a good coloring of G.

If Gi,3 is adjacent to a t-crossing block with t ≥ 2, then we use coloring (A) on Gi,3, and set
c(ui+3u′′i+3) = 1, c(vi+3ui+3) = 2, c(vi+3vi+4) = 3. It is easy to see that vi+4ui+4 is a full-edge and vi+3ui+3

becomes a crossing-edge. Hence the conclusion holds for this subcase.
Subcase 2.4.2. c(vi−1ui−1) = 2. Then c(u′i−1ui−1) = c(vi−2vi−1) = 4.
We divide the proof of this case into the following two parts depending on which side ui−2 is on.
Subcase 2.4.2.1. ui−2 and ui−1 are on the same side of P, that is, u′i−1 = ui−2.
Since c(u′i−1ui−1) = c(vi−2vi−1) = 4, we have c(vi−2ui−2) ∈ {1, 2, 3}.
If c(vi−2ui−2) = 1, then under the coloring c on Hi,3, we transform c(vi−2ui−2), c(vi−1vi) from 1

to 4, and c(ui−2ui−1), c(vi−2vi−1) from 4 to 1. Note that c is still a good coloring of Hi,k, and
⟨c(ui−1ui+3), c(ui−1)⟩ = ⟨3, 4⟩, ⟨c(vi−1vi), c(vi−1)⟩ = ⟨4, 3⟩. We then use the same coloring with
subcase 2.4.1.1.

If c(vi−2ui−2) = 2, then consider the coloring c on Hi,k, we transform c(vi−2ui−2), c(vi−1ui−1) from 2
to 4, and c(ui−2ui−1), c(v j−2v j−1) from 4 to 2, then c is still a good coloring of Hi,k, and it is the
subcase 2.4.1.

If c(vi−2ui−2) = 3, then under the coloring c on Hi,k, we transform c(vi−2ui−2), c(ui−1u′′i−1) from 3 to 4,
and c(ui−2ui−1), c(vi−2vi−1) from 4 to 3, then ⟨c(ui−1ui+3), c(ui−1)⟩ = ⟨4, 1⟩, ⟨c(vi−1vi), c(vi−1)⟩ = ⟨1, 4⟩.
We then use the same coloring with subcase 2.4.1.2.

Subcase 2.4.2.2. ui−2 and ui are on the same side of P, that is, u′i = ui−2.
Since c(ui−2) = 4 and c(ui−2ui) = 2, we have c(vi−2ui−2) ∈ {1, 3}.
Considering the case that c(vi−2ui−2) = 1, then c(u′i−2ui−2) = 3. We also have c(vi−3vi−2) = 3

since c(vi−1) = 3. We may assume that c(u′i−2) = 1. Otherwise if c(u′i−2) , 1, then we transform
c(vi−1vi), c(vi−2ui−2) from 1 to 4, and c(vi−2vi−1) from 4 to 1, which changes c(ui−2) from 4 to 1. We turn
to subcase 2.2, and exchange the color 1 and 4 in the coloring of Gi,k or Gi,k ∪ Gi+k,t,c, then we obtain
the desired coloring. Consider c(vi−3), it cannot equal to c(vi−3vi−2) and c(vi−2), hence c(vi−3) ∈ {1, 4}.

If c(vi−3) = 1, then ui−3 = u′i−1. Since c(ui−1) = c(vi−3) = 1 and c(vi−3vi−2) = 3, we have
c(u′i−3ui−3) = 1, c(vi−3ui−3) = 2 and c(vi−4vi−3) = 4. If c(u′i−3) , 4, then we transform c(ui−3ui−1)
from 4 to 3, and transform c(ui−1ui+3) from 3 to 4, which can turn to subcase 2.1 for the case
⟨c(ui−1ui+3), c(ui−1)⟩ = ⟨4, 1⟩. If c(u′i−3) = 4, then we transform c(vi−3ui−3), c(vi−1ui−1) from 2 to 3,
c(vi−3vi−2), c(ui−1ui+3) from 3 to 2, and transform c(ui−2ui) from 4 to 2, then ⟨c(ui−1ui+3), c(ui−1)⟩ =
⟨2, 1⟩, ⟨c(vi−1vi), c(vi−1)⟩ = ⟨1, 2⟩. We exchage the color 2 and 3 in the subcase 2.4.1 for the case
c(vi−2) , 4.

