
http://www.aimspress.com/journal/Math

AIMS Mathematics, 8(11): 27725–27741.
DOI: 10.3934/math.20231419
Received: 11 July 2023
Revised: 15 September 2023
Accepted: 21 September 2023
Published: 08 October 2023

Research article

Some solutions to a third-order quaternion tensor equation

Xiaohan Li1,2, Xin Liu3, Jing Jiang1,*and Jian Sun2

1 Department of Mathematics, QiLu Normal University, Jinan 250013, China
2 School of Computer Science and Engineering, Faculty of Innovation Engineering, Macau

University of Science and Technology, Avenida Wai Long, Taipa 999078, China
3 Macau Institute of Systems Engineering, Faculty of Innovation Engineering, Macau University of

Science and Technology, Avenida Wai Long, Taipa 999078, China

* Correspondence: Email: jing5099@163.com.

Abstract: The paper deals with the third-order quaternion tensor equation. Based on the Qt
multiplication operation, we derive solvability conditions and also get the general solution, the least-
squares solution, the minimum-norm solution and the minimum-norm least-squares solution of the
tensor equationA ∗Q X = B. Finally, two numerical examples are presented.

Keywords: tensor equation; Qt-product; generalized inverse; quaternion matrix; least-squares
solution; minimum-norm solution
Mathematics Subject Classification: 15A09, 15A24, 15A72

1. Introduction

In 1843, Hamilton extended the real number field R and the complex number field C to
quaternions Q. By now, quaternions and quaternion matrices have been widely used in many fields
such as computer graphics, color image processing and signals [1–3]. Tensors, as multidimensional
arrays of vectors and matrices, appear widely in applications such as chemometrics [4], image and
signal processing [5–8]. For instance, Soto-Quiros [5] considered the inverse tensor problem for
denoising data, which can be represented as a least-squares problem of a linear tensor equation of
third-order. The author proposed a numerical method of estimating a least-squares solution to a
complex tensor linear equation and used it for audio denoising and color image deconvolution. Based
on t-product, Reichel et al. [6] also solved a penalized least-squares problem of a linear tensor
equation of third-order by generalized Arnoldi-type and bidiagonalization solution methods. As
applications, it is used on the color image and video restoration. Guide et al. [7] proposed a tensor
iterative Krylov subspace method to solve large multi-linear tensor equations M(X) = C, like
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AX = C and AXB = C. While Jin et al. [9] developed an algorithm to compute the Moore-Penrose
inverse of p-order tensor, and then it can deal with a linear p-order tensor equation problems. All
those work are about the tensor over the real field. In [10, 11], they considered the third-order tensor
over the quaternions Q. Qin et al. [10] proposed a numerical method to compute the singular value
decomposition of A ∈ Qn1×n2×n3 and presented it to compress the color video. Inspired by [5, 6, 8], we
realized that the third-order linear tensor equation problems over Q always exists when doing the
color video deconvolution, color video denoising, color video reconstruction, and so on. Thus, we
aim to solve the classic third-order quaternion tensor equation A ∗Q X = B, especially the
least-squares solutions and the minimum-norm least-squares solutions. Up to now, there are some
numerical methods to solve the quaternion linear tensor equations, like [12, 13]. In [13], Zhang et al.
solved the generalized Sylvester quaternion p-order quaternion tensor equations by tensor form of
GPBiCG algorithm. But an effective way to find the least-squares solution to the tensor equation
A ∗Q X = B is to be developed. Thus, this paper will explore this problem in theoretical way.

2. Preliminary results

The set of quaternions Q is a linear space over R. An element q of Q is of the form

q = a + bi + cj + dk, a, b, c, d ∈ R.

Here i, j and k are three imaginary units with the following multiplication laws:

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i,ki = −ik = j.

For a quaternion, the conjugate quaternion of q is q∗ = a − bi − cj − dk. The norm of q is | q |=
√

qq∗ =
√

a2 + b2 + c2 + d2.
A third-order tensor A = (ai1i2i3), 1 ≤ i j ≤ n j, ( j = 1, 2, 3) is a multidimensional array with n1n2n3

entries. In this paper, we use the notations a, a, A and A to denote the scalar, vector, matrix and third-
order quaternion tensor, respectively. In [10], the horizontal, lateral and frontal slices of a third-order
tensor are denoted byA(i, :, :),A(:, i, :),A(:, :, i), respectively, and for simplicity we denote the frontal
slice of a third-order tensor by A(i) = A(:, :, i). In the paper, we use A∗ to represent the conjugate
transpose of matrix A. O represents zero tensor with all the entries being zero. I denotes the identity
tensor, in which the first frontal slice is an identity matrix and the other slice matrices are zero. For a
positive integer n, [n] stands for {1, 2, . . . , n}. Let A ∈ Cn1×n2×n3 , the block circulant matrix circ(A) ∈
Cn1n3×n2n3 generated by a third-order tensorA’s frontal slices A(1), A(2), ..., A(n3) is defined as

circ(A) =


A(1) A(n3) ... A(2)

A(2) A(1) ... A(3)

...
...

. . .
...

