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1. Introduction

The property of Lp(Ω,F , µ;B) will be discussed, here (Ω,F , µ) is a σ-finite measure space, and
B is a real Banach space. For 1 ≤ p < ∞, Lp(Ω,F , µ;B) is a linear space of all B-valued Bochner Lp

integral function with the norm given by the formula

‖F‖Lp(Ω,F ,µ;B) ≡

(∫
Ω

‖F(ω)‖p
B

dµ(ω)
) 1

p

.

If p = ∞, L∞(Ω,F , µ;B) is a linear space of all B-valued essential bounded function with norm
defined by letting

‖F‖L∞(Ω,F ,µ;B) ≡ inf
E∈F
µ(E)=0

(
sup
ω∈Ec
‖F(ω)‖B

)
.
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If B = R, when p ∈ [1,∞], it is known that there exists a sequence of finite-valued simple measurable
function {Fn, n ≥ 1} such that

lim
n→∞
‖F − Fn‖Lp(Ω,F ,µ;R) = 0,

for any F ∈ Lp(Ω,F , µ;R) (see [1, 2]). If B is a general Banach space, p ∈ [1,∞), there exists a
sequence of finite-valued simple measurable function Fn such that

lim
n→∞
‖F − Fn‖Lp(Ω,F ,µ;B) = 0,

for any F ∈ Lp(Ω,F , µ;B), and there exists a sequence of countable-valued simple measurable
function Fn such that

lim
n→∞
‖F − Fn‖L∞(Ω,F ,µ;B) = 0,

for any F ∈ L∞(Ω,F , µ;B) (see [3]).
The difference between infinite dimension Banach space B and R is that the closed ball of R

is compact set and the closed ball of B is non-compact set (see [4]), which makes the property of
L∞(Ω,F , µ;B) is very different form L∞(Ω,F , µ;R).

Convergence methods of Banach-valued function were defined in serval ways. For example, Zheng
and Cui [5] investigated that l∞(X)- evaluation uniform convergence of operator series can be described
completed by the essential bounded subset of l∞(X). Here X is a Banach space,

l∞(X) ≡
{

(x j) : x j ∈ X, sup
j∈N

wwwwwx j

wwwww < ∞

}
,

and l∞(X) equip the norm of wwwwwx j

wwwww
∞
≡ sup

j∈N

wwwwwx j

wwwww .
León-Saavedra considered unconditionally convergence of a series

∑
i xi in a Banach space. [6]

showed that a series is unconditionally convergent if and only if the series is weakly subseries
convergent with respect to a regular linear summability method. Furthermore, this paper unifies several
versions of the Orlicz-Pettis theorem that incorporate summability methods. [7] give a another version
of the Orlicz-Pettis theorem within the frame of the strong ρ-Cesàro convergence. [8] unified several
results which characterize when a series is weakly unconditionally Cauchy (wuc) in terms of the
completeness of a convergence space associated with the wuc series. [9] gave a new characterization
of weakly unconditionally Cauchy series and unconditionally convergent series through the strong
ρ-Cesàro summability is obtained.

In this work, we will present a necessary and sufficient condition for the existence of Fn in
L∞(Ω,F , µ;B) for F ∈ L∞(Ω,F , µ;B), by constructing a sequence of finite-valued measurable
functions that converge to F in some sense. A counterexample is also discussed to demonstrate
that there exists F ∈ L∞(Ω,F , µ;B) for which Fn cannot converge to F in the norm topology of
L∞(Ω,F , µ;B) for any sequence of finite-valued measurable functions Fn.

2. Preliminaries

The following definitions are about Banach-valued measurable function.
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Definition 2.1. [10] If (Ω,F ) is a measurable space, B is a Banach space, Ω1, · · · ,Ωn ∈ F are
pairwise disjoined nonempty sets, x1, · · · , xn ∈ B, then the map

F(ω) =

n∑
i=1

xiIΩi(ω),

is called finite-valued simple function. And the map

F(ω) =

∞∑
i=1

xiIΩi(ω),

is called countable-valued simple function. A map F : Ω → B is called measurable if ∀A ∈
B(B), F−1(B) ∈ F . F is called strongly measurable if there is a sequence of finite-valued simple
function Fn such that ∀ω ∈ Ω,

lim
n→∞
‖F(ω) − Fn(ω)‖B = 0.

Definition 2.2. [11] Let F : Ω → B be a map, for all f ∈ B∗, the function f (F(ω)) is measurable
function on (Ω,F , µ), then F is called weak measurable function on (Ω,F , µ).

The following theorem describes the relationship weak and strong measurable.

Theorem 2.1. (Pettis) [11] Let F : Ω→ B be a map, the following assertions are equivalent:

(1) F is strongly measurable.
(2) F is weakly measurable and F(Ω) is almost separable.