AIMS Mathematics Volume 8, Issue 11, 27820–27839.



27834

If c(vi−3) = 4, consider c(u′i−1), it cannot equal to c(u′i−1ui−1) and c(ui−1), hence c(u′i−1) ∈ {2, 3}. If
c(u′i−1) = 2, then we transform c(vi−1ui−1), c(ui−2ui) from 2 to 1, c(vi−1vi) from 1 to 3, c(ui−1ui+3) from 3
to 2, c(vi−2vi−1) from 4 to 2, c(vi−2ui−2) from 1 to 4, then we have c(ui−1) = 3, c(vi−1) = 4 and c(ui−2) = 2.
We turn to subcase 2.1 when ⟨c(ui−1ui+3), c(ui−1)⟩ = ⟨4, 1⟩, and replace the color 1 to 3, 3 to 4, 4 to 2,
and 2 to 1 in the coloring of Gi,k or Gi,k∪Gi+k,t,c, then we obtain the desired coloring. If c(u′i−1) = 3, then
we transform c(vi−1ui−1), c(ui−2ui) from 2 to 1, c(vi−2ui−2), c(vi−1vi) from 1 to 4, c(vi−2vi−1) from 4 to 2.
We turn to subcase 2.2, replace the color 1 to 4, 4 to 2, and 2 to 1 in the coloring of Gi,k or Gi,k∪Gi+k,t,c,
then we obtain the desired coloring.

Now we consider the case that c(vi−2ui−2) = 3. Since c(ui−2) = 4, we have c(u′i−2ui−2) = 1. Note
that c(vi−3vi−2) ∈ {1, 2}. For the case c(vi−3vi−2) = 1, consider c(u′i−2), we may assume c(u′i−2) = 3.
Otherwise, if c(u′i−2) , 3, then we transform c(vi−2ui−2) from 3 to 4, and transform c(vi−2vi−1) from 4
to 3, it follows that c(vi−1) = 4 and c(ui−2) = 3. We turn to subcase 2.1 when ⟨c(ui−1ui+3), c(ui−1)⟩ =
⟨4, 1⟩, and exchange the color 3 and 4 in the coloring of Gi,k or Gi,k ∪Gi+k,t,c, then we obtain the desired
coloring. Now consider c(vi−3), it can be 3 or 4. If c(vi−3) = 3, then ui−3 = u′i−1, and c(u′i−3ui−3) = 3. But
since c(ui−1) = 1 and c(vi−3vi−2) = 1, it implies that c(u′i−3ui−3) = 1, a contradiction. Hence c(vi−3) , 3,
then c(vi−3) = 4. In this case, we transform c(vi−1ui−1), c(ui−2ui) from 2 to 3, c(vi−2ui−2) from 3 to 4,
c(ui−1ui+3) from 3 to 2, and c(vi−2vi−1) from 4 to 2. We turn to subcase 2.1 when ⟨c(ui−1ui+3), c(ui−1)⟩ =
⟨4, 1⟩, and replace the color 2 to 3, 3 to 4, 4 to 2 in the coloring of Gi,k or Gi,k ∪Gi+k,t,c, then we obtain
the desired coloring.