A(n3) A(n3−1) ... A(1)

 , (2.1)

see [7]. For the quaternionA ∈ Qn1×n2×n3 , the block circulant matrix circ(A) ∈ Qn1n3×n2n3 can be defined
in the same way.
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The operations unfold(A), diag(A) are as follows:

unfold(A) =


A(1)

A(2)

...

A(n3)

 ,

diag(A) =


A(1)

A(2)

. . .

A(n3)

 .
The inverse operation of unfold(•), denoted as fold(•), turns a block tensor with the size of n1n3 × n2

into a tensor with the size of n1 × n2 × n3, that is,

fold(unfold(A)) = A.

In [10], the authors defined the Qt-product of two third-order quaternion tensors.

Definition 1. (Qt-product) Let A ∈ Qn1×n2×n3 and B ∈ Qn2×n4×n3 . Then Qt-product of A and B is
defined /as

A ∗Q B = fold((circ(A1,i) + j circ(Aj,k) · (Pn3 ⊗ In2)) · unfold(B)) ∈ Qn1×n4×n3 ,

whereA = A1,i + jAj,k,A1,i,Aj,k ∈ C
n1×n2×n3 .

The matrix Pn3 = (Pi j) ∈ Rn3×n3 is a permutation matrix where P11 = Pi j = 1 if i + j = n3 + 2, 2 ≤
i, j ≤ n3; Pi j = 0, otherwise. The notation ′⊗′ means the Kronecker product.

Definition 2. (See [10]) The Discrete Fourier Transformation (DFT) of A ∈ Qn1×n2×n3 along the third
mode is denoted as tensor Â ∈ Qn1×n2×n3 , where Â(i, j, :) =

√
n3Fn3A(i, j, :), i ∈ [n1], j ∈ [n2] and

Fn3 ∈ C
n3×n3 is the normalized DFT matrix, with Fn3(i, j) = 1

√
n3
ω(i−1)( j−1), i, j ∈ [n3], ω = e−

2πi
n3 .

By Definition 2, Â satisfying

unfold(Â) =


Â(1)

Â(2)

...

Â(n3)

 =
√

n3(Fn3 ⊗ In1) · unfold(A). (2.2)

In the paper, denoting

diag(Â) =


Â(1)

Â(2)

. . .

Â(n3)

 ,
with Â(1), . . . , Â(n3) are defined by (2.2). Next, we introduce an important result that can turn third-order
tensor problems into matrix problems.
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Lemma 1. (See [10]) LetA ∈ Qn1×n2×n3 , B ∈ Qn2×n4×n3 and C ∈ Qn1×n4×n3 ,A,B,C after DFT to obtain
Â, B̂, Ĉ, respectively. Then C = A ∗Q B ⇐⇒ diag(Ĉ) = diag(Â) · diag(B̂).

It follows from Lemma 1 that

I ∗Q I = I,A ∗Q I = I ∗Q A = A.

The conjugate transpose A∗ of third-order complex tensor A ∈ Cn1×n2×n3 is defined as follows: first
conjugately transpose each frontal slice of A, and then reverse the order of conjugately transposed
frontal slices 2 through n3, see [10]. For the third-order quaternion tensorA = A1,i+ jAj,k,A1,i,Aj,k ∈

Cn1×n2×n3 , A∗ is defined in a more generalized way. [10] defined the third-order quaternion tensor A∗

through unfold(A∗), which should satisfies

unfold(A∗) = unfold(A∗1,i) − (Pn3 ⊗ In2)unfold(A∗j,k)j. (2.3)

For example, for the third-order quaternion tensor A ∈ Qn1×n2×4, to get A∗ ∈ Qn2×n1×4, we should first
derive unfold(A∗) by (2.3):

unfold(A∗) = unfold(A∗1,i) − (P4 ⊗ In2)unfold(A∗j,k)j

=



(
A(1)

1,i

)∗(
A(4)

1,i

)∗(
A(3)

1,i

)∗(
A(2)

1,i

)∗
 −


In2

In2

In2

In2




(
A(1)

j,k

)∗(
A(4)

j,k

)∗(
A(3)

j,k

)∗(
A(2)

j,k

)∗
 j

=



(
A(1)

1,i

)∗(
A(4)

1,i

)∗(
A(3)

1,i

)∗(
A(2)

1,i

)∗
 −


(
A(1)

j,k

)∗(
A(2)

j,k

)∗(
A(3)

j,k

)∗(
A(4)

j,k

)∗
 j,

thus, according to unfold(A∗), the first frontal slice ofA∗ is
(
A(1)

1,i

)∗
−
(
A(1)

j,k

)∗
j, the second frontal slice

ofA∗ is
(
A(4)

1,i

)∗
−
(
A(2)

j,k

)∗
j, the third frontal slice ofA∗ is

(
A(3)

1,i

)∗
−
(
A(3)

j,k

)∗
j, the fourth frontal slice ofA∗

is
(
A(2)

1,i

)∗
−
(
A(4)

j,k

)∗
j.

From the definition of third-order quaternion tensorA∗, we can see that it still satisfies

fold(unfold(A∗)) = A∗.

For the third-order quaternion tensor A ∈ Qn1×n2×n3 , it should be noted that the definition of A∗

generalizes the definition ofA∗ whenA is a third-order complex tensor.
IfU∗ ∗QU = U ∗QU∗ = Innl, then we callU the n × n × l unitary tensor.
Next, we will show some properties forA∗.