By Theorem 2.1, if B is separable space, then F is strongly measurable if and only if it’s weakly
measurable.

Then the definition of Bochner LP-space is given as follows.

Definition 2.3. [3, 10] Let (Ω,F , µ) be a measure space, and let F : Ω→ B be a finite-valued simple
function with a form of

F(ω) =

n∑
i=1

xiIΩi(ω).

If
∑n

i=1 µ(Ωi) < ∞, then the Bochner integral of F is defined by∫
Ω

F(ω)dµ(ω) =

n∑
i=1

xiµ(Ωi).

And let F : Ω→ B be a strongly measurable function. If there exists a p ∈ [1,∞) such that∫
Ω

‖F(ω)‖p
B

dµ(ω) < ∞,

then F is called Lp-integrable on (Ω,F , µ). The linear space of all Lp-integrable function with the
following seminorm

‖F‖Lp(Ω,F ,µ;B) ≡

(∫
Ω

‖F(ω)‖p
B

dµ(ω)
) 1

p

,
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is denoted by Lp (Ω,F , µ;B). If the function

ω 7→ ‖F(ω)‖B

is essential bounded, then F is called essential bounded. The linear space of all essential bounded
function with the following seminorm

‖F‖L∞(Ω,F ,µ;B) ≡ ess sup
{
‖F(ω)‖B : ω ∈ Ω

}
,

is denoted by L∞ (Ω,F , µ;B).

The following theorems show that the collection of finite-valued function is dense in Lp (Ω,F , µ;B)
if p ∈ [1,∞), and the collection of countable-valued function is dense in L∞ (Ω,F , µ;B).

Theorem 2.2. [3] Let (Ω,F , µ) be a measurable space, F : Ω→ B is a strongly measurable function,
p ∈ [1,∞), then the following statements are the same in meaning:

(1) F ∈ Lp (Ω,F , µ;B).
(2) There exists a sequence of finite-valued simple function Fn such that

lim
n→∞

∫
Ω

‖Fn(ω) − F(ω)‖p
B

dµ(ω) = 0.

Theorem 2.3. [3] Let (Ω,F , µ) be a measurable space, F : Ω → B be a strongly measurable
function, then the following statements are synonymous:

(1) F ∈ L∞ (Ω,F , µ;B).
(2) There exists a sequence of countable-valued simple function Fn such that

lim
n→∞

inf
E∈F
µ(E)=0

(
sup
ω∈Ec
‖Fn(ω) − F(ω)‖B

)
= 0.

3. Main result

Theorem 3.1. If (Ω,F , µ) is a measure space, and B is a real Banach space, F ∈ L∞(Ω,F , µ;B),
then the following assertions are equivalent:

(1) There exists a sequence of finite-valued simple function Fn such that

lim
n→∞
‖F − Fn‖L∞(Ω,F ,µ;B) = 0.

(2) There exists a measurable set Ω̃ ∈ F such that µ(Ω̃) = 0 and F(Ω̃c) is a sequential compact set.

Proof. If (1) holds, suppose

‖F − Fn‖L∞(Ω,F ,µ;B) <
1
2n
,

and

Fn =

Kn∑
i=1

xinIEin ,
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where {Ein}
Kn
i=1 are pairwise disjoined and ∪Kn

i=1Ein = Ω. By the definition of essential bounded, there
exists Ẽn ∈ F such that µ(Ẽn) = 0 and

sup
ω∈Ẽc

n

‖Fn(ω) − F(ω)‖B <
1
n
.

Considering

Ω̃ ≡
⋃
n∈N+

 Kn⋃
i=1

Ein ∩ Ẽc
n

c

.

Then µ(Ω̃) = 0. Let

ω ∈ Ω̃c ⊂

Kn⋃
i=1

Ein ∩ Ẽc
n,

then there exist i = 1, · · · ,Kn such that

‖xin − F(ω)‖B ≤ sup
ω∈Ẽc

n

‖Fn(ω) − F(ω)‖B <
1
n
.

Therefore, {xin}
Kn
i=1 is a 1/n− web of F(Ω̃c). By the arbitrary of n, F(Ω̃c) is a sequential compact set.

If condition (2) is satisfied, then ∀n ∈ N+, there exists a finite 1/n− web {xin}
Kn
i=1 of F(Ω̃c). Let

Ein ≡

{
ω ∈ Ω̃c : ‖xin − F(ω)‖B <

1
n

}
.

Let Ẽ1n = E1n, and for i > 1, defined by

Ẽin ≡ Ein\

 i−1⋃
j=1

E jn

 .
Now, let’s define a finite-valued function

Fn =

Kn∑
i=1

xinIẼin
;

then

‖F − Fn‖L∞(Ω,F ,µ;B) ≤ sup
ω∈Ω̃c

‖Fn(ω) − F(ω)‖B <
1
n
.