For the case c(vi−3vi−2) = 2, consider c(u′i−2), it can be 2 or 3. If c(u′i−2) = 2, then we
transform c(vi−2vi−1) from 4 to 3, and transform c(vi−2ui−2) from 3 to 4, then turn to subcase 2.1 when
⟨c(ui−1ui+3), c(ui−1)⟩ = ⟨4, 1⟩, and exchange the color 3 and 4 in the coloring of Gi,k or Gi,k ∪ Gi+k,t,c,
then we obtain the desired coloring. If c(u′i−2) = 3, then we transform c(ui−2ui) from 2 to 4, c(vi−1ui−1)
from 2 to 3, c(ui−1ui+3) from 3 to 2, and turn to subcase 2.4.1.2, exchange the color 2 and 4 in the
coloring of Gi,k or Gi,k ∪Gi+k,t,c, then we obtain the desired coloring.

Case 3. k ≥ 4.
Let ⟨c(ui−1u′′i−1), c(ui−1)⟩ = ⟨α, β⟩, and ⟨α, β⟩ be an ordered pair in {⟨1, 2⟩, ⟨2, 1⟩, ⟨1, 4⟩, ⟨4, 1⟩,

⟨3, 1⟩, ⟨3, 2⟩, ⟨3, 4⟩}.
Subcase 3.1. k = 4.
Let γ be a color in {2, 4}\{α, β}, δ = {1, 2, 3, 4}\{α, β, γ}. Set c(viui) = 4, c(uiui+1) = 1, c(vivi+1) =

c(ui+1ui+2) = 3, c(vi+1vi+2) = c(ui+2ui+3) = γ, c(vi+2vi+3) = c(ui+3u′′i+3) = β, c(vi+3vi+4) = δ. For
i + 1 ≤ j ≤ i + 3, let c(v ju j) = {1, 2, 3, 4}\{c(v j−1v j), c(v jv j+1), c(u j−1u j)}. Then, vi+4ui+4 is a full-edge
and vi+3ui+3 is an outer-crossing-edge. Hence, if Gi,k is adjacent to a t-block, then vi+kui+k is a full-edge
and c(ui+k−1u′′i+k−1) is suitable. If Gi,k is adjacent to a t-crossing block with t ≥ 2, by Lemma 2.6, we
can extend the coloring c such that vi+k+t−1ui+k+t−1 is a full-edge and c(ui+k+t−2u′′i+k+t−2) is suitable.

Subcase 3.2. k = 5.
If α , 1 and β , 1, then set c(viui) = 4, c(uiui+1) = 1, c(vivi+1) = c(ui+1ui+2) = 3, c(vi+2vi+3) =

c(ui+3ui+4) = 1, c(vi+3vi+4) = c(ui+4u′′i+4) = β, c(vi+1vi+2) = c(ui+2ui+3) ∈ {2, 4}\{β}, c(vi+4vi+5) ∈
{1, 2, 3, 4}\{1, α, β}. For i + 1 ≤ j ≤ i + 4, let c(v ju j) = {1, 2, 3, 4}\{c(v j−1v j), c(v jv j+1), c(u j−1u j)}. Then,
vi+5ui+5 is a full-edge and vi+3ui+3 is an outer-crossing-edge.

If α , 1 and β = 1, then set c(viui) = 4, c(uiui+1) = 1, c(vivi+1) = c(ui+1ui+2) = 3,
c(vi+3vi+4) = c(ui+4u′′i+4) = 1, c(vi+2vi+3) = c(ui+3ui+4) ∈ {2, 4}\{α}, c(vi+1vi+2) = c(ui+2ui+3) ∈
{1, 2, 3, 4}\{1, 3, c(vi+2vi+3)}, c(vi+4vi+5) ∈ {1, 2, 3, 4}\{1, α, c(vi+2vi+3)}. For i + 1 ≤ j ≤ i + 4, let
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c(v ju j) = {1, 2, 3, 4}\{c(v j−1v j), c(v jv j+1), c(u j−1u j)}. Then, vi+5ui+5 is a full-edge and vi+3ui+3 is an
outer-crossing-edge.