Proposition 1. LetA ∈ Cn1×n2×n3 , then diag(Â∗) = (diag(Â))∗.
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Proof. According to (2.1), we can see that circ(A∗) = (circ(A))∗. From [14], each complex circulant
block matrix can be diagonalized by the DFT matrix, i.e.,

(Fn3 ⊗ In1) · circ(A) · (F∗n3
⊗ In2) =


Â(1)

Â(2)

. . .

Â(n3)

 = diag(Â), (2.4)

whereA ∈ Cn1×n2×n3 . By applying (2.4), we have

diag(Â∗) = (Fn3 ⊗ In2) · circ(A∗) · (F∗n3
⊗ In1)

= (Fn3 ⊗ In2) · (circ(A))∗ · (F∗n3
⊗ In1)

= (diag(Â))∗.

□

Here we show that Proposition 1 is also true over quaternion skew field.

Proposition 2. LetA ∈ Qn1×n2×n3 , then diag(Â∗) = (diag(Â))∗.

Proof. Since Â∗ is the DFT of A∗, Fn3 Fn3 = Pn3 and Fn3j = jPn3 Fn3 , it follows from (2.2) and (2.3)
that

unfold(Â∗) =
√

n3(Fn3 ⊗ In2)unfold(A∗)
=
√

n3(Fn3 ⊗ In2)(unfold(A∗1,i) − (Pn3 ⊗ In2)unfold(A∗j,k)j)
=
√

n3(Fn3 ⊗ In2) · unfold(A∗1,i)
−
√

n3(Pn3 ⊗ In2)(Fn3 ⊗ In2)unfold(A∗j,k)j

= unfold(Â∗1,i) − (Pn3 ⊗ In2)unfold(Â∗j,k)j,

which means
diag(Â∗) = diag(Â∗1,i) − (Pn3 ⊗ In2)diag(Â∗j,k)(Pn3 ⊗ In1)j. (2.5)

It is shown by [10] that diag(Â) = diag(Â1,i) + j(Pn3 ⊗ In1)diag(Âj,k)(Pn3 ⊗ In2) ∈ Q
n1n3×n2n3 . The

conjugate transpose of it is (diag(Â))∗ = (diag(Â1,i))∗− (Pn3 ⊗ In2)(diag(Âj,k))∗(Pn3 ⊗ In1)j ∈ Qn2n3×n1n3 .
From Proposition 1 and Eq (2.5), we can get diag(Â∗) = (diag(Â))∗. □

We correct two equations in [10] (page 3, line-4 and line-6 ) as follows:

diag(Â) = diag(Â1,i) + j(Pn3 ⊗ In1)diag(Âj,k)(Pn3 ⊗ In2),

un f old(Â) = un f old(Â1,i) + j(Pn3 ⊗ In1)un f old(Âj,k).

It should be noted that, forA = A1,i + jAj,k, Â = Â1,i + jÂj,k, the following equations still hold

diag(A) = diag(A1,i) + jdiag(Aj,k),

diag(Â) = diag(Â1,i) + jdiag(Âj,k).
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And in general, Â , Â1,i + jÂj,k, or

diag(Â) , diag(Â1,i) + jdiag(Âj,k).

Based on Qt-product, we can find that the multiplication operation between tensors obeys an excellent
law, similar to matrix multiplication.

Proposition 3. LetA ∈ Qn1×n2×n3 , B ∈ Qn2×n4×n3 , C ∈ Qn2×n4×n3 , andD ∈ Qn4×n5×n3 . Then

(a) (A∗)∗ = A;
(b) (B + C)∗ = B∗ + C∗;
(c) (A ∗Q B) ∗Q D = A ∗Q (B ∗Q D);
(d) A ∗Q (B + C) = A ∗Q B +A ∗Q C;
(e) (B + C) ∗Q D = B ∗Q D + C ∗Q D;
(f) (A ∗Q B)∗ = B∗ ∗Q A∗.

Proof. For the simplicity, we only prove (f). Denote C = A ∗Q B. By Proposition 2 and Lemma 1,

diag(Ĉ∗) = (diag(Ĉ))
∗

= (diag(Â ∗Q B))
∗
= [diag(Â) · diag(B̂)]

∗

= (diag(B̂))
∗

· (diag(Â))
∗

= diag(B̂∗) · diag(Â∗).

Moreover,
diag(B̂∗) · diag(Â∗) = diag( ̂B∗ ∗Q A∗),

thus
diag(Ĉ∗) = diag( ̂B∗ ∗Q A∗),

which implies
(A ∗Q B)∗ = B∗ ∗Q A∗.

□

The Frobenius norm of a quaternion tensorA is the sum of all norms of its entries, i.e.

∥ A ∥F=

√√ n1∑
i=1

n2∑
j=1

n3∑
k=1

| ai jk |
2.

