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Abstract:  The current work investigates solitary wave solutions for the fractional modified
Degasperis-Procesi equation and the fractional gas dynamics equation with Caputo’s derivative by
using a modified extended direct algebraic method. This method transforms the targeted fractional
partial differential equations (FPDEs) into more manageable nonlinear ordinary differential equations,
which are then turned into systems of nonlinear algebraic equations with a series-based solution
assumption. Using Maple 13, the solitary wave solutions are then obtained by solving the obtained
systems. The method produces multiple innovative solitary wave solutions for both equations, which
are graphically depicted as 3D and 2D graphs and provide important insights into their behaviors.
These insights help us to comprehend wave behavior and the physical processes represented by these
equations. Furthermore, the suggested technique exhibits dependability and efficacy in dealing with
complicated FPDEs, which bodes well for future studies on the subject.
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1. Introduction

Partial differential equations and fractional partial differential equations have developed in a
variety of scientific disciplines [1-4]. The popularity of FPDEs, on the other hand, has recently
increased as a result of their extraordinary capacity to offer more accurate simulations for a variety of
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physical phenomena. The integration of non-local memory effects and long-range interactions through
fractional derivatives, which take into account the complexity present in many complex systems, is
the cause of this increased accuracy [5-9]. FPDEs are a strong tool for modeling and analyzing a
wide range of phenomena, including heat conduction, wave propagation, image processing and data
analysis. They have a wide range of applications in physics, biology, economics and engineering. As
a result, the study of FPDEs has developed into a booming research area, stimulating the identification
of conceptual foundations and novel methods for resolving these equations, enabling new applications
in a variety of real-world situations [10-13].

The solution of FPDEs may be handled in two ways: Numerical and analytical techniques.
The finite difference approach [14, 15], finite element method [16], this Monte Carlo method [17],
shooting method [18] and the adaptive moving mesh and uniform mesh methods [19-23] are examples
of numerical methodologies that rely on numerical algorithms and computational simulations to
approximate the solution. Analytical methods, on the other hand, use algebraic and calculus techniques
to solve issues and produce accurate solutions. Analytical procedures are frequently preferred over
numerical methods because they provide this more thorough knowledge of the problem and its
underlying behavior. Analytical approaches are very useful when dealing with issues that have
simple geometries or equations that can be solved in closed form, increasing efficiency in such
situations [24-26].

As aresult, several researchers have explored distinct FPDEs with diverse analytical methodologies.
The Laplace Adomian decomposition technique [27], (G’/G)-expansion technique [28-30],
perturbation methods [31], direct algebraic methods [32], variational iteration method [33], exp-
function approach [34, 35], auxiliary equation method [36], Jacobian elliptic function method [37],
Riccati mapping method [38], Darboux transformation method [39], Hirota bilinear method [40] and
modified extended DAM (mEDAM) [41] are some widely used analytical methods. For example,
in groundwater modeling, Al-Mdallal et al. employed the Laplace transform approach to solve a
FPDE [42]. Jiang et al. used a variable separation approach to solve the multi-term time-fractional
diffusion-wave equation in a finite domain in another work [43]. Similarly, Zheng solved the nonlinear
fractional Sharma-Tasso-Olver problem by using the exp-function technique [44]. Finally, Khan et
al. used the (G’/G)-expansion approach to achieve accurate solutions for FPDEs [45]. Overall, these
analytical strategies have been shown to be helpful in addressing various types of FPDEs in a variety
of scientific and technical domains.

For its accuracy and effectiveness in solving FPDEs, the DAM stands out as a very strong
and effective analytical strategy. The DAM differs from previous transformation-based systems in
that it can convert FPDEs directly into a system of nonlinear equations without the need for a
linearization phase. Using a recommended series-based solution derived from an ordinary differential
equation (ODE) solution, the FPDE is first transformed into a nonlinear ODE (NODE), which is then
transformed into a system of algebraic equations. The DAM is distinguished by three variants: simple
DAM [46], extended DAM (EDAM) [47] and mEDAM [48-50]. An enhanced version of the DAM
known as the mEDAM, has shown to be extremely efficient in handling a variety of FPDE forms. As
a result, the DAM offers a simple, effective, and precise solution to FPDEs, emphasizing its potential
for significant contributions in a range of fields of science and technology [51-53].

The generalized modified Caamassa-Holm (CH) and Degasperis-Procesi (DP) equations were
initially presented and studied by Wazwaz [54]. These modifications to the DP equation were created
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by Wazwaz [54] as a tool for identifying discrepancies in the physical makeup of the generated
solution. It is important to remember that the standard DP equation has multi-peakon solutions.
The characteristics of these peakon solutions are altered to bell-shaped solutions in the updated DP
equation, though. When examining shallow water dynamics, this equation is applicable, practical
and integrable. The fractional modified DP (MDP) equation is a nonlinear FPDE that is created by
fusing the MDP equation with fractional derivatives. A versatile equation with uses in fluid dynamics,
oceanography and image processing is the fractional MDP equation. The equation has been applied
to fluid dynamics to study interactions with submerged objects, characterize wave packet propagation
and mimic wave behavior in shallow water. The equation has been applied to oceanography to analyze
wave dynamics, interactions between waves and currents and soliton formation. The equation has
been applied to image processing to create algorithms for object recognition, image segmentation
and edge detection. Because standard derivatives are unable to simulate events with non-local
repercussions and long-range dependencies, the inclusion of fractional derivatives in the equation is
crucial. Particularly fractional derivatives capture the non-local interactions and memory effects that
are prevalent in many real-world systems. The fractional generalized MDP and CH equation has the
following mathematical form:

Deu — DXDEDEW) + (u + Vi Dbu = uDE(u)DA(Dhu) + uDE(DA (D)), (1.1)

where u = u(x,t),0 < a,B < 1, uis a constant and ¢ > 0. In this study we have solved (1.1) with u =3
thus (1.1) becomes the fractional MDP equation given by

D®u — DY(D?(DPu)) + 4u* DPu = 3DP(u)DP(DPu) + uD’(DP(DPu)). (1.2)

To model compressible fluid flow in a medium, the fractional gas dynamics equation is utilized.
Aeronautical engineering, combustion research, and materials science are all fields that utilize the
equation. Its solutions have been applied in the simulation of shock waves, turbulent flows, and other
complex fluid phenomena. The use of fractional derivatives in the equation results in a more accurate
representation of the system’s dynamics, making it a useful tool for understanding the behavior of
compressible fluid flow under a variety of conditions [55-57]. The fractional gas dynamics equation
has the following mathematical form [45]:

Du(x, t) + %D‘;(Dﬁjuz(x, D) —ulx, ) +u’(x,H)=0. 0<a,B<1, t>0. (1.3)

Both the fractional MDP and fractional gas dynamics equations have been treated analytically and
numerically in the literature. For example, Dubey et al. in [58] investigated the time-fractional MDP
equation with a Caputo fractional derivative by using the Sumudu transform and q-homotopy analysis
approach. In [59], Zhang et al. offered a detailed comparison of two strong analytical approaches for
generating series solutions to fractional DP equations, namely the homotopy perturbation transform
method and the Aboodh Adomian decomposition method. Similarly, Das and Kumar successfully
used the differential transform approach to derive approximate analytical solutions to the nonlinear
fractional gas dynamics equation [60]. Finally, Khan et al. used the (G’/G)-expansion approach to
achieve accurate solutions for fractional gas dynamics equations [45].

However, the fundamental goal and novelty of this research is to enhance the area of nonlinear
science by introducing the revolutionary mEDAM approach, which results in the discovery of a slew
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of new solitary wave solution families for both the fractional MDP and fractional gas dynamics
equations. This accomplishment not only broadens current knowledge, it also goes deeper into
the complexities of these mathematical models. Furthermore, our research attempted to completely
examine the wave behavior of these solitary waves in both models and develop relevant linkages
between the wave dynamics and the underlying mathematical formulations, providing insight into
the fundamental relationships driving these systems. These combined objectives have our research
to make major contributions to the understanding and practical uses of soliton waves in a variety of
scientific disciplines.