If α = 1, then β may be 2 or 4. Consider ⟨α, β⟩ = ⟨1, 2⟩. If Gi,k is adjacent to a t-block with
t ≥ 1, then set c(ui+1ui+2) = c(vi+2vi+3) = c(vi+4ui+4) = 1, c(vivi+1) = c(vi+3vi+4) = c(ui+2ui+3) = 2,
c(viui) = c(vi+1ui+1) = c(vi+2ui+2) = c(ui+3ui+4) = c(vi+4vi+5) = 3, c(uiui+1) = c(vi+1vi+2) =
c(vi+3ui+3) = c(ui+4u′′i+4) = 4, hence vi+5ui+5 is a full-edge and c(ui+4u′′i+4) is suitable. If Gi,k is adjacent
to a t-crossing block with t ≥ 2, then set c(uiui+1) = c(vi+2ui+2) = c(vi+3ui+3) = c(vi+4vi+5) = 1,
c(vi+1vi+2) = c(ui+2ui+3) = c(vi+4ui+4) = c(ui+5u′′i+5) = 2, c(vivi+1) = c(ui+1ui+2) = c(vi+3vi+4) =
c(ui+4ui+6) = c(vi+5ui+5) = 3, c(viui) = c(vi+1ui+1) = c(vi+2vi+3) = c(ui+3ui+4) = c(vi+5vi+6) = 4, hence
vi+6ui+6 is a full-edge and vi+5ui+5 is a crossing-edge, by Lemma 2.6, the conclusion holds for this case.

Consider ⟨α, β⟩ = ⟨1, 4⟩. If Gi,k is adjacent to a t-block, then set c(vi+1ui+1) = c(ui+2ui+3) =
c(vi+3vi+4) = 1, c(vivi+1) = c(vi+2ui+2) = c(ui+3ui+4) = c(vi+4vi+5) = 2, c(viui) = c(ui+1ui+2) =
c(vi+2vi+3) = c(ui+4u′′i+4) = 3, c(uiui+1) = c(vi+1vi+2) = c(vi+3ui+3) = c(vi+4ui+4) = 4, hence vi+5ui+5

is a full-edge and c(ui+4u′′i+4) is suitable. If Gi,k is adjacent to a t-crossing block with t ≥ 2, then
set c(uiui+1) = c(vi+2ui+2) = c(vi+3ui+3) = c(vi+4vi+5) = 1, c(vi+1ui+1) = c(vi+2vi+3) = c(ui+3ui+4) =
c(vi+5vi+6) = 2, c(vivi+1) = c(ui+1ui+2) = c(vi+3vi+4) = c(ui+4ui+6) = c(vi+5ui+5) = 3, c(viui) =
c(vi+1vi+2) = c(vi+4ui+4) = c(ui+5u′′i+5) = 4, hence vi+6ui+6 is a full-edge and vi+5ui+5 is a crossing-edge,
by Lemma 2.6, the conclusion holds for this case.

Subcase 3.3. k = 6.
First assume that {α, β} , {1, 3}, set c(viui) = 4, c(uiui+1) = 1, c(vivi+1) = c(ui+1ui+2) = 3,

c(vi+4vi+5) = c(ui+5u′′i+5) = β, c(vi+3vi+4) = c(ui+4ui+5) ∈ {1, 3}\{α, β}, c(vi+2vi+3) = c(ui+3ui+4) ∈
{1, 2, 3, 4}\{3, β, c(vi+3vi+4)}, c(vi+1vi+2) = c(ui+2ui+3) ∈ {1, 2, 3, 4}\{1, 3, c(vi+2vi+3)}, c(vi+5vi+6) ∈
{1, 2, 3, 4}\{α, β, c(vi+3vi+4)}. For i+1 ≤ j ≤ i+5, let c(v ju j) = {1, 2, 3, 4}\{c(v j−1v j), c(v jv j+1), c(u j−1u j)}.
Then, vi+5ui+5 is a full-edge and vi+3ui+3 is an outer-crossing-edge.