For a tensorA = A1,i + jAj,k,A1,i,Aj,k ∈ C
n1×n2×n3 , its Frobenius norm can also be expressed as

∥ A ∥2F=∥ unfold(A) ∥2F=∥ unfold(A1,i) ∥2F + ∥ unfold(Aj,k) ∥2F . (2.6)

According to equality (2.2) and (2.6), it is easy to show that

∥ A ∥F=
1
√

n3
∥ diag(Â) ∥F ,A ∈ Qn1×n2×n3 . (2.7)
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3. Generalized inverses

In this section, we will define some generalized inverses and explore their properties.

Definition 3. For anA ∈ Qn1×n2×n3 , if there exists a quaternion tensor X ∈ Qn2×n1×n3 satisfying:

(1) A ∗Q X ∗Q A = A;
(2) X ∗Q A ∗Q X = X;
(3) (A ∗Q X)∗ = A ∗Q X;
(4) (X ∗Q A)∗ = X ∗Q A;

(3.1)

then we call X the Moore-Penrose inverse of the tensorA. Also, denote it asA†.

In [10], based on the Qt-product between the two third-order quaternion tensors, the authors derived
the SVD decomposition ofA ∈ Qn1×n2×n3 .

Lemma 2. LetA ∈ Qn1×n2×n3 . ThenA = U ∗Q S ∗QV∗ is the Qt-SVD of quaternion tensorA, where

U=̇fold((F∗n3
⊗ In1)

1
√

n3
diag(Û)(e ⊗ In1)),

S=̇fold((F∗n3
⊗ In1)

1
√

n3
diag(Ŝ)(e ⊗ In2)),

V=̇fold((F∗n3
⊗ In2)

1
√

n3
diag(V̂)(e ⊗ In2)),

e is an n3-dimensional column vector with all elements being 1.

From Lemma 2, we can derive the SVD decomposition ofA†.

Theorem 1. Let the Qt-SVD of quaternion tensor A ∈ Qn1×n2×n3 be A = U ∗Q S ∗Q V∗. Then tensor
A has a unique Moore-Penrose inverse

A† = V ∗Q S
† ∗QU

∗,

where
U=̇fold((F∗n3

⊗ In1)
1
√

n3
diag(Û)(e ⊗ In1)),

S†=̇fold(
1
√

n3
(F∗n3
⊗ In2)(diag(Ŝ))†(e ⊗ In1)),

V=̇fold((F∗n3
⊗ In2)

1
√

n3
diag(V̂)(e ⊗ In2)).

Proof. First of all, it can be verified that fold( 1
√

n3
(F∗n3
⊗ In2)(diag(Ŝ))†(e ⊗ In1)) is the Moore-Penrose

inverse of S by substituting it into the four equations in Definition 3. Then, obviously,V ∗Q S† ∗QU∗

also satisfies the four equations in Definition 3 as U,V are unitrary tensors. Next, by Proposition 3,
using the exactly same method as proving the uniqueness of Moore-Penrose inverse of a matrix, we
can show that the Moore-Penrose inverse of a tensorA ∈ Qn1×n2×n3 is unique. □

AIMS Mathematics Volume 8, Issue 11, 27725–27741.



27732

Next, we list some properties of the Moore-Penrose inverse of a quaternion tensorA ∈ Qn1×n2×n3 .

Proposition 4. LetA ∈ Qn1×n2×n3 . Then
(a) (A†)† = A;
(b) (A†)∗ = (A∗)†;
(c)A ∗Q A† = (A∗)† ∗Q A;
(d) (A ∗Q A†)∗ = A ∗Q A†;
(e) EA ∗Q A = O,A ∗Q FA = O, where EA = I −A ∗Q A†, FA = I −A† ∗Q A;
(f)A† always exists and is unique.

Proof. We only prove (b) as all of those are using the same approach with the proof of matrix.
By Proposition 3, (A ∗Q B)∗ = B∗ ∗Q A∗, thus

A∗ ∗Q (A†)∗ ∗Q A∗ = (A ∗Q A† ∗Q A)∗ = A∗,
(A†)∗ ∗Q A∗ ∗Q (A†)∗ = (A† ∗Q A ∗Q A†)∗ = (A†)∗,
A∗ ∗Q (A†)∗ = (A† ∗Q A)∗ = A† ∗Q A = (A∗ ∗Q (A†)∗)∗,
(A†)∗ ∗Q A∗ = (A ∗Q A†)∗ = A ∗Q A† = ((A†)∗ ∗Q A∗)∗,

which means (A†)∗ satisfying the definition of the Moore-Penrose inverse ofA∗. □

Definition 4. Given a tensor A ∈ Qn1×n2×n3 , let A{1, 3} denote the set of tensor X ∈ Qn2×n1×n3 , which
satisfies Eqs (1), (3) of (3.1). In this case, X ∈ A {1, 3} is called a {1, 3}-inverse of A. It can also be
written asA(1,3). A(1,4) andA(1) can be defined in the same way.

By verifying the equations in (3.1), we derive the following result, which reveals that A† can also
be expressed byA(1,3) andA(1,4).

Corollary 1. LetA ∈ Qn1×n2×n3 . ThenA† = A(1,4) ∗Q A ∗Q A
(1,3).

Here, we actually generalized the result in [15], i.e., for any finite matrix A of complex elements,

A(1,4)AA(1,3) = A†.