Because of its widespread acceptance and well-established mathematical qualities, the authors
elected to employ Caputo’s fractional derivative in this study. Caputo’s fractional derivative is well
known for retaining the physical meaning of standard derivatives, making it more appropriate for
modeling real-world events and systems. It has also improved behavior for non-smooth functions
and produces consistent results across a wide range of applications. Here, the authors establish
consistency with current literature and increase the credibility and comparability of their findings
within the scientific community by employing Caputo’s fractional derivative. This operator is defined
as follows [61]:

B S ) -
e { g b i fene v aco.,

o
where f(x, 1) is a sufficiently smooth function. The following two properties of this derivative will be
utilized while transforming targeted FPDEs into NODEs:

(1.4)

a=1,

o Ira+j -
Dix! = —F(l +j—a)xj , (1.5)
DY flg(x)] = f;(g(x)D5g(x) = D f(g(x))[g"(x)]", (1.6)

where f(x) and g(x) are differentiable functions and j is a real number.
2. The methodology of the modified mEDAM

In this section, we present the methodology of the mEDAM. Consider the FPDE of the following
form [49, 50, 62]:

P(y,87y,80y,0,y,y8y,..)=0, 0<a,By<], (2.1)
where y is a function of vy, v,,v3,...,v, and t.
To solve Eq (2.1), we follow the following steps:
(1) First we perform variable transformation y(t, vy, vz, v3,...,v,) = Y(&), & = &(t,vi, v, V3,. .., V),

where £ can be defined in various ways. This transformation converts Eq (2.1) into a nonlinear ODE
of the form
RY,Y',...)=0, (2.2)

where the derivatives of Y in Eq (2.2) are with respect to £. The constants of integration can then be
obtained by integrating Eq (2.2) one or more times.
(2) We then suppose the following solution to Eq (2.2):

3

YE) = ) a0, (2.3)

p=—m
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where a,(0 = -my,...,0,1,2,...,m,) are constants to be calculated, and Q(¢) satisfies the
following ODE:

Q'(&) = Ln(A)(a + bQ(€) + c(Q(©))), 2.4)

where A # 0 or 1 and a, b and ¢ are constants.

(3) The positive integers m; and m, given in Eq (2.3) are calculated by finding the homogeneous
balance between the highest order derivative and the largest nonlinear term in Eq (2.2).

(4) After that, we plug Eq (2.3) into Eq (2.4) or the equation generated by integrating Eq (2.4) and
gather all terms of (Q(£)) in the same order. We then set each coeflicient of the following polynomial
as equal to zero, yielding a system of algebraic equations for a,(p = —my,...,0,1,2,...,m,) and other
parameters in the system of algebraic equations.

(5) We use Maple to solve this system of algebraic equations.

(6) Finally, we retrieve the unknown values and plug them into Eq (2.3) along with Q(¢) (i.e., the
solution of Eq (2.4)), which gives us the analytical solutions to Eq (2.1). We can generate the following
families of solutions by using the generic solution of Eq (2.4).

Family 1. When Z < 0 and ¢ # 0,

b \/jtanA(l/2 \/35)

0:16) = "7 + 2 , (2.5)
b V=Zcots(1/2 V=Z¢)

Q) =-7- - > : (2.6)

C C
04(6) = _% N V-Z (tanA ( \/75) 1;6( \Pg seca ( \/—_Zg))) o
0:) = _22 ~ ﬁ(cotA ( \/35) + (\/p_qcscA ( \/75))) 2.8)

c 2c

and N W W

Family 2. When Z > 0 and ¢ # 0,

b VZtanh,(1/2 VZ¢)

Os(é) = 5 e , (2.10)
b VZcothy (1/2 VZ¢)
0:,(6) = ~50 > , (2.11)
C C
04(6) = _22 ~ \/Z(tanhA ( \/Zf) + (\/p_qsechA ( \/Zf)))’ 2.12)
c 2c
0s&) = - - V7 o (V%) izf,vp_qcscm ) @13
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and

b ﬁ(tanhA (}‘ «/Zg) — cothy (411 \/26))
Q106 = 50 Ac .

Family 3. When ac > 0 and b = 0,

o) = \/EtanA ( \/sz) ,
c
Oné) =- \/ECOtA ( \/sz) ,
c
0136 = \/g(taﬂA (2 \/%f) + (\/p_qsecA (2 \/%g))) ,

Qu(é) = - \/g(COtA (2 \/%§) + (\/p_qcscA (2 \/ag)))
and
Qi5(6) = %\/g (tan, (1/2 Vacg) - cota (1/2 Vact)).

Family 4. When ac > 0 and b = 0,

016(8) = — |- tanh, ( V=act),
C

Q17(§) = - \,_ﬁ cothy ( V—acf) ,
C

015(&) = - \/j (tanhy (2 V=acé) = (i ypasechy (2 V=acé))).

Q1) = — \/7(c0thA (2 \/76) (\/_cschA (2 \/75)))

and

0x0(é) = —% \/g (tanh, (1/2 V=acg) + coth, (1/2 V=acé)).

Family 5. Whenc =a and b = 0,
0>1(¢) = tany (af),

On(€) = —coty (aé),
023(¢) = tany (2a€) + (\/pgsecy (2aé)),
024(&) = —coty (2aé) £ (1/pgcsca (2af))

and

1
Q25(&) = 7 tany (1/2a8) = 1/2 coty (1/248).

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)
(2.26)
(2.27)
(2.28)

(2.29)
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Family 6. When ¢ = —aand b = 0,
Q26(€) = —tanhy (aé) ,

027(§) = —cothy (aé),
023(¢) = —tanhy (2 aé) + (i/pgsechy (2aé)),
029(€) = = cothy (2a€) + (+/pgeschy (2 af))

and

1
Q30(6) = —EtanhA (1/2a&) —1/2 cothy (1/2 aé) .

Family 7. When Z = 0,
a(bé LnA +2)

0n@®) = 2=

Family 8. When b = A, a = nd(n # 0) and ¢ = 0,
On(é) = AY —n.

Family 9. When b = ¢ =0,
033(8) = a& LnA.

Family 10. When b =a =0,

1
0u(é) = T LA’
Family 11. Whena =0,b # O and ¢ # 0,
_ pb
Qss(8) = =7 (cosh, (b€) — sinhy (bE) + p)
and b (coshy (&) + sinhy (b£))
Os(&) = — coshy (b€) + sinhy (b€

c (coshy (b€) + sinhy (bE) + q)
Family 12. When b = A, ¢ = nd(n # 0) and a = 0,

pAY*

Q37(§) = m

(2.30)

(2.31)
(2.32)
(2.33)

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)

Here, p,q > 0, and they are called the deformation parameters while Z = b* — 4ac. The generalized

trigonometric and hyperbolic functions are defined as follow:

A _ gA—iE A AE
sing (€) = %, cosy (§) = %
tan, (§) = ;I: ((?) coty (€) = Zif: ((g)) ,

1 1
secy () = o, @’ csey (6) = Sy @)

2

(2.42)
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Similarly,
sinhy (§) = M, coshy (§) = M,
tanhy (¢) = %, cothy (¢) = %, (2.43)
sechy (§) = m cschy (6) = m

3. Implementation of the method

In this section, we utilize our suggested this improved mEDAM approach to address the
targeted problems.

3.1. Problem 1

First, the equation for the fractional MDP stated in Eq (1.2) is taken into account. In order to
transform Eq (1.2) into a nonlinear ODE, we utilize the following complex transformation:

klxﬁ 1

1) = U(§), = -k , 3.1
ux,n) =UE&, & e+ “TasD 3.1
which results in the following

— kU’ +kkiU"” + 4 U*U’ - 3U'U” - I5UU" = 0, (3.2)

integrating Eq (3.2) with respect to the wave variable & and the constant of integration to zero, yields:

4k, U3

k(kiU” = U) - I5UU" + ~-kU)* =0. (3.3)

We balance the linear and nonlinear terms of the greatest order, which we may do by putting m; = mj,.
When we attempt m; = m, = 1, however, the system of algebraic equations generated via Eq (3.3)
only has trivial solutions. As a result, we choose this m; = m, = 2 instead. By replacing m; = m, = 2
into Eq (2.3), we get the following series solution for Eq (3.3):

2
U@ = ), d(G&Y

p=-2

(3.4)
=d>(GEN?+d1 (GE) +do+diG @) +d> (GO

By substituting Eq (3.3) into Eq (3.2) and equating the coefficients of (G (£))' to zero for i =

-6,-5,...,0,1,...,6, we obtain a system of nonlinear algebraic equations. We can solve this system

for the unknowns d_,, d_, dy, di, d», k; and k, by using Maple. The solution produces four sets
of answers:
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Case 1.

Case 2.

Case 3.