Consider that {α, β} = {1, 3}, since c(ui−1) , 3, we have α = 3, β = 1. If Gi,k is adjacent to a
t-block, then set c(ui+1ui+2) = c(vi+2vi+3) = c(vi+4ui+4) = c(vi+5ui+5) = 1, c(vivi+1) = c(ui+2ui+3) =
c(vi+3vi+4) = c(ui+5u′′i+5) = 2, c(viui) = c(vi+1ui+1) = c(vi+2ui+2) = c(ui+3ui+4) = c(vi+4vi+5) = 3,
c(uiui+1) = c(vi+1vi+2) = c(vi+3ui+3) = c(ui+4ui+5) = c(vi+5vi+6) = 4, hence vi+6ui+6 is a full-edge
and c(ui+5u′′i+5) is suitable. If Gi,k is adjacent to a t-crossing block with t ≥ 2, then set c(uiui+1) =
c(vi+2vi+3) = c(ui+3ui+4) = c(vi+5ui+5) = c(ui+6u′′i+6) = 1, c(vi+1vi+2) = c(ui+2ui+3) = c(vi+4vi+5) =
c(ui+5ui+7) = c(vi+6ui+6) = 2, c(vivi+1) = c(ui+1ui+2) = c(vi+3ui+3) = c(vi+4ui+4) = c(vi+5vi+6) = 3,
c(viui) = c(vi+1ui+1) = c(vi+2ui+2) = c(vi+3vi+4) = c(ui+4ui+5) = c(vi+6vi+7) = 4, hence vi+7ui+7 is a
full-edge and vi+6ui+6 is a crossing-edge, by Lemma 2.6, the conclusion holds for this case.

Subcase 3.4. k ≥ 7.
We first set c(viui) = 4, c(vivi+1) = 3, c(uiui+1) = 1, c(vi+k−2vi+k−1) = β. Since ⟨α, β⟩ < {⟨2, 4⟩, ⟨4, 2⟩},

we may set c(vi+k−3vi+k−2) ∈ {2, 4}\{α, β}. For j = i + k − 4, i + k − 5, . . . , i + 3, let c(v jv j+1) ∈
{2, 3, 4}\{c(v j+1v j+2)), c(v j+2v j+3)}, then let c(vi+2vi+3) = 1, c(vi+1vi+2) ∈ {1, 2, 3, 4}\{1, 3, c(vi+3vi+4)}.
For i + 1 ≤ j ≤ i + k − 2, let c(u ju j+1) = c(v j−1v j), c(v ju j) = {1, 2, 3, 4}\{c(v j−1v j), c(v jv j+1), c(u j−1u j)}.
Finally, let c(ui+k−1u′′i+k−1) = β, c(vi+k−1vi+k) = {1, 2, 3, 4}\{α, β, (̧vi+k−3vi+k−2)}, and c(vi+k−1ui+k−1) =
{1, 2, 3, 4}\{c(vi+k−2vi+k−1), c(vi+k−1vi+k), c(ui+k−2ui+k−1)}. It is easy to see that c is a good coloring, and
c(v j) = c(u j−1u j), c(v jv j+1) = c(u j) for i + 1 ≤ j ≤ i + k − 1. That is, we have c(vi+k−1vi+k) =
c(ui+k−1). Hence vi+k−1ui+k−1 is an outer-crossing-edge since c(ui+k−1u′′i+k−1) = β. Note that, c(vi+k−1) =
c(ui+k−2ui+k−1) = c(vi+k−3vi+k−2), hence c(vi+k−1) < {α, β}. By the fact that c(vi+k−1vi+k) < {α, β} and
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c(vi+k−1vi+k) , c(vi+k−1), we have vi+kui+k is a full-edge. If Gi,k is adjacent to a t-block, then vi+kui+k

is a full-edge and c(ui+k−1u′′i+k−1) is suitable. If Gi,k is adjacent to a t-crossing block with t ≥ 2, by
Lemma 2.6, we can extend the coloring c such that vi+k+t−1ui+k+t−1 is a full-edge and c(ui+k+t−2u′′i+k+t−2)
is suitable. □