4. Solutions to third-order quaternion tensor equationA ∗Q X = B

In this section, we will derive general solutions, least-squares solutions, minimum-norm solutions
and minimum-norm least-squares solution of the third-order quaternion tensor equation

A ∗Q X = B (4.1)

by some generalized inverses. We first introduce a well-known result of matrix equation:

Lemma 3. (See [16]) For the complex matrix equation

AX = B, (4.2)

then:
(a) If (4.2) is consistent, then X = A(1)B is the solution of (4.2), moreover, X = A(1,4)B is the least-norm

AIMS Mathematics Volume 8, Issue 11, 27725–27741.



27733

solution of (4.2), where A(1,4) is the (1, 4)− inverse of matrix A.
(b) The matrix equation (4.2) don’t have to be consistent. X = A(1,3)B is the least-squares solution
of (4.2), where A(1,3) is the (1, 3)− inverse of matrix A.
(c) The matrix equation (4.2) don’t have to be consistent. X = A†B is the minimum-norm least-squares
solution of (4.2), where A† is the Moore-Penrose inverse of matrix A.

Remark 1. The statement also holds when the matrix equation (4.2) is over quaternion skew field.

Next, we will describe our required solutions by some generalized inverses of tensor.

Theorem 2. Let A ∈ Qn1×n2×n3 , B ∈ Qn1×n4×n3 . Then X = A(1) ∗Q B is the solution of the quaternion
tensor equation (4.1), when it is consistent.

Proof. By Lemma 1 and (2.4),

A ∗Q X = B ⇐⇒ diag(Â) · diag(X̂) = diag(B̂)⇐⇒ Â(i)X̂(i) = B̂(i),

i = 1, · · · , n3. By (a) in Lemma 3 and its Remark 1, for the consistent quaternion matrix equation

Â(i)X̂(i) = B̂(i). (4.3)

If the matrix T̂ (i) ∈ Â(i){1}, then X̂(i) = T̂ (i)B̂(i) is the solution of the consistent matrix equation (4.3).
Thus, if diag(T̂ ) ∈ (diag(Â)){1}, then diag(X̂) = diag(T̂ ) · diag(B̂) is the solution of the consistent
quaternion matrix equation diag(Â) · diag(X̂) = diag(B̂). Note that

A ∗Q X = B ⇐⇒ diag(Â) · diag(X̂) = diag(B̂).

Thus, X = T ∗Q B is the solution of consistent tensor equationA ∗Q X = B, where T ∈ A{1}.
□

Corollary 2. LetA ∈ Qn1×n2×n3 , B ∈ Qn1×n4×n3 . The tensor equation (4.1) is consistent if and only if

A ∗Q A
(1) ∗Q B = B.

In this case, the general solution is given by

X = A(1) ∗Q B + (I −A(1) ∗Q A) ∗Q Y, (4.4)

where Y ∈ Qn2×n4×n3 is arbitrary.

Proof. If A ∗Q A(1) ∗Q B = B, then it can be seen that A(1) ∗Q B is a solution to (4.1). If the tensor
equation (4.1) is consistent then there exists X0 such thatA∗Q X0 −B = O. Considering the definition
ofA(1), we have

A ∗Q A
(1) ∗Q B − B = A ∗Q A

(1) ∗Q A ∗Q X0 − B = A ∗Q X0 − B = O.

Next, we show that (4.4) is the general expression of the solution to (4.1). Firstly, we can verify that
X is the solution to (4.1). Secondly, we aim to show that any solution of (4.1) is in the form of (4.4).
Assume that X0 is an arbitrary solution to (4.1). Setting Y = X0, then

A(1) ∗Q B + (I −A(1) ∗Q A) ∗Q X0 = A
(1) ∗Q B + X0 −A

(1) ∗Q B = X0.

□
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In Corollary 2, ifA(1) is replaced byA†, the following result is also true. Since the proof is almost
the same with the proof of Corollary 2, thus we omit for simplicity.

Corollary 3. Let A ∈ Qn1×n2×n3 , B ∈ Qn1×n4×n3 . Then quaternion tensor equation (4.1) is consistent if
only if

A ∗Q A
† ∗Q B = B. (4.5)

When the equation is consistent, then the general solution is

X = A† ∗Q B + (I −A† ∗Q A) ∗Q Y,

where Y is an arbitrary quaternion tensor with appropriate size.

Next, we aim to derive the least-squares solution of the tensor equation (4.1).
We now provide a result for the Frobenius norm of the sum of two third-order tensors.

Theorem 3. LetA ∈ Qn1×n2×n3 , B ∈ Qn1×n2×n3 . Then

∥ A + B ∥2F=∥ A ∥
2
F + ∥ B ∥

2
F +

2
n3

tr(diag(Â ∗Q B̂∗)).

Proof. By (2.7) and ∥ K ∥2F= tr(K∗K), tr(L) = tr(L∗), where K, L are any quaternion matrices and tr(•)
represents the trace of a matrix, we have

∥ A + B ∥2F =
1
n3
∥ diag(Â) + diag(B̂) ∥2F=

1
n3

tr((diag(Â) + diag(B̂))∗ · (diag(Â) + diag(B̂)))

=
1
n3

(∥ diag(Â) ∥2F + ∥ diag(B̂) ∥2F +2tr(diag∗(Â) · diag(B̂)))

=∥ A ∥2F + ∥ B ∥
2
F +

2
n3

tr(diag(Â∗ ∗Q B̂)).