AIMS Mathematics

—-15¢h —15¢2
d,=0d,=0,d=——"—dy=— .
b= a2 " 8ac—202""" " 8ac—2p?

ki = m(ln Ak =5/2 \/W(In Ay,

_ —15ac
07 8ac—2b?
—15ab -154%
1 a2 T Bae 2 M =R =0
ki = - (4ac—b?)" (In(A) ™" ky = 5/2 y/- (4ac - b?)"' (In(A))™",
g = —15ac
*T 8ac-2b
_3i(25i
d,=0,d,=0,d = Sl<zi;fff))6b,
~3i(25i £ (VI13))
= 4ac—b? ’
L] (25i=(V5V3)) V5
1 10\/i(4ac—b2)(25ii(Vgﬁ))ln(A),
B (251 +(V5V3)) V5(-739 +27i = (V5 V3))
40(73+15ii(\/§\/§))\/i(4ac—bz)(25ii(\/§\/§))ln(A)’
y 1 1311 ac +329iac =2 (V15) + 441 b* + 31 ib?
f= -

"4 29240+ 60iac +2 (VI5) - 7362 - 150

(3.5)

(3.6)

(3.7)
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Case 4.
_3:(r5;
-4 -aa - B
~2i(25i £ (V15))?
2 4ac - b? ’
k= — (25 (V5v3)) V5
! Jitsac=2) (2514 (V3 V) In 4y (3.8)

1 (25i+(V5V3)) V5(-739+27i = (V53))

_E(73+ 15i+(V5+3)) \/i(4ac—bz)(ZSii(\/g\/g))ln(A)’
1 1311ac+329iac 2 (VI5)+4416% +31ib?
"4 29240+ 60iac £ 2 (VI3) - 7367 — 15D

If we consider Case 1, we obtain the following sets of traveling wave solutions:

Family 1. When Z < 0 and a, b, ¢ are nonzero, the corresponding family of solitary wave solutions for
Eq (1.2) is given as follows:

8ac—-2b?
2( p V—Ztany (1/2 ﬁg))z)
+c ,

u(x, 1) =

b V=Ztan,(1/2 V=Z¢)
2c 2c

(ac +cb (— — +
(3.9)

-+
2c 2¢

uy(x,t) =

-15 ) b ﬁcotA(lﬂ ﬁf)
Sac 252 4T eb| T30~ 2c

(3.10)

(b NZeota(1/2 V=Z¢)Y
2 2c -

—-15
8ac—21?
(b, Y (V=) = (Ve (V2
+c _2_c+ 2c GID

+cz[ b ﬁ(tanA(ﬁf)i(\/p_qsecA(ﬁg))))z)’

usz(x,t) = (ac

-—— +
2¢ 2c
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-15
" 8ac-20?
+cb[—£— ﬁ(cotA(ﬁg)i(\/p_qcscA(ﬁf)))]

(ac

2c 2c (3.12)

(b NTleon(VZR) + (e (V)
-2 . /)

and

15
uso ) = g o

N cb[ b \/—_Z(tanA (;11 \/75) — coty (i \/35)))

(ac

— 4+
2c 4c

(3.13)

+ 2 (_ﬁ N \/—_Z(tanA (3‘; ‘/35) — coty (‘l1 \/_Zé:))]z)
2c e .

Family 2. When Z > 0 and 4, b, c are nonzero and the corresponding family of solitary wave solutions
for Eq (1.2) is given as follow:

-5 L[ VZ tanh, (1/2 VZ&)
00D = a2 | e T 2
> (3.14)
2[ b VZtanhy(1/2 x/Zg))
M ey ),
2c 2c
- b VZcothy (1/2 \/Zg)
e P T 2
2 (3.15)
2[ b VZcothy(1/2 \/Zg))
T~ ),
2c 2c
-15
ug(x, 1) = m(ac
b VZ{anhy (VZ€)  (Vpasechs (VZ)))
+cb _2_C - 2 (3.16)

ol 4 e (e (),
2c 2c ’
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-15
uy(x,t) = m(ac
p» VZ (COthA ( Vz¢ ) + ( Vpgeschy ( \/Zf)))
+eb| -5~ 5 (3.17)
b vz (COthA ( ‘/Zf) * ( Vpgceschy ( \/Z‘f))) 2
+C _Z - 2c )
and
uro(x, 1) = P —i52 bz(
p VZ (taHhA ( VZé ) cothy (zlt \/Zé:))
b2 - > (3.18)

2¢ 2c

ol VZ iy (3 VZ€) - othy & vzf»]i

Family 3. When ac > 0 and b = 0, the corresponding family of solitary wave solutions for Eq (1.2) is
given as follow:

w(x, 1) = %5(1 + (tang (Vace))), (3.19)
win(x, 1) = _—15(1 + (cota (Vace))), (3.20)
uis(x, 1) = %5(1 + (tana (2 Vace) + (Vpq seca (2 Vace))) ). (3.21)
wa(x, 1) = %5(1 + (cota (2 Vace) = (Vpgesca (2 Vace)))) (3.22)
and
uis(x, ) = %5(1 + 411 (tans (1/2 Vacé) - coty (1/2 \/Eg))z). (3.23)

Family 4. When ac > 0 and b = 0, the corresponding family of solitary wave solutions for Eq (1.2) is
given as follow:

(X, 1) = %5(1 ~ (tanh, (V=acg))), (3.24)
(e, = 521 = (cothy (V=acz))), (3.25)
ws(x, 1) = —(1 ~ (tanh, (2 V=ace) = (i ypgsechy (2 V=acé)))), (3.26)
ot 1) = (1 = (cothy (2 V=ace) +  Vpdeschs (2 V=ace)))) (3.27)
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and
Uro(x, 1) = %5(1 - i (tanh, (1/2 V=ac&) + coth, (1/2 \/—_acf))z). (3.28)

Family 5. If ¢ = @ and b = 0, the corresponding family of solitary wave solutions for Eq (1.2) is given
as follows:

Uy (x, 1) = _?15(1 + (tany (aé))?), (3.29)
Uup(x, 1) = %5(1 + (coty (aé))?), (3.30)
s, = 5201+ (1an,y (2a8) + (VP seea 2a)P), (331)
Uog(X, 1) = %5(1 + (= coty (2a€) + (Vg cse (2a8)))) (3.32)
and
s (X, 1) = _?15(1 +(1/2 tan, (1/2a€) — 1/2 coty (1/2 ad))?). (3.33)

Family 6. When ¢ = —a and b = 0, the corresponding family of solitary wave solutions for Eq (1.2) is
given as follows:

Ure(X, ) = %5(—1 + (tanhy (ad))), (3.34)
Uyr(x, 1) = _Tls(—l + (cothy (aé))?), (3.35)
log(x, 1) = %5(—1 + (— tanh, (2 af) + (i ypgsechy (2a)))’ (3.36)
o (X, 1) = %5(—1 + (- cothy (2 aé) + (y/pgeschy (2ad)))’) (3.37)
and
uso(x, 1) = %5(—1 +(=1/2 tanhy (1/2aé) — 1/2 cothy (1/2 a&))?). (3.38)

Family 7. If a = 0, b # 0 and ¢ # 0, the corresponding family of solitary wave solutions for Eq (1.2)
is given as follows:

15p
U6 D) = s (b¢) — sinhy (bE) + p)
+ T (3.39)
2 (coshy (b€) — sinhy (b€) + p)?
and
15 (coshy (b€) + sinhy (b))
15251 = 5 (coshs (b€) + sinh, (bE) + q) (3.40)

15 (coshy (b€) + sinhy (b&))?
2 (coshy (b€) + sinhy (bE) + ¢)*
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Family 8. If b = A, ¢ = nd (where n # 0) and a = 0, the corresponding family of solitary wave
solutions for Eq (1.2) is given as follows:

15npA*¢ 15n%p? (AM)Z
+ )
2(p —ngA*®)  2(p — ngAré)?

J-(ac-b2) 5 J-(aac-b2) e

where & = mAT@E D 2WAT@+D)

Now by assuming Case 2, we obtain the following families of solutions:

(3.41)

usz(x, 1) =

Family 9. If Z < 0 and a, b, ¢ are nonzero then the corresponding family of solitary wave solutions for
Eq (1.2) is given as follows:

p  V—Ztany (1/2 ﬁf)}z

() = g lac+a” [‘z_c + %
-1 (3.42)
[ b V-Ztan,(1/2 ﬁg)]
+ab|—— + ),
c 2c
__ IS A b V=Zcots (172 V=Z¢) 2
uzs(x, 1) = m(ac +at| =5 - >
5 (3.43)
[ b ﬁcotA(l/Z \/—_Zg)]
+ab|—— — ),
2c 2c
uze(X, 1) = Tgbz(ac
1 ﬁ“@‘f‘f*(ﬁf%(mw(@))))2
+a’|-—+
2 2c (3.44)
b ﬁ(tanA ( ﬁf) + (\/p_qsecA ( ﬁg))) B
i o )
-15
uz;(x, 1) = m(ac
b N=Z(eo (V=Z¢) = (VPaesea (VZ£)))|
T2 2c (3.45)
o[ oo (2= (s, (V)
¢ 20 2c
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and

-15
8ac—2b?
+ 2 {_ﬂ N \/_(tanA ( \/_f) — coty ( ﬁf)) ]2
N % (3.46)

[ YL (V) - eon (1))
| i

(ac

usg(x, 1) =

2c 7

Family 10. If Z > 0 and a, b, c are nonzero then the corresponding family of solitary wave solutions
for Eq (1.2) is given as follows:

uzg(x, ) =

-2
-15 [ b \/ZtanhA (1/2 Zf)
Sac—2p |2 " L

(3.47)

[ p  VZtanh, (1/2 @5)]1
+ab|—-— - )
2c 2c

-2
-15 [ b VZ coth, (1/2 \/Zg)
“Bac 22T T2 T 3¢

(3.48)

[ b \/EcothA(Uz \/Z‘f)]l
+ab|—— - ,
2c 2c

it R
8ac— 212 C

e [_E ~ VZ(ranh, (VZ¢) + (ypgsecha ( \/zg)))]z

us (x,1) =

(3.49)