By the arbitrary of n, (1) holds. �

From now on, suppose B is real Banach space which dual space B∗ is separable, and (Ω,F , µ) is
complete measure space. Then B is separable. Let { fn}n∈N+

be countably dense subset of B∗. We define
a new convergence.
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Definition 3.1. Let Fk, k = 1, 2, · · · be a sequence of B-valued strongly measurable function on
(Ω,F , µ), we say Fk weakly converge to a B-valued function F almost uniformly if there exists E ∈ F
such that µ(E) = 0 and for all weak neighborhood of origin W, there exists N ∈ N+ such that ∀k > N,

F(ω) − Fk(ω) ∈ W, ∀ω ∈ Ec.

We say Fi is a almost uniformly weak Cauchy sequence if there exists E ∈ F such that µ(E) = 0 and
for all weak neighborhood of origin W, there exists N ∈ N+ such that ∀i, j > N,

Fi(ω) − F j(ω) ∈ W, ∀ω ∈ Ec.

Theorem 3.2. (1) Fk weakly converge to F almost uniformly if and only if there exists E ∈ F such
that µ(E) = 0, and for all f ∈ B∗, then

lim
k→∞

sup
ω∈Ec
| f (Fk(ω)) − f (F(ω))| = 0.

(2) Fk is a almost uniformly weak Cauchy sequence if and only if there exists E ∈ F such that
µ(E) = 0, and for all f ∈ B∗, then

lim
k→∞

sup
p∈N+

sup
ω∈Ec
| f (Fk+p(ω)) − f (Fn(ω))| = 0.

Proof. We have just proven (1), and likewise, (2) can be demonstrated. Suppose there exists E ∈ F
such that µ(E) = 0, and for all weak neighborhood of origin W, there exists N ∈ N+ such that ∀k > N,

F(ω) − Fk(ω) ∈ W, ∀ω ∈ Ec.

Let f ∈ B∗, given m ∈ N+, consider the set

Vm ≡

{
x ∈ B : | f (x)| <

1
m

}
.

Then, for N ∈ N+ such that ∀k > N,

F(ω) − Fk(ω) ∈ Vm, ∀ω ∈ Ec.

That is
sup
ω∈Ec
| f (Fk(ω)) − f (F(ω))| <

1
m
.

Let k → ∞,

lim sup
k→∞

sup
ω∈Ec
| f (Fk(ω)) − f (F(ω))| ≤

1
m
.

By the arbitrary of m,
lim
k→∞

sup
ω∈Ec
| f (Fk(ω)) − f (F(ω))| = 0.

Suppose there exists E ∈ F such that µ(E) = 0, and for all f ∈ B∗, we have

lim
k→∞

sup
ω∈Ec
| f (Fk(ω)) − f (F(ω))| = 0.

AIMS Mathematics Volume 8, Issue 11, 27670–27683.
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Given a weak neighborhood of origin W, by the definition of weak topology, there exists g1, · · · , gm ∈

B∗ and ε > 0 such that
V ≡ {x ∈ B : |g1(x)| < ε, · · · , |gm(x)| < ε} ⊂ W.

Then, for i = 1, · · · ,m,∃Ni ∈ N+ such that

sup
ω∈Ec
|gi(Fk(ω)) − gi(F(ω))| < ε, ∀n > Ni.

Let N = max(N1, · · · ,Nm), then ∀k > N, we have

Fk(ω) − F(ω) ∈ V ⊂ W, ∀ω ∈ Ec.

Therefore, Fk weakly converge to F almost uniformly. �

Theorem 3.3. Let Fk, k = 1, 2, · · · be a sequence of B-valued strongly measurable function. If Fk

weakly converge to F almost uniformly, then F is strongly measurable.

Proof. By Theorem 2.1, it is sufficient to prove that F is weakly measurable. If Fk weakly converge to
F almost uniformly, then there exists E ∈ F such that µ(E) = 0, and ∀ f ∈ B∗,

lim
k→∞

sup
ω∈Ec
| f (Fk(ω)) − f (F(ω))| = 0.

Therefore, f (FkIEc) pointwise converge to f (FIEc). By the arbitrary of f , FIEc is weakly measurable,
thus it is strongly measurable. Because µ(E) = 0 and (Ω,F , µ) is complete, FIE is strongly measurable.
In summary, F = FIEc + FIE is measurable. �

Theorem 3.4. If Fk weakly converge to F′ and F′′ almost uniformly, then F′ = F′′, µ − a.e..

Proof. If Fk weakly converge to F′ and F′′ almost uniformly, then there exist E′, E′′ ∈ F such that
µ(E′) = µ(E′′) = 0, and

lim
k→∞

sup
ω∈E′c
| f (Fk(ω)) − f (F(ω))| = lim

k→∞
sup
ω∈E′′c

| f (Fk(ω)) − f (F(ω))| = 0.