Remark 2.2. By Lemma 2.6 and the proof of Lemma 2.7, if Gi,k is adjacent to a t-crossing block Gi+k,t,c

with t ≥ 2 and vi+k+t , vr, then we can extend the coloring c such that vi+k+tui+k+t is a full-edge and
c(ui+k+t−1u′′i+k+t−1) is suitable. Moreover, if Gi,k is adjacent to 1-block, then we can extend the coloring
c such that vi+k+1ui+k+1 is a full-edge and c(ui+ku′′i+k) is suitable.

Lemma 2.8. Suppose Gi,k is not a bottom block and k ≥ 2. If Hi,k has a good coloring c such that viui

is a full-edge, then c can be extended to a good coloring of G.

Proof. Assume that Gi,k is adjacent to Gi+k,t. By Lemma 2.7, we can extend c to a good coloring of Gi,k

such that vi+kui+k is a full-edge. If Gi+k,t is a bottom block, then by Lemma 2.5, c can be extended to a
good coloring of G if t = 1, or t ≥ 3, or t = 2 and c(ui+k−1u′′i+k−1) is suitable. For t = 2 and c(ui+k−1u′′i+k−1)
is not suitable, by Lemma 2.7, c can also be extended to a good coloring of G.

Therefore, we assume that Gi+k,t is not a bottom block. If t ≥ 2, then the argument is similar as
above. So assume that t = 1, that is, vi+kui+k is in a crossing block. Suppose vi+kui+k is in a l-crossing
block and l is maximal, that is, vi+k+l−1ui+k+l−1 = vr−1ur−1 or vi+k+lui+k+l is in a d-block with d ≥ 2. For
l = 1, since Gi+k,t is not a bottom block, vi+k+1ui+k+1 is in a d-block with d ≥ 2. By Remark 2.2, we
can extend the coloring c such that vi+k+1ui+k+1 is a full-edge and c(ui+ku′′i+k) is suitable. If this d-block
is a bottom block, then we can extend c to a good coloring of G by Lemma 2.5. If this d-block is not
a bottom block, then we make the same argument as the case Gi,k. If l ≥ 2, then by Lemma 2.7, we
can extend c to a good coloring of Gi+k,l,c such that vi+k+l−1ui+k+l−1 is a full-edge and c(ui+k+l−2u′′i+k+l−2) is
suitable. Hence, if vi+k+l−1ui+k+l−1 = vr−1ur−1, then by Lemma 2.5, c can be extended to a good coloring
of G. For the case vi+k+lui+k+l is in a d-block with d ≥ 2, by Remark 2.2, we can extend c such that
vi+k+tui+k+t is a full-edge and c(ui+k+t−1u′′i+k+t−1) is suitable. Hence if this d-block is a bottom block, then
we can extend c to a good coloring of G by Lemma 2.5. If this d-block is not a bottom block, then we
make the same argument as the case Gi,k. □

Corollary 2.1. Let Gi,k be a k-block with k ≥ 2. If Hi,k has a good coloring c such that viui is a full-edge
and c(ui−1u′′i−1) is suitable, then c can be extended to a good coloring of G.

Corollary 2.2. Let Gi,k be a k-block. If Hi,k has a good coloring c such that viui is a full-edge and
vi−1ui−1 is a crossing-edge or an outer-crossing-edge, then c can be extended to a good coloring of G.