2¢ 2c

+ab

-4 - Yl () s (P,

2c e

—-15 (
8ac—2b? ac

(L V2o (V2 # (Vs (VZE)) |
e % (3.50)

b _ V(oo (VZ) # (raesen (VZE)

+ab|l-—— —
. 2¢ e )

ugp(x,t) =
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and
-15
S Y Y
(b VZ(tanhy (4 VZ€) - coth (1 VZ£)))
+a’ |-=— -
2c 4c (3.51)

c 4c

a2 ﬁ(tanmwf)—cotme@f))]3

Family 11. When ac > 0 and b = 0, this the corresponding family of solitary wave solutions for
Eq (1.2) is given as follows:

-15 1

(x, 1) = (1 ),
Ugq(X 3 + (tanA ( \/%é:))z (352)
~15 |
(x, 1) = (1 )
Uys(X, t 3 + (COtA(\/%f))z (3.53)
_15 |
(x,0) = (1 )
ST (2 vace) = (ypaseen (2 vace)) (339
w(n) = (1 + 1 7) (3.55)

8 (cotA (2 \/%f) + (\/p_qcscA (2 \/%f)))

and

was(e,f) = (1 + 4 1 0).
8 (tana (1/2 vace) - cota (1/2 Vacé))

Family 12. When ac > 0 and b = 0, the corresponding family of solitary wave solutions for Eq (1.2)
is given as follows:

(3.56)

-15 1
( s t) = (1 - )’
Ugo(X 3 (tanhA( _acf))z (357)
-15 1
( s t) = (1 - )9
ot 8 (cothA (\/—acf))z -39
—-15 1
( s ) = (1 - )s
ST anhe (2 v=ace) = (1ypasech (2 =ace))) (359
—-15 1

usp(x,1) = ——(1 -

7) _
8 (cothy (2 V=acé) = ( ypgescha (2 V=act))) (3.60)
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and

-15 1
us3(x,1) = — (1 -

).
8 (tanhy (1/2 V=acg) + cothy (1/2 v=acé))

Family 13. If ¢ = @ and b = 0, this the corresponding family of solitary wave solutions for Eq (1.2) is
given as follows:

(3.61)

-15 1

l/l54(.x, t) = 8 (1 + (tanA (aé‘—‘))z)’ (362)
-15 1
= 1
MSS(.X, t) 8 ( + (COtA (aé‘:))z )9 (363)
-15 1
uso(x,1) = —=(1 + 5) (3.64)
(tanA 2aé) + ( \VPgseca (2 ag)))
-15 1
us (x,1) = —=(1 + 5) (3.65)
(— coty (2aé) = ( VPgcsca (2 ag)))
and
-15 1
usg(x, 1) = (1 ). (3.66)

8 (172 tany (1/2a&) — 1/2 coty (1/2 a&))?

Family 14. If ¢ = —a and b = 0, then the corresponding family of solitary wave solutions for Eq (1.2)
is given as follows:

-15 1
uso(x, 1) = T(—l + —(tanhA (@)’ ), (3.67)
-15 1
=—(-1+—
M@O(.x, t) g ( + (C()thA (aéf))z )a (368)
-15 -1+
o1 (x, 1) = —=(=1+ 7 (3.69)
(- tanh, 2a¢) £ (i ypasechs (2a¢)))
-15 1
oo (%, 1) = —=(=1+ 7) (3.70)
(- cothy (2aé) + (Vpgescha 2af)))
and
Uy (x t)—_—15(—1+ ! ) 3.71
GV g (—1/2 tanhy (1/2 a&) — 1/2 cothy (1/2 aé))>" G-71)

Family 15. If b = A, a = nd (where n # 0) and ¢ = 0, then the corresponding family of solitary wave
solutions for Eq (1.2) is given as follows:

=B, (3.72)
u X, = — .
™ 2 (At —p)* (A —n)

w/—(4ac—b2)71xﬁ 5 \l—(4ac—b2)7lt‘y
where & = mACB+)  2InA)T(a+l)
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If we consider Case 3, we obtain the following sets of traveling wave solutions:

Family 16. If Z < 0 and a, b, ¢ are nonzero then the corresponding family of solitary wave solutions

for Eq (1.2) is given as follows:

1 1311 ac + 329 iac + 2 (V15) + 441 6> + 31 ib?
M65(X,t):— R .
4 292ac +60iac +2 (VI5) - 736> - 15 ib?
—~3/4i(25i+(VI5)) [ b V-Ztan,(1/2 x/—zg))
(cb

-—+
8ac—-2b% 2¢ 2¢

+

-+
2¢ 2c

2[ p V—Ztany (1/2 ﬁf)]z)
+c ,

1 1311 ac +329iac + 2 (V15) + 441> + 31 ib?
uge(x, 1) = —
4 292 ac + 60 iac + 2 (x/ﬁ)—73b2— 15 ib?

_3/4i(zsii(m))(b( b ﬁcotA(l/zﬁf))

8ac-2b? 2c 2c

2

L2 b V—ZcotA(l/Z V—Zf) )
“\ 2 2c ’

1 1311 ac +329iac + 2 (V15) + 441 5> + 31 ib?

ugr(x,1) = —
4 292 ac + 60 iac +2 (\/E)—73b2— 15 ib?

~3/4i(251 = (V15))
8ac—2b?
(cb [_ b ﬁ(tanA(ﬁf)i(\/ﬁsecA(ﬁg))))

+

2c 2c

-+
2c 2c

L2 [ b V=Z(tans (V=Z&) = (vpgseca \/35)))]2)’

| 1311 ac +329iac + 2 (VI5) + 441 5> + 31 ib?
ugs(x,1) = —
4 202ac + 60iac +2 («/B)—73b2— 15 ib?

~3/4i (251« (V15))
8ac—2b?
(cb[ b ﬁ(eou(ﬁf)i(@cscA(ﬁf)))]

+

2¢ 2¢

2c 2¢

e [_ﬁ - V=Z(cot (V=2&) £ (ypq esca (V=Z f)))]z)
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and

1 1311 ac +329iac + 2 (V15) + 441 5> + 31 ib?
4 292 ac + 60 iac + 2 (V15)- 7302 - 15 i?
~3/4i(25i + (V15))

8ac-2b?
( b( b \/_(tanA ( ‘/_f) — coty ( ﬁg))] (3.77)

ugo(Xx, 1) =

—+

20 4c

—_ +
2c 2c

+c2( b V=Z(tans (3 V=2¢) - coua 3 ﬁf))]z)'

Family 17. If Z > 0 and a, b, c are nonzero then the corresponding family of solitary wave solutions
for Eq (1.2) is given as follows:

11311 ac + 329 iac + 2 (V15) + 441 6> + 31 ib?

uq0(x, 1) =
b 4 292ac+60iac +2 (VI3) - 7352 - 15ib?
~3/4i(25i + (VI15)) b VZtanh,(1/2 VZ¢)
" (cb|- (3.78)
8ac —2b? 2 2c
( b VZtanhy(1/2 «/Zg)]z
+|-= - ),
2c 2c
11311 ac +329iac + 2 (V15) + 441 6> + 31 ib?
uz(x, 1) =
4 292qc + 60iac =2 (VI5)- 7367 - 15>
~3/4i(25i + (VI15)) b VZcothy(1/2 VZ¢)
+ (ch |- (3.79)
8ac—2b? 2 2c
(b VZeothy (172 VZE)Y
T T2 T 2¢ )
11311 ac + 329 iac + 2 (V15) + 441 6> + 31 ib?
up(x, 1) =

4 292ac+6olac+2(\/B)—73b2—15ib2
+—3/4i(25ii(«/ﬁ))

8ac —2b? 3.80)
o - Yo V) e (5) e
ch|—— -

2c 2c

L vzoanm(vzf)i<msecm<vzf>>>]i
2c 2c ’
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1 1311 ac +329iac + 2 (V15) + 441 5> + 31 ib?
up(x, 1) = —
4 292ac+60iac+2 (VI5) - 7352 - 15 ib?

~3/4i(251+ (V15))
8ac —2b? 1.81
( b(_z (oot (VZ2) (@cschA(ﬁf)))] .

+

2¢ 2c

ol @(ootmwz)i<mcscm<ﬁf>>>]1
2c 2c

and

1 1311 ac +329iac =2 (V15) + 441 b* + 31 ib?

Ura(%,1) = 4 292atc+60iaci2(\/ﬁ)—nbz_wib2
_3/4i(25ii (\/ﬁ))
* 8ac —2b?
( b( b \/_(tanhA( \/_f) cothy (JT \/Zf)) (3.82)
c 20 2c ]

(4 VZ iy (3 VZ€) - othy 4 @»]1
+cC —%— 2 .