Then
µ
(
{ω ∈ Ω : F′(ω) , F′′(ω)}

)
≤ µ(E′ ∪ E′′) ≤ µ(E′) + µ(E′′) = 0.

Therefore, F′ = F′′, µ − a.e.. �

Theorem 3.5. Let F, Fk, k = 1, 2, · · · ∈ L∞(Ω,F , µ;B), then Fk weakly converge to F almost uniformly
if and only if

(1) supk∈N+
‖Fk‖L∞(Ω,F ,µ;B) < ∞.

(2) There exists E ∈ F such that µ(E) = 0, and ∀n ∈ N+,

lim
k→∞

sup
ω∈Ec
| fn(Fk(ω)) − fn(F(ω))| = 0.
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Proof. Suppose Fk weakly converge to F almost uniformly, since (2) is self-evident, we will focus on
demonstrating (1). By the conditions, there exists a E ∈ F such that µ(E) = 0 and

lim
k→∞

sup
ω∈Ec
| f (Fk(ω)) − f (F(ω))| = 0.

In addition, we can suppose supω∈Ec ‖F(ω)‖ < ∞ and supω∈Ec ‖Fk(ω)‖ < ∞(k ∈ N+). Fixed f ∈ B∗,
then there exists k0 ∈ N+ such that for k ≥ k0,

sup
ω∈Ec
| f (Fk(ω)) − f (F(ω))| < 1.

For k ≥ k0,

sup
ω∈Ec
| f (Fk(ω))| ≤ sup

ω∈Ec
| f (Fk(ω)) − f (F(ω))| + sup

ω∈Ec
| f (F(ω))|

≤ 1 + ‖ f ‖B∗ sup
ω∈Ec
‖F(ω)‖B < ∞.

Therefore,

sup {| f (Fk(ω))| : k ∈ N+, ω ∈ Ec}

≤max
{
‖ f ‖B∗ sup

ω∈Ec
‖F1(ω)‖B , · · · , ‖ f ‖B∗ sup

ω∈Ec

wwwwwFk0(ω)
wwwww
B
, 1 + ‖ f ‖B∗ sup

ω∈Ec
‖F(ω)‖B

}
< ∞.

By Uniform Boundedness Principle,

sup
{
‖Fk(ω)‖B : k ∈ N+, ω ∈ Ec} < ∞.

Thus, supk∈N+
‖Fk‖L∞(Ω,F ,µ;B) < ∞. Now we suppose (1) and (2) are true, then there exists a E ∈ F

such that µ(E) = 0 and ∀n ∈ N+,

lim
k→∞

sup
ω∈Ec
| fn(Fk(ω)) − fn(F(ω))| = 0.

We can assume
M ≡ sup

ω∈Ec
‖F(ω)‖B + sup

k∈N+

sup
ω∈Ec
‖Fk(ω)‖B < ∞.

Fixed f ∈ B∗, then ∀ε > 0,∃n0 ∈ N+ such thatwwwww f − fn0

wwwww
B∗
<

ε

2M
.

Then ∀k ∈ N+,∀ω ∈ Ec,

| f (Fk(ω)) − f (F(ω))|
≤| f (Fk(ω)) − fn0(Fk(ω))| + | fn0(Fk(ω)) − fn0(F(ω))| + | fn0(F(ω)) − fn0(F(ω))|
≤

wwwww f − fn0

wwwww
B∗
‖Fk(ω)‖B + | fn0(Fk(ω)) − fn0(F(ω))| +

wwwww f − fn0

wwwww
B∗
‖F(ω)‖B

<ε + | fn0(Fk(ω)) − fn0(F(ω))|.
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By the arbitrary of ω,

sup
ω∈Ec
| f (Fk(ω)) − f (F(ω))| < ε + sup

ω∈Ec
| fn0(Fk(ω)) − fn0(F(ω))|.

Therefore,

lim sup
k→∞

sup
ω∈Ec
| f (Fk(ω)) − f (F(ω))| < ε + lim sup

k→∞
sup
ω∈Ec
| fn0(Fk(ω)) − fn0(F(ω))| ≤ ε,

By the arbitrary of ε,
lim sup

k→∞
sup
ω∈Ec
| f (Fk(ω)) − f (F(ω))| = 0.

Finally, by the arbitrary of f , Fk weakly converge to F almost uniformly �

Theorem 3.6. Suppose F is a B-valued strongly measurable function on (Ω,F , µ), then F ∈

L∞(Ω,F , µ;B) if and only if there exists a sequence of finite-valued simple function Fk such that
Fk weakly converge to F almost uniformly.

Proof. Suppose F ∈ L∞(Ω,F , µ;B), then there is a E ∈ F such that µ(E) = 0, and

M