□

Theorem 4. LetA ∈ Qn1×n2×n3 , B ∈ Qn1×n4×n3 . Then X = A(1,3) ∗QB is the least-squares solution of the
tensor equation (4.1).

Proof. It follows from Theorem 3

∥ A ∗Q X0 − B ∥
2
F =∥ (A ∗Q A(1,3) ∗Q B − B) +A ∗Q (X0 − (A(1,3) ∗Q B)) ∥2F
=∥ A ∗Q A

(1,3) ∗Q B − B ∥
2
F + ∥ A ∗Q (X0 −A

(1,3) ∗Q B) ∥2F

+
2
n3

tr(diag(M̂∗ ∗Q N̂)),

(4.6)

whereM = A ∗Q (X0 −A
(1,3) ∗Q B), N = A ∗Q A(1,3) ∗Q B − B and X0 ∈ Q

n2×n4×n3 is arbitrary.
The property of generalized inverseA(1,3) gives us

A∗ ∗Q (A ∗Q A(1,3) − I) = O.

Thus
(A ∗Q (X0 −A

(1,3) ∗Q B))∗ ∗Q (A ∗Q A(1,3) ∗Q B − B)
= (X0 −A

(1,3) ∗Q B)∗ ∗Q A∗ ∗Q (A ∗Q A(1,3) − I) ∗Q B = O.
(4.7)
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So diag(M̂∗ ∗Q N̂) = O.
Then we can get

∥ A ∗Q X0 − B ∥
2
F =∥ A ∗Q A

(1,3) ∗Q B − B ∥
2
F + ∥ A ∗Q (X0 −A

(1,3) ∗Q B) ∥2F
≥∥ A ∗Q A

(1,3) ∗Q B − B ∥
2
F ,

which means that X = A(1,3) ∗Q B is the least-squares solution of Eq (4.1). □

In solving practical applications, we sometimes need to find solutions for which the norm is
minimal. The next theorem provides the mimimum-norm solution of tensor equation (4.1).

Theorem 5. Let A ∈ Qn1×n2×n3 , B ∈ Qn1×n4×n3 . Then X = A(1,4) ∗Q B is the minimum-norm solution of
the tensor equation (4.1), when it is consistent.

Proof. SinceA(1,4) ∈ A{1}, by Theorem 2,A(1,4) ∗QB is a solution of (4.1), if the tensor equation (4.1)
is consistent. Next, we prove X = A(1,4) ∗Q B is the minimum-norm solution. By Corollary 2, for any
solution X0 to (4.1), X0 can be written in the form of X0 = A

(1,4) ∗Q B + (I − A(1,4) ∗Q A) ∗Q Y, with
Y ∈ Qn2×n4×n3 . Thus, by Theorem 3,

∥ X0 ∥
2
F =∥ A

(1,4) ∗Q B + (I −A(1,4) ∗Q A) ∗Q Y ∥2F

=∥ A(1,4) ∗Q B ∥
2
F + ∥ (I −A(1,4) ∗Q A) ∗Q Y ∥2F +

2
n3

tr(diag(M̂∗ ∗Q N̂)),

whereM = A(1,4) ∗Q B, N = (I −A(1,4) ∗Q A) ∗Q Y.
By the property of generalized inverseA(1,4), we have

M̂∗ ∗Q N̂ = (A(1,4) ∗Q B)∗ ∗Q (I −A(1,4) ∗Q A) ∗Q Y
= (A(1,4) ∗Q A ∗Q X0)∗ ∗Q (I −A(1,4) ∗Q A) ∗Q Y
= X∗0 ∗Q (A(1,4) ∗Q A)∗ ∗Q (I −A(1,4) ∗Q A) ∗Q Y
= X∗0 ∗Q A

(1,4) ∗Q A ∗Q (I −A(1,4) ∗Q A) ∗Q Y
= X∗0 ∗Q (A(1,4) ∗Q A−A

(1,4) ∗Q A ∗Q A
(1,4) ∗Q A) ∗Q Y

= X∗0 ∗Q (A(1,4) ∗Q A−A
(1,4) ∗Q A) ∗Q Y = O.

We conclude that

∥ X0 ∥
2
F=∥ A

(1,4) ∗Q B ∥
2
F + ∥ (I −A(1,4) ∗Q A) ∗Q Y ∥2F≥∥ A

(1,4) ∗Q B ∥
2
F=∥ X ∥

2
F .

□

Remark 2. In the assumption, the tensor equation is consistent means it has a general solution. The
solution don’t have to be a minimum-norm solution. So, According to Corollary 3, Theorem 5 can be
rewritten as follows: Let A ∈ Qn1×n2×n3 , B ∈ Qn1×n4×n3 . If A ∗Q A† ∗Q B = B. Then X = A(1,4) ∗Q B is
the minimum-norm solution of the tensor equation (4.1).