Proof. Note that c(ui−1u′′i−1) is suitable since vi−1ui−1 is a crossing-edge or an outer-crossing-edge. So
if Gi,k is a bottom block, then c can be extended to a good coloring of G by Lemma 2.5. If Gi,k is not a
bottom block and k ≥ 2, by Lemma 2.8, we can extend c to a good coloring of G. Hence we only need
to consider that Gi,k is not a bottom block and k = 1. For this case, viui is in a crossing block, with the
similar argument as Lemma 2.8, we can extend c + to a good coloring of G. □

Theorem 2.2. For every cubic Halin graph G in Gr which is not a necklace Nr, χ′avd(G) = 4.

Proof. Since G is not a necklace Nr, there are at least two blocks in G. Suppose the block containing
v2u2 is a k-block.
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Case 1. k = 1.
In this case, u2 and u3 are on the different sides of P. We set c(v1u1) = c(v2u2) = 1, c(v1u0) =

c(u2u′′2 ) = 2, c(u0u1) = c(v2v3) = 3, c(u1u2) = c(v1v2) = c(u0u3) = 4. Then v3u3 becomes a full-edge
and v2u2 becomes a crossing-edge. By Corollary 2.2, c can be extended to a good coloring of G.

Case 2. k = 2.
Suppose the block G2,k is adjacent to G4,t. If t ≥ 2, then let c(v1u1) = c(v2u2) =

c(v3u3) = 1, c(v1u0) = c(u2u3) = c(v3v4) = 2, c(u0u1) = c(v1v2) = c(u3u′′3 ) = 3, c(u1u2) = c(v2v3) =
c(u0u4) = 4. Then v4u4 becomes a full-edge and c(u3u′′3 ) is suitable. Hence, by Corollary 2.1, we can
extend c to a good coloring of G.

For t = 1, that is u5 and u4 are on the different sides of P. If v5u5 is in a l-block with l ≥ 2, then
let c(u1v1) = c(v2v3) = c(u3u5) = c(v4u4) = 1, c(v1u0) = c(u1u2) = c(v3v4) = 2, c(u0u1) = c(v2u2) =
c(v3u3) = c(u4u′′4 ) = 3, c(v1v2) = c(u0u4) = c(u2u3) = c(v4v5) = 4. Then v5u5 becomes a full-edge and
c(v4u4) is suitable. Hence, by Corollary 2.1, we can extend c to a good coloring of G. Therefore, v5u5

is in a 1-block, which means u6 and u5 are on the different sides of P.
Consider the edge v6u6 is in a d-block, let c(u1v1) = c(u2u3) = c(v3v4) = c(u4u6) = c(v5u5) = 1,

c(v1u0) = c(v2u2) = c(v3u3) = c(v4v5) = 2, c(u0u1) = c(v1v2) = c(u3u5) = c(v4u4) = 3, c(u1u2) =
c(u0u4) = c(v2v3) = c(v5v6) = c(u5u′′5 ) = 4. Then v6u6 becomes a full-edge while c(u4u5) is not
suitable. If G6,d is not a bottom block and d ≥ 2, then by Lemma 2.8, we can extend c to a good
coloring of G. If G6,d is a bottom block with d = 1 or d ≥ 3, then by Lemma 2.5, we can extend c to
a good coloring of G. If G6,d is a bottom block with d = 2, then G is the graph H0 depited in Figure.
For this case, we give a good coloring of H0 as follows: let c(v1u1) = c(v2u2) = c(u3u5) = c(v4v5) =
c(u4u6) = c(v7v8) = c(u8u9) = 1, c(v1u0) = c(u2u3) = c(v3v4) = c(v5v6) = c(u6u7) = c(v8u9) = 2,
c(u1u0) = c(v1v2) = c(v3u3) = c(v4u4) = c(u5u9) = c(v6v7) = c(u7u8) = 3, c(u1u2) = c(u0u4) = c(v2v3) =
c(v5u5) = c(v6u6) = c(v7u7) = c(v8u8) = 4.