Family 18. When ac > 0 and b = 0, the corresponding family of solitary wave solutions for Eq (1.2)
is given as follows:

11311 ac + 329 iac + 2 (V15)
4292 ac + 60 iac + 2 (V15)

~3/4i(25i + (VI15))

. - ((tany ( Vacg)),

urs(x, 1) =
(3.83)

11311 ac +32%iac + 2 (\/B)
4 292 ac + 60 iac =2 (\/B)
~3/4i(251+ (V15))

+ 3 ((cota ( \/a_Cé-‘))z),

1 1311 ac + 329 iac + 2 (V15)
ur(x, 1) = —
VIS)
)=

uze(x, 1) =
(3.84)

4 292 ac + 60 iac + 2 (

~3/4i(25i (\/E))

+ g (tanA (2 Vac cé

(3.85)

(VP seca (2 Vact)))
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1 1311 ac + 329 iac + 2 (V15)

uzg(x, 1) = 7 292 ac + 60 iac + 2 (\/B) (3.86)
DO, o ) (s (2 vt
and
11311 ac+329iac +2 (VI5)
uzg(x,1) = 4 999 ac + 60 iac + 2 (\/ﬁ) (3.87)
. _3/41‘(2581' + (‘/E))(;L (tanA (1/2 \/ﬁg) — coty (1/2 \/Eé-‘))z).

Family 19. When ac > 0 and b = 0, the corresponding family of solitary wave solutions for Eq (1.2)
is given as follows:

1 1311 ac + 329 iac + 2 (V15)

(%, 1) = 4 292 ac + 60iac +2 (\/E) (3.88)
| T3 (25 8¢ = (x/ﬁ))(_ =
1 1311ac+ 329 iac = 2 (VI3)
s (1) = 4 292 ac + 60 iac =2 (\/E) (3.89)
| I (25 81 + (\/E))(_ (cothy (V=)
11311 ac + 329 iac =2 (V15)
ugy(x, 1) = 2 .
292 ac + 60iac £2 (\/B) (3.90)
el (25 Sz + (\/B))(_ (ans (2 v=a2€) = (i VFasechs (2 Va2
11311 ac +329iac + 2 (V15)
ugs(x, 1) = 1 .
292 ac + 60iac +2 (\/E) (3.91)
. —3/4i(25 8:‘ + (‘/ﬁ)) (- (COthA (2 \/__acg) + (\/p—qcschA (2 \/—_acf)))z)
and
11311 ac +329iac 2 (V15)
ugs(x, 1) = I )
292 ac + 60iac +2 (\/E) (3.92)
N _3/4i(25;i (\/E))(—% (tanh, (1/2 V=acé) + coth, (1/2 \/—_aCS))z)-
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Family 20. If ¢ = @ and b = 0, the corresponding family of solitary wave solutions for Eq (1.2) is
given as follows:

1 1311a% +329ia® + 2 (V15)

ugs(x,t) = —
4 29242 4+ 60ia? +2 (x/ﬁ)

2 (25; =) s
1 1311a% +329ia> + 2 (V15)

uge(x,t) = —
4 29242 4+ 60ia? +2 (x/ﬁ)

e (25; il \/E))((m (ag)?),
1 1311a% +329ia® + 2 (V15)

ug7(x,t) = =
v 4 2924% +60ia> + 2 (VT3)

~3/4i(25i + (VI15))

+ : ((tany (2 ag) + (Vpg seca 2aé)))),

1 1311a% +329ia® + 2 (V15)

ugs(x, 1) = —
4 29242 4+ 60ia? +2 («/B)

~3/4i(25i + (V15))

+ : (= coty (2aé) + (ypg csca (2af))))

(3.93)

(3.94)

(3.95)

(3.96)

and

1 1311a? +329ia® + 2 (V15)
ugo(x, 1) = 1 -

292 a2 + 60ia? + 2 (x/ﬁ)
~3/4i(25i + (V15))

+ g ((1/2 tany (1/2 a€) — 1/2 coty (1/2 a&))?).

Family 21. When ¢ = —a and b = 0, the corresponding family of solitary wave solutions for Eq (1.2)
is given as follows:

(3.97)

1 —1311a% =329 ia* £ 2 (V15)

=<
Ugo(X, 1) 4 20242 -60ia2 +?2 (\/E) (3.98)
3/4i(25i = (VI5)) 2
N : ((tanhy (a&))”),
1 —1311a® = 329ia> + 2 (VT5)
=<
g1 (X, 7) 4 2002 —60ia2 +2 (\/E) (3.99)
3/4i(25i = (VI5)) )
4 ((COthA (af)) ),

8
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| —1311a% - 329 ia® + 2 (V15)

u X, 1) =—
2 e 6o a2 (VI3) (3.100)
3/4i(25i + (V15)) ,
+ 2 ((—tanhy (2 aé) + (i 4/pgsechy (2 af)))”,
| —1311a* - 329ia> + 2 (V15)
Uz (x, 1) = 1 > — N
—292a% — 60ia? +2 ( 15) (3.101)
3/4i(25i+ (VI5)) ,
+ 2 ((—cothy (2aé) £ (4/pgeschy (2 af)))”)
and
1 -1311a* - 329ia> + 2 (V15)
Ugs(x, 1) = 1 N — N
-292a% - 60ia? +2 ( 15) (3.102)
3/4i(25i%(VI5)) .
+ ((=1/2 tanhy (1/2 a&) — 1/2 cothy (1/2 aé))?).

8

Family 22. If a = 0, » # 0 and ¢ # 0, the corresponding family of solitary wave solutions for Eq (1.2)
is given as follows:

1 £2 (VI5) + 44162 + 31ib?
Uugs(x, 1) = 1 -
+2 (VI5) - 7367 - 15 ib?
3/4i(25i % (V15))p (3.103)
—2 (coshy (b€) — sinhy (BE) + p)
3/4i(25i + (VI5)) p?

2 (coshy (b€) — sinhy (bE) + p)?

and

2 (VI5) + 4415 + 31 ib?
2 (VI5) - 7352 — 15 ib?
3/4i(25i + (V15)) (coshy (b€) + sinhy (b€)) (3.104)
—2 (coshy (b€) + sinhy (b€) + q)
R (257 = (V15)) (coshy (b) + sinh, (b€))?
2 (coshy (bE) + sinhy (b€) + g)° '

Bl

Uge(x, 1) =

+

Family 23. If b = A, ¢ = nd (where n # 0) and a = 0, the corresponding family of solitary wave
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solutions for Eq (1.2) is given as follows:

2 (VI5) + 441 22 + 31042

+2 (VI5) - 7342 - 1522

3/4i(251 + (VI5))npAte ) 3/4i (250 (VI5))n2p? (A1)
2(p — ngA*®) 2 (p — ngA¢y’

FNg-

ug7(x, 1) =
(3.105)

+

b

(25i(V5V3)) V5

10 Vi(4 ac-52)(25 i=( V5 V3) ) In(A)L(B+1)
(25i(V5V3)) V5(-739+27ix( V5 V3) )

- 40(73+15 (V3 V3)) Vi(4 ac—62) (25 i= (V5 V3)) In(A)T(a+1)
Assuming Case 4, we obtain the following families of solutions:

Family 24. If Z < 0 and a, b, c are nonzero then the corresponding family of solitary wave solutions
for Eq (1.2) is given as follows:

where ¢ =

1 1311 ac + 329 iac =2 (V15) + 441 b* + 31 ib?
u98(xat) = -
4 292ac +60iac =2 (V15) - 7312 - 15ib?

. . _2
N —3/41(251 + (\/B))(az [_E .\ V—=Z tan, (1/2 \/75)] (3.106)
8ac—2b? 2c 2c
b V=Ztany (1/2 V=Z¢))
+ab{——c+ 2 ) ),
_11311ac+329iac +2 (VI5)+4415> + 317
) S A rac s 60iac £ 2 (VI5)- 7382 - 1507
. . -2
. ~3/4i(25i+ (x/B))(a2 (_E ) V=Zcot, (1/2 ﬁg)) G3.107)
8ac—2b? 2c 2¢
b V=Zcoty (1/2 V=2¢)) |
ol g T
1 1311 ac +329iac =2 (V15) + 441 b* + 31 ib?
uioo(x, ) = I ) -
292ac + 60 iac +2 (VI5) = 7362 - 15 ib?
~3/4i(25i + (VI5))
- 8ac —2b? 3108
(b NZ(tana (VZE) + (VPasecs (VZE)) (109
(a _2_c+ 2¢
b V=Z(tany (V=Z¢) £ (ypasecs (V=2¢))))
+ab ~5 + e ),
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11311 ac + 329 iac + 2 (V15) + 441 5> + 31 ib?
4 292 ac + 60iac +2 (VI5)- 7307 - 15 ib?
~3/4i(251+ (V15))

8ac —2b?