It is well known that the least-squares solution of an equation is not unique, neither is the minimum-
norm solution. Then we consider the minimum-norm least-squares solution to this problem.
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Theorem 6. Let A ∈ Qn1×n2×n3 , B ∈ Qn1×n4×n3 , and X0 ∈ Q
n2×n4×n3 . The tensor X0 is the least-squares

solutions of (4.1) if and only if X0 is the solution of the consistent tensor equation

A ∗Q X = A ∗Q A
(1,3) ∗Q B. (4.8)

Proof. “⇒” Assuming X0 is a least-squares solution of the tensor equation (4.1), from Theorem 4, we
have

∥ A ∗Q X0 − B ∥F=∥ A ∗Q A
(1,3) ∗Q B − B ∥F= min

X∈Qn1×n2×n3
∥ A ∗Q X − B ∥F . (4.9)

From Theorem 3, we have

∥ A ∗Q X0 − B ∥
2
F − ∥ A ∗Q A

(1,3) ∗Q B − B ∥
2
F=∥ A ∗Q (X0 −A

(1,3) ∗Q B) ∥2F +
2
n3

tr(diag(M̂∗ ∗Q N̂)),

whereM = A ∗Q A(1,3) ∗Q B − B, N = A ∗Q (X0 −A
(1,3) ∗Q B).

Based on (4.7) and (4.9), ∥ A ∗Q (X0 −A
(1,3) ∗Q B) ∥F= 0, thusA ∗Q (X0 −A

(1,3) ∗Q B) = O, which
means that X0 is a solution of the tensor equation (4.8).

“⇐” If X0 is a solution of the tensor equation (4.8), note that
A∗ ∗Q A ∗Q A

(1,3) = A∗ ∗Q (A ∗Q A(1,3))∗ = (A ∗Q A(1,3) ∗Q A)∗ = A∗, then
A∗ ∗Q A ∗Q X0 = A

∗ ∗Q A ∗Q A
(1,3) ∗Q B = A

∗ ∗Q B.
By Lemma 1 and Proposition 2,

A∗ ∗Q A ∗Q X0 = A
∗B ⇐⇒ (diag(Â))

∗

· diag(Â) · diag(X̂0) = (diag(Â))
∗

· diag(B̂),

which is equivalent to
Â(i)∗Â(i)X̂(i)

0 = Â(i)∗B̂(i), i = 1, · · · , n3.

In other words, X̂(i)
0 is the least-squares solution to

Â(i)X̂(i) = B̂(i), i = 1, · · · , n3.

Or, diag(X̂0) is the least-squares solution to

diag(Â) · diag(X̂) = diag(B̂).

Since

∥ A ∗Q X − B ∥F=
1
√

n3
∥ diag(Â) · diag(X̂) − diag(B̂) ∥F .

Then, we can see that X0 is the least-squares solution of (4.1). □

Remark 3. The tensor equation (4.1) always has a least-squares solution, thus by Theorem 6, the
tensor equation (4.8) is always consistent.

Theorem 7. Let A ∈ Qn1×n2×n3 , B ∈ Qn1×n4×n3 . The tensor X0 = T ∗Q B is the minimum-norm least-
squares solution of the tensor equation (4.1) if and only if T = A†.
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Proof. “⇒” If X0 = T ∗Q B is the minimum-norm least-squares solution of the tensor equation (4.1),
by Theorem 6, X0 is the minimum-norm solution of Eq (4.8). Then, by Corollary 1 and Theorem 5,
we have

X0 = A
(1,4) ∗Q A ∗Q A

(1,3) ∗Q B = A
† ∗Q B,

which means that T = A†.
“⇐” If T = A†, since A† ∈ A{1, 2, 3, 4}, it satisfies both the properties of a least-squares solution

and minimum-norm solution to the Eq (4.1) by Theorem 4 and Theorem 5. □

5. Numerical examples

In this section, we give two numerical examples.

Example 1. Consider the third-order tensor equationA ∗Q X = B, whereA is a 2 × 2 × 3 quaternion
tensor with frontal slices A(1), A(2), A(3) which are given by

unfold(A) =


A(1)

A(2)

A(3)

 =


5 − 2i + 5j + 2k 8 − 2i + j − k
8 + 3j − k −2 + 3i + 3j + 6k

2i + 6j + 5k 3 + 3i + 7j
12 + i + 3k 8 − i + 3j + 2k

5 + 10i + 3j + 2k 2i − 4j − k
6 − i + 5k 4i + 9j


,

and the 2×2×3 quaternion tensorB, with frontal slices B(1), B(2), B(3), which are given by the following
unfold form

unfold(B) =


B(1)

B(2)

B(3)

 =


1 − 6i + 3j − 9k 30 − j − 2k
9i − 12j + 6k −6i − 4j + k
10 − 2i + 14k 11i + j − k
8 − i + 3j + 2k i + 18j + k
2i − 9j + 19k 1 − 3j + 5k
−5i + 16j − 2k −6 + 6j + 2k


.