Now we consider that G6,d is not a bottom block and d = 1. Let c(u1v1) = c(u2u3) = c(v3v4) =
c(u4u6) = c(u5u7) = c(v5v6) = 1, c(v1u0) = c(v2u2) = c(v3u3) = c(v4v5) = c(v6u6) = 2, c(u0u1) =
c(v1v2) = c(u3u5) = c(v4u4) = c(v6v7) = 3, c(u1u2) = c(u0u4) = c(v2v3) = c(v5u5) = c(u6u′′6 ) = 4. Then
v7u7 becomes a full-edge and v6u6 becomes a crossing-edge. By Corollary 2.2, we can extend c to a
good coloring of G.

Case 3. k ≥ 3.
We first give a good coloring of G1 as follows: c(u1v1) = 1, c(v1u0) = 2, c(u0u1) = 3,

c(u1u2) = 2, c(v1v2) = c(u0u2+k) = 4. Then ⟨c(u0u2+k), c(u0)⟩ = ⟨4, 1⟩. Now we color the block
G2,k.

For k = 3, set c(v2u2) = c(v3v4) = c(u4u′′4 ) = 1, c(v3u3) = c(v4v5) = 2, c(v2v3) = c(u3u4) = 3, and
c(u2u3) = c(v4u4) = 4, then v5u5 is a full-edge and v4u4 is an outer-crossing edge.

For k = 4, set c(v2u2) = c(v3u3) = c(v4v5) = c(u5u′′5 ) = 1, c(v3v4) = c(u4u5) = 2, c(v2v3) = c(u3u4) =
c(v5v6) = 3, and c(u2u3) = c(v4u4) = c(v5u5) = 4, then v6u6 is a full-edge and v5u5 is an outer-crossing
edge.

For k = 5, set c(v2v3) = c(u3u4) = c(v5v6) = c(u6u′′6 ) = 1, c(v3u3) = c(v4v5) = c(u5u6) = 2,
c(v2u2) = c(v3v4) = c(u4u5) = c(v6v7) = 3, and c(u2u3) = c(v4u4) = c(v5u5) = c(v6u6) = 4, then v7u7 is
a full-edge and v6u6 is an outer-crossing edge.

For k ≥ 6, first set c(v2v3) = 1, c(v3v4) = 3. For 4 ≤ j ≤ k − 2, let c(v jv j+1) ∈
{1, 2, 3}\{c(v j−2v j−1), c(v j−1v j)}. Then let c(vk−2vk−1) = 4, c(vk−1vk) ∈ {2, 3}\{c(vk−3vk−2)}, c(vkvk+1) = 1,
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c(vk+1vk+2) ∈ {2, 3}\{c(vk−1vk)}. For 2 ≤ j ≤ k, let c(u ju j+1) = c(v j−1v j) and c(v ju j) ∈
{1, 2, 3, 4}\{c(v j−1v j), c(v jv j+1), c(u j−1u j)}. Finally, let c(uk+1u′′k+1) = 1 and c(vk+1uk+1) = 4. Then c
is a good coloring of G2,k, vk+2uk+2 is a full-edge and vk+1uk+1 is an outer-crossing edge.

By Corollary 2.2, we can extend c to a good coloring of G.
In summary, we have χ′avd(G) ≤ 4. On the other hand, since G is cubic, χ′avd(G) ≥ 4. Therefore,

χ′avd(G) = 4. □

Combining Theorem 2.1 and Theorem 2.2, we complete the proof of Theorem 1.2.

3. Conclusions

In this paper, we have determined the exact values of the adjacent vertex distinguishing (AVD)
chromatic indices of cubic Halin graphs whose characteristic trees are caterpillars. We showed that
only two graphs have AVD chromatic index 5. For the cubic Halin graphs whose characteristic trees
are not caterpillars, we believe that there are few graphs obtaining AVD chromatic index 5. It is
interesting to figure out which cubic Halin graphs with characteristic trees not caterpillars have AVD
chromatic index 5.
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