@ (_E V-z (COtA ( ﬁf) + ( \/Dg csca ( \/—_Zg))) )2 (3.109)
2c 2

uior(x, 1) =

+

caf 2 ﬁ<c0tA<ﬁf>+<mCscA<@>>>]3
2c 2c

and

11311ac+329iaci2(«/ﬁ)+441b2+31ib2

4 292ac +60iac =2 (V15) - 7312 - 15ib?
~3/4i(25i+(V15))

T Bac-21 B G110

(az(_b V=2 (tana (5 V=2¢) - coua (4 ﬁf))) |

uoo(x, 1) =

— 4+
2c 2c

-1

b V- (tanA ( V- f) — coty ( \/—Zf))

+ab|——+ )
2c 2c

Family 25. If Z > 0 and a, b, c are nonzero then the corresponding family of solitary wave solutions

for Eq (1.2) is given as follows:

1 1311 ac +329iac + 2 (V15) + 441> + 31 ib?
uz(x, 1) = —

4 292 ac + 60 iac +2 (\/B)—73b2— 15 ib?

=3/4i(25i+(V15)) b VZtanh, (1/2 VZ§) -
+ @|-= - (3.111)
8ac —2b? 2c 2c
b VZtanhy (1/2 VZ£))
+ab| -5 - > ),
11311 ac +329ac +2 (VI5) + 4415 + 31 i’
u04(x, 1) =
4 292ac + 60 iac +2 (V15) = 735> - 15 ib?
-3/4i(25i(VI3)) (b VZcoths(1/2 VZE))
+ @|-= - (3.112)
8ac —2b? 2c 2c

[ b VZeothy (1/2 \/Zg))l
tab|-2 - ),
2c 2¢

AIMS Mathematics Volume 8, Issue 11, 27775-27819.



27800

1 1311 ac +329iac + 2 (V15) + 441 6> + 31 ib?

uios(x, 1) = —

4 292 ac + 60 iac +2 (\/B)—73b2— 15 ib?

~3/4i(251+ (V15))
8ac—-2bh?
| - Pl (29 (e ()

+

(3.113)

2¢ 2¢

2c 2c

rav| -2 VZ (tanh, ( VZ¢) + (ypgsechy ( VZ£))) -l
| I

1 1311 ac + 329 iac =2 (V15) + 441 b* + 31 ib?
uioe(X, 1) = —

4 292 ac + 60iac + 2 (x/ﬁ)—73b2— 15 ib?
~3/4i(25i+(V15))
8ac—2b?

( 2[ b VZ(coth, (VZ&) = (ypgeschs (VZ g)))]z

+

(3.114)

2c 2¢

2c 2c

ol vZ(C()th/*(ﬁf)i(V”_““hA(V?f))))1>

and

1 1311 ac + 329 iac =2 (V15) + 441 b* + 31 ib?

u7(x, 1) = —
4 292 ac + 60 iac + 2 (\/E)—73b2 —15ip?

~3/4i(25i % (V15))

T Bac—2p?
( [ b VZ(tanhy (5 VZ£) - cothy (3 ﬁf))]z
e 4c

(3.115)

a2 @(tanmwf)—cotmevféf)))3
P12 T 4c '

Family 26. When ac > 0 and b = 0, the corresponding family of solitary wave solutions for Eq (1.2)
is given as follows:

1 1311 ac +329iac + 2 (V15)

) S ac + 607ac £ 2 (V15)
~3/4i(25i+ (\/15))( 1 : (3.116)
+ b
8 (tanf‘(\/%f))2
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] 1311 ac + 329 iac + 2 (V15)

Uyoo(x, 1) = 4999 ac + 60 iac + 2 (\/B)
) —3/4i(25ii(\/ﬁ))( 1 ) Y
8 (cotA(\/CEf))z ,
11311 ac+329iac +2 (VI5)
Hi10(x, 1) = 4 292 ac + 60 iac = 2 (\/B)
~3/4i(25i+ (\/E))( ! ) -
) :
T o Vo) (s 2 V)
11311 ac+329iac +2 (VI5)
mn(x, 1) = 4 292 ac + 60 iac + 2 (\/B)
_3/4i(25ii(\/B))( 1 ) o
+
8 (cota (2 vace) = (ypgesea (2 vact)))
and
_ 11311ac +329iac =2 (V15)
Ui ) = rac + 60iac £ 2 (V15)
N (3.120)
) —3/41(2511(\/5))(4 !

)
8 (tana (1/2 Vace) - cota (1/2 Vacé))

Family 27. When ac > 0 and b = 0, the corresponding family of solitary wave solutions for Eq (1.2)
is given as follows:

] 1311 ac + 329 iac + 2 (V15)

D) = orae + 60iac £ 2 (V15)
~3/4i(25i (\/B))( 1 ) G120
+ - :
8 (tanhA(\/—_acg))2
] 1311 ac + 329 iac + 2 (V15)
upa(x, 1) = 1 :
292 ac + 60 iac + 2 (\/E)
~3/4i(25i+ (\/E))( 1 ) G122
+ - :

: (ot (Ve
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] 1311 ac + 329 iac + 2 (V15)

) e + 60iac £ 2 (V13)
~3/4i(25i+ (\/B))( ! ) o
. _ :
3 (1o (2 v=ace) = (i ypasechs (2 v=ace)))
1 1311ac + 329iac = 2 (VI3)
wug(%, 1) = 4 292 ac + 60iac + 2 (\/E)
~3/4i(25i («/B))( ! ) o
.\ _
8 (COthA (2 \/—_acf) + (\/p_qcschA (2 \/—_aCf)))z
and
~11311ac+329iac +2 (VI5)
ur(% 1) = 4 292 ac + 60 iac + 2 (\/B)
~3/4i(25i+ (\/E))( ) ! ) o
. ) .
8 (tanhy (1/2 V=acé) + coth, (1/2 v=ac¢))’

Family 28. If ¢ = a and b = 0, then the corresponding family of solitary wave solutions for Eq (1.2) is
given as follows:

1311 +329ia’ +2 (VI5)
) Gt oM 22 (V1)
-3/4i(25i(VI5)) 4

8 (<tan (af))z)’

(3.126)

+

11311 +329ia’ +2 (VI5)
e e a r 60 < 2 (V13)
-3/4i(25i+(VI5))

8 (cots (ag))*”

(3.127)

+

11311 +329ia® + 2 (V15)

uo(x, ) = —
4 29242 +60ia> =2 (V15)

_3/4i(25ii(‘/15))( 1 )
+ b
Oy e

(3.128)
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1 1311a* +329ia® + 2 (V15)
upi(x, 1) = —

42920 + 60ia* 2 (V15)
_3/4i(25ii(\/ﬁ))( 1 )
+
8 (— coty (2af) + ( VPgesca (2 af)))z

(3.129)

and

113116 +329ia® + 2 (V15)
uin(x,1) =+

4 29242 + 60ia? +2 (x/ﬁ)
~3/4i (251« (V15)) 1

¥ 8 ((1/2 tany (1/2aé) — 1/2 cotA(l/zag)f)'

(3.130)

Family 29. If ¢ = —a and b = 0, then the corresponding family of solitary wave solutions for Eq (1.2)
is given as follows:

1 —1311a% - 329ia* £ 2 (V15)

u3(x, 1) = 7 290 a2 — 60id® + 2 (\/E) (3.131)
3/4i(25i +(V15)) 1 |
+ 8 (tanh, (a&))*”
B —1311a* = 329ia*> + 2 (‘/B)
Uppa(x, 1) = Z 290 a2 — 60id® + 2 (\/E) (3.132)
3/4i(25i +(V15)) 1 |
+ 8 (cothy (aé))*”
1-1311a - 329 £ 2 (VT5)
) e — 60 < 2 (V15)
3/41.(25&(\/5))( 1 | (3.133)
) :
] (_ tanh, (2 af) + (i \pgsechy (2 ag)))z
_1-1311a7 =320 =2 (V15)
oo 1) = g ~292a% - 60ia> + 2 (V15)
3/4i(25i +(V15)) ! o
. ( ”

3 (- cothy 2a8) = ( ypgescha (2.a0)))
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and

| —1311a> - 329ia> + 2 (V15)

u127(X, t) = Z 292 612 - 60 l'a2 +2 (\/E) (3 135)
| 4251 (VT5)) ! |

8 (—1/2 tanh, (1/2 a&) — 12 cothy (1/2 ag))z)'

Family 30. If b = A, a = nd (where n # 0) and ¢ = 0, then the corresponding family of solitary wave
solutions for Eq (1.2) is given as follows:

1 £2 (VI5) +441 22 + 31002

uios(x%, 1) = 7 D) (\/B) ~ 732 - 15i2 (3.136)
+3/4i(25ii(\/ﬁ))( n? N n ),

2 (A —ny* (A —n)

(25i(V5V3)) V5

10 V/i(4 ac-b?)(25 i=( V5 V3) ) In(A)F(B+1)
(25i(V5v3)) V5(-739+27 i=( V5 V3) )

" 40(73+15 (V3 V3)) Vi(4 ac-b?) (25 i (V5 V3)) In(A)T (a+1)

where & =

3.2. Problem 2

Consider the fractional gas dynamics equation given by Eq (1.3). In order to convert Eq (1.3) into a
NODE, we apply the following complex transformation:

_ _ kit” X
utx,n) =UE), &= Ta+1) + TG D

(3.137)

This yields
kU +kUU - U+ U?*=0. (3.138)

If we balance the highest order linear term U’ with the nonlinear term U 2 we obtain that m; = m, = 1.
Substituting m; = m, = 1 into Eq (2.3), we can obtain a series form solution for Eq (3.138) as

1
U@ = Z d(G @Y =d 1 (G @) +do+diG(&). (3.139)

p=-1

By substituting Eq (3.139) into Eq (3.138), we can obtain a system of nonlinear algebraic equations by
equating the coefficients of (G (¢))' fori = -3, ...,0, ..., 3 to zero. Solving this system for the unknown
d_y, dy, dy, ky and k, by using Maple, we obtain the following two sets of solutions:

Case 1.