To investigate whether the tensor equation is consistent or not, we check the solvability condition (4.5)
in Corollary 3. First, by Theorem 1, we getA† via MATLAB as follows:

unfold(A†) =



0.0087 + 0.0233i + 0.0105 j + 0.0144k 0.0134 + 0.0326i − 0.0141 j + 0.0114k

0.0292 + 0.0206i + 0.0010 j − 0.0092k −0.0156 − 0.0136i − 0.0167 j − 0.0318k

−0.0082 − 0.0292i − 0.0221 j + 0.0096k −0.0215 − 0.0010i + 0.0138 j − 0.0129k

−0.0070 − 0.0035i + 0.0050 j + 0.0025k −0.0074 − 0.0064i − 0.0174 j + 0.0012k

−0.0031 − 0.0137i − 0.0075 j − 0.0408k 0.0262 − 0.0269i + 0.0078 j + 0.0067k

0.0185 − 0.0104i + 0.0063 j + 0.0228k 0.0142 + 0.0127i + 0.0027 j + 0.0146k


.
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Then, we get

unfold(EA ∗Q B) =



0.0002 − 0.0010i + 0.0005 j − 0.0016k 0.0052 + 0.0000i − 0.0002 j − 0.0003k

0.0000 + 0.0016i − 0.0021 j + 0.0010k −0.0000 − 0.0010i − 0.0007 j + 0.0002k

0.0009 − 0.0000i − 0.0008 j + 0.0028k 0.0001 + 0.0009i − 0.0002 j + 0.0003k

0.0007 − 0.0005i + 0.0016 j + 0.0000k −0.0005 + 0.0001i + 0.0021 j + 0.0003k

0.0009 − 0.0000i − 0.0008 j + 0.0028k 0.0001 + 0.0009i − 0.0002 j + 0.0003k

0.0007 − 0.0005i + 0.0016 j + 0.0000k −0.0005 + 0.0001i + 0.0021 j + 0.0003k


,

Clearly, EA ∗Q B is close to O. Therefore, it is almost consistent. By Theorem 7, the minimum-norm
solution is X = A† ∗Q B, and it is given by the following unfold form

unfold(X) =



−0.2586 − 1.2710i + 0.6598 j − 0.3004k 0.5098 + 0.7523i + 0.1790 j − 0.1183k

−0.2554 − 0.7382i + 0.4967 j + 0.4155k 0.8895 + 0.3581i + 0.9405 j − 0.3567k

1.0649 − 0.4286i − 0.0780 j − 0.2524k −0.2410 − 0.9762i + 0.0943 j + 0.7470k

0.0320 + 0.4399i − 0.0515 j + 0.8712k 0.0811 + 0.0845i − 0.1269 j − 0.0926k

−0.6175 + 1.0406i − 0.0296 j + 0.4714k −0.4104 − 0.6945i − 0.7305 j − 0.7121k

0.6650 + 0.3582i − 1.1311 j − 0.2368k 0.9305 + 0.5687i − 0.2718 j + 0.6352k


.

And we can check that unfold(A ∗Q X − B) = 1.0e−13Z, where

Z =



−0.1410 − 0.0977i − 0.0118 j − 0.0474k −0.0592 − 0.1007i − 0.0089 j − 0.0452k

−0.0374 − 0.0755i − 0.0355 j − 0.0563k 0.0829 − 0.0118i − 0.1303 j − 0.0444k

0.1133 + 0.0109i + 0.0473 j − 0.0530k −0.0059 − 0.0194i − 0.0502 j + 0.1227k

−0.0208 − 0.0059i − 0.0689 j + 0.0015k 0.0011 − 0.0052i − 0.0975 j + 0.0574k

−0.0611 + 0.0602i + 0.0268 j + 0.0649k −0.0059 − 0.0399i − 0.0386 j + 0.0202k

0.0049 − 0.0296i − 0.0022 j + 0.0015k −0.0040 + 0.0615i − 0.0565 j − 0.0041k


.

Example 2. For an original color videoX, we take the first four frames of the original color video (see
Original Frames in Table 1, the video data is from Densely Annotation Video Segmentation dataset
(DAVIS)). Then we noise the color video X by N and get the color video with noises X + N (see the
Frames With Noise in Table 1). Now, we disturbed the color video with noise by the tensor A and get
C. Now, we aim to restore the original color video X. In color video processing, we generated the
disturbing tensor A randomly with its elements in [−30, 30]. To restore the color video X, we have to
find the minimum-norm least-squares solution to the tensor equation

A ∗Q X = C, (5.1)

where A,C ∈ Q400×500×4, X,N ∈ Q500×400×4 (N is a white noise with a mean of 0 and a standard
deviation of 0.01). By Theorem 7, our required minimum-norm least-squares solution is X0 = A

†C.

By computation, we can get the restored color video (see the Restored Frames in Table 1), with

∥ X − X0 ∥F= 2.2870e − 08.

We can see from the Table 1 that our restored color video achieves a good accuracy and has a satisfied
result.
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Table 1. Restored frames.

Original Frames Frames With Noise Restored Frames

Frame 1

Frame 2

Frame 3

Frame 4

6. Conclusions

In this paper, by utilizing the Qt-product and generalized inverses of third-order quaternion tensors,
we derive solvability conditions of the third-order quaternion tensor equationA∗QX = B. Also we get
the general solution, the least-squares solution, the minimum-norm solution and the minimum-norm
least-squares solution of the tensor equation. Finally, two examples demonstrate the theoretical results
of the paper.
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