1
d, = \/— (=% +4ac) 'a,dy =0,dy = =( \/— (=02 +4ac)'b+1),
2 (3.140)

ki = \/— (=b% +4ac)” (In(A)™"', k = 0.
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Case 2.

1
dy=0,d =- \/— (=12 +4ac) e, dy = =(- \/— (=0 +4ac) b+ 1),
2 (3.141)

ki = \/— (=b* +4ac)” (In(A)™" k= 0.

Assuming Case 1, we can obtain the following families of solutions

Family 1. If Z < 0 and a, b, c are nonzero then the corresponding family of solitary wave solutions for
Eq (1.3) is given as follows:

V—Ztan, (1/2 V=2£)\ "
u(x, 1) = \/— (=% + 4ac)_la[_£ + anA( / f)]
2c 2c

(3.142)
+ %( \/— (=b% +4ac) b+ 1),
-1
i) = \/_ b+ 4ac)_la[—£ ~ V=Z coty, (1/2 \/35)]
2c 2c (3.143)
+ %( \/— (-b+4ac) b+ 1),
us(x, 1) = \/— (-b* + 4ac)_1a><
-1
(_ b . \/Z(tanA ( \/36) + (\/p_qsecA ( ﬁf)))) (3.144)
2c 2c
+ %( \/— (=b% +4ac) b+ 1),
uy(x, 1) = \/— (=b? + 4 ac) 'ax
b V=Z(cots (V=Z&) = (ypgesea (V=2£)))) | s
“2c 2c (3.143)
+ %( \/— (-0 +4ac)'b+1)
and
us(x, 1) = \/— (-b* +4 ac)_lax
-1
[ ) ) o140
C C

+ %( \/— (=0 +4ac) b+ 1).
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Family 2. If Z > 0 and a, b, c are nonzero then the corresponding family of solitary wave solutions for
Eq (1.3) is given as follows:

VZtanh, (1/2 VZ£)) "
ug(x, 1) = \/—(—b2+4ac)‘1a[_£_ tan A( / f))

2 2c (3.147)
+ %( \/— (-b>+4ac) b+ 1),
-1
I v +4ac)_1a[_ b VZeoth, (12 \/Zf))
+ %( \/— (=0 +4ac) b+ 1),
ug(x,t) = \/_ (=b* + 4ac) " ax
b VZ(tanhy (VZ¢) = (ypgsechs (VZ£)))) 3.149
L - (3.149)
+ %( \/— (=b2 +4ac)'b+1),
st~ N1
b VZ(coths (VZ¢) £ (yPaescha (VZ¢)))) 3.150
S - (3.150)
’ %h/— (=2 +4ac)'b+ 1)
and
u(x,t) = \/_ (—b? + 4ac) " ax
[_; _ VZ(ranh, ‘/Zi) — cothy (5 ‘/zf)))l (3.151)
- c

+ %( \/— (=b%+4ac) b+ 1).

Family 3. If ac > 0 and b = 0, then the corresponding family of solitary wave solutions for Eq (1.3) is
given as follows:

upi(x, 1) = %(tanA(\/%f))_l + % (3.152)
u(x, 1) = —% (cota ( «/%g))_1 + % (3.153)
st 1) = 3 (tan (2 Vace) = (Vpg seca (2 vaee))) ' + 5. (3.154)
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wia(x, 1) = —é (cots (2 Vacé) + (pgesea (2 \/%g)))‘1 + % (3.155)
and
wis(x, 1) = i (tany (1/2 Vacé) - coty (1/2 \/%g))‘l + % (3.156)

Family 4. If ac < 0 and b = 0, then the corresponding family of solitary wave solutions for Eq (1.3) is
given as follows:

ui6(x, 1) = —% (tanh, ( \/—_acf))_l + % (3.157)
7 (x, f) = —% (cothy ( \/—_acf))_l + % (3.158)
yg(x, 1) = —% (tanh, (2 V=acé) + (i ypgsechs (2 \/—_acg")))_l + % (3.159)
io(x, 1) = —% (cothy (2 V=acé) = ( vpgeschy (2 \/—_acf)))_l + % (3.160)
and
xo(x, 1) = — (tanhy (1/2 V=acg) + cothy (1/2 \/—_acf))_l + % (3.161)

Family S. If ¢ = a and b = 0, then the corresponding family of solitary wave solutions for Eq (1.3) is
given as follows:

Uy (x, 1) = i(tanA (@)™ + 1, (3.162)
2 2
Uro(x, 1) = —% (coty (&))" + % (3.163)
un(x, 1) = % (tanyg (2aé) £ (4/pgseca 2 af)))_l + % (3.164)
urg(x,1) = % (—coty (2a&) £ (y/pgcesca (2 af)))_1 + % (3.165)
and
Uuss(x, 1) = %(1/2 tany (1/2a&) — 1/2 cota (1/2aé))™" + % (3.166)

Family 6. If c = —a and b = 0, then the corresponding family of solitary wave solutions for Eq (1.3) is
given as follows:

Uae(x, 1) = —% (tanhy ()™ + % (3.167)
uy7(x, 1) = —% (cothy (ag))_1 + %, (3.168)
U (x, 1) = % (— tanh, (2 aé) + (i Vpgsechy (2a&))) ™ + % (3.169)
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Uro(x, 1) = % (— cothy (2 a&) + (v/pgeschy (2 af)))_1 + % (3.170)
and
Uso(x, 1) = %(—1/2 tanhy (1/2a¢) — 1/2 cothy (1/2a§))_l + % 3.171)

Family 7. If b = A, a = nA(n # 0), and ¢ = 0, then the corresponding family of solitary wave solutions
for Eq (1.3) is given as follows:

S 1
uz1 (x, 1) = n (A" = ) 4 > \/— (-2 +4ac) ' 2+ > (3.172)

J-(=b*+4ac)” (nay '

where & = oD
By assuming Case 2, we can derlve the following families of solutions:

Family 8. When Z < 0 and a, b, c are nonzero then the corresponding family of solitary wave solutions
for Eq (1.3) is given as follows:

uz(x, 1) = %(1 - \/— (=b% + 4ac)"'b)

o 4 i )
2 )

c 2c

uz3(x, 1) = %(1 - \/— (—b* + 4ac)”'b)
V=Zcots (1/2 V-Z (3.174)
_ \/—(—b2+4ac)_1c{—£c_ COA( / é‘:)]’

2c

uzs(x,1) = %(1 - \/— (=b% +4ac) 'b) - \/— (=b% + 4ac)” ex

(_ b, N2 (tana (V-2¢) = (vp—qsecA(ﬁg)))]’ (3.175)

— 4+
2c 2c

uzs(%, 1) = %(1 B \/_ (=b> +4ac)”'b) - \/— (=b% + 4ac) ' ex
[_2 ~ ﬁ(cotA ( \/35) + (\/p_qcscA ( \/35)))] (3.176)

2c 2c

and

uze(X, 1) = 1(1 - \/_ (=0 +4ac)”'b) - \/_ (=b% + 4ac) ' ex
( b \/_ Z (tany (§ V=2&) - cota (4 ﬁg))] (3.177)
_b, .

2c 4c
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Family 9. When Z > 0 and a, b, ¢ are nonzero then the corresponding family of solitary wave solutions

for Eq (1.3) is given as follows:

uzr(x, 1) = %(1 - \/— (=b% + 4ac) 'b)
VZtanh, (1/2 VZ.
_ \/_ (—b2+4ac)_lc[— b = A< / 5))

2 4c

usg(x, 1) = %(1 - \/— (=b% + 4ac) ' b)
VZ coth, (1/2 VZ.
~ \/—(—b2+4ac)‘lc[—b co A( / -f))

2 2c

Uuzo(x, 1) = %(1 - \/— (=b% +4ac) 'b) - \/— (=b% + 4ac) ' ex
{ p VZ (tanhA ( \/2§) + ( \Pgsechy ( \/Zf))))

“2c 2¢

ugo(x, 1) = %(1 - \/— (=b2 +4ac)”'b) - \/— (=b% + 4ac) ' ex
[ b \/Z(cothA ( \/Zf) + ( \/Pgceschy ( \/Zf))))

2 2¢

and

ug (x, 1) = %(1 - \/— (=b% +4ac)”'b) - \/— (=b% + 4ac) ' ex
[ b \/Z(tanhA (JT \/Zf) — cothy (‘1—‘ \/Zf)))

¢ 4c

(3.178)

(3.179)

(3.180)

(3.181)

(3.182)

Family 10. When ac > 0 and » = 0 then the corresponding family of solitary wave solutions for

Eq (1.3) is given as follows:

ugp(x, 1) =

%—%tam\(\@f),

1
ug(x, 1) = 5 + 5 COtA(\/CEf) ,

uss(x, ) = é - £ (tany (2 Vace) = (VPa sec, (2 Vace),
i) = 5 + 5 (cota (2 Vace) = (ypgesea (2 Vact)))
and
Uae(x, 1) = % - é (tana (1/2 Vac) - coty (1/2 Vacé)).
AIMS Mathematics Volume 8, Tssue 11,

(3.183)

(3.184)
(3.185)

(3.186)

(3.187)
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Family 11. When ac < 0 and b = 0 then the corresponding family of solitary wave solutions for

Eq (1.3) is given as follows:

1 1
M47(X, t) = E + = tanhA( V—aCé:) ,

[\

1 1
usg(x, 1) = 5 + E COthA( V—(ZC{,") s

it 1) = 5 + 5 (tanh, (2 V=act) (i ypgsecha (2 V=act))).
+ (cothA (2 \/—_ClC‘f) + (\/p_qcschA (2 \/—_acf)))

1
uso(x, 1) = 3

and

usi (x, 1) = % + (tanhy (1/2 V=ac¢) + cothy (1/2 V=ac¢)).

(3.188)

(3.189)

(3.190)

(3.191)

(3.192)

Family 12. When ¢ = a and b = 0, the corresponding family of solitary wave solutions for Eq (1.3) is

given as follows:

Usa(x, ) = % - 5 tany (@),

usz(x, 1) = % + %CO'[A (aé),
usy(x, 1) = % - %(tanA (2aé) + (Vpgseca (245))) ,
s, = 5 = 3 (~coty (2a8) = (Vpgese, (2a8))

and

Usg(x, 1) = % - é(l/2 tany (1/2a&) — 1/2 coty (1/2 af)).

(3.193)

(3.194)

(3.195)

(3.196)

(3.197)

Family 13. When ¢ = —a and b = 0, the corresponding family of solitary wave solutions for Eq (1.3)

is given as follows:

M57()C, l) = % + % tanhA (af) y
usg(x, 1) = % + %cothA (a&),
1 1
uso(x, 1) = E - 5 (— tanhy, (2 le) + (l \/ESCChA 2 le))) ,
1 1
ugo(x, 1) = ) (—cothy (2 a&) + (+/pgcschy (2 aé)))
and
LY hy (1/2 ! hy (1/2
ug (x,1) = 375 —Etan 4 (1/2aé) - ECOt A (1/2a8)).

(3.198)

(3.199)

(3.200)

(3.201)

(3.202)
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Family 14. If a = 0, b # 0 and ¢ # 0, then the corresponding family of solitary wave solutions for
Eq (1.3) is given as follows:

ugr(x, 1) = p (coshy (b€) — sinhy (b€) + p)_l (3.203)
and
ugz(x, 1) = (coshy (b€) + sinhy (b)) (coshy (bE) + sinhy (bE) + q)‘1 . (3.204)

Family 15. If » = A4, ¢ = nd (n # 0) and a = 0, then the corresponding family of solitary wave
solutions for Eq (1.3) is given as follows:

Ues(x, 1) = —npA™E (p = ngA™) ", (3.205)

V-(=b+4ac)” (nay e

T(a+1)

where & =
4. Discussion and graphs

We discovered solitary wave solutions for the fractional MDP and fractional gas dynamics equations
by using a unique mEDAM approach in this work. Our findings contain a variety of essential features,
such as periodic waves, hyperbolic waves, singular waves, singular kink waves, shock waves and
solitons, among others. Periodic waves are distinguished by their consistent amplitude and wavelength
oscillations that are continuous and regular. Hyperbolic waves, on the other hand, are more complicated
in shape and this distinguished by steep, concave or convex profiles. A singular wave is a wave
that has a singularity or a concentrated energy distribution. Kink waves, on the other hand, are
distinguished by abrupt discontinuities in the wave profile. Solitons, on the other hand, are self-
reinforcing solitary waves that keep their shape and speed as they travel across a medium without
dispersing or losing energy.

The fundamental goal of our research was to enhance nonlinear science by introducing the
revolutionary mEDAM approach, which resulted in the discovery of a slew of new solitary wave
solution families for both the fractional MDP and fractional gas dynamics equations. This
accomplishment not only broadens current knowledge, also goes deeper into the complexities of
these mathematical models. Furthermore, our research to examine the wave behavior of these solitary
waves in both models in depth and to develop significant linkages between the wave dynamics and the
underlying mathematical formulations, giving insight into the fundamental interconnections that drive
these systems. These combined goals have allowed our research to make substantial contributions
to the understanding and practical uses of soliton waves in a variety of scientific disciplines. The
relationship between these waves and the solved FPDEs is fascinating. The fractional MDP equation is
a nonlinear dispersive wave equation that models complex wave propagation. The equation’s fractional
structure allows it to replicate waves with nonlocal interactions, making it an effective tool for modeling
complex wave phenomena. The fractional gas dynamics equation, on the other hand, is a model that
depicts the mobility of gas in a fluid medium.

It is critical to recognize that the fractional gas dynamics equation is time dependent but not space-
dependant. As a result, while the wave profile does not change in space, it does change over time. This
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is due to the fractional order derivative of the equation, which creates a memory effect and allows the
wave to recall information about its prior behavior. Thus, the equation may be utilized to forecast wave
occurrences including long-range interactions and memory effects.

Remark 1. Figure 1 illustrates a singular kink wave profile. The fractional MDP equation is known
for backing singular kink wave solutions, which are fascinating wave dynamics phenomena. These
isolated kinks are caused by localized wave structures with abrupt, non-smooth characteristics. They
appear in the context of the fractional MDP equation due to the interaction of nonlinearities and
fractional derivatives, resulting in the development of these separate solitary waves. In this model,
studying singular kink waves can provide valuable insights 1) into how fractional calculus influences
wave behavior and 2) the emergence of complex localized structures in various physical systems,
providing a deeper understanding of the equation’s behaviour in applications such as fluid dynamics
and oceanography.

Remark 2. In Figure 2, (a) depicts a singular wave (which is formed by the combination of two shock
waves that propagate in opposite directions with a common asymptote) while (b) shows a singular kink
wave profile. Singular waves, particularly shock waves, in gas dynamics equations provide critical
insights into the behavior of compressible fluids and the propagation of disturbances. These waves,
which are distinguished by sudden changes in fluid characteristics, shed light on the phenomena of gas
compression and the rarefaction found in barriers or flow shifts. Their importance lies in understanding
high-speed flow physics, particularly in supersonic and hypersonic contexts, through aspects such
as shock wave formation, wave propagation governed by Rankine-Hugoniot relations, strength and
speed determination influenced by multiple factors, energy dissipation and heat transfer mechanisms.
Furthermore, precise solitary wave modelling is critical in engineering and aerospace applications to
optimize designs and assure safety in high-speed transportation systems.

Similarly, within the fractional gas dynamics equation, singular kink wave solutions reflect highly
localized, abrupt changes in the density or pressure profiles of compressible flows. The complicated
interplay between the nonlinear components and fractional derivatives in the equation causes these
peculiar bends. In conventional gas dynamics, they are akin to shock waves, but with fractional
influences controlling their generation and behavior. Investigating singular kink waves in the fractional
gas dynamics equation yields valuable insights 1) into how fractional calculus affects the dynamics of
compressible flows and 2) the formation of sharp, non-smooth wave structures, providing a deeper
understanding of wave phenomena in the context of gas dynamics, particularly in scenarios involving
rarefaction waves and other complex wave interactions.
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Figure 1. The 3D graph of (3.104) is plotted fora =2,b =0,c =2,p=3,g=4,A=2,a =
B = 1. The 3D depiction is plotted with # = 0 and for the same values of parameters involved.
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Figure 2. The 2D graphs of (3.200) and its squared norm are depicted fora = 2,5 = 10, ¢ =
2,ky =0,A =e,a==11n (a) and (b) respectively.
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5. Conclusions

The research resulted in the creation of the mEDAM, a ground breaking approach for generating
solitary wave solutions for both the fractional MDP and fractional gas dynamics equations with
Caputo’s derivatives. This method uses complex transformations and series-based solutions, as well as
generalized hyperbolic and trigonometric functions, to build families of solitary wave solutions. The
study makes an important addition to nonlinear science, with applications ranging from fluid dynamics
to plasma physics to nonlinear optics. These answers give essential insights into the behavior of soliton
waves in these systems. In terms of future work, we want to adapt and apply the mEDAM approach
to different FPDEs that use varied and modern derivative operators. This extension intends to improve
our understanding of wave behavior across FPDEs and open up new paths for practical applications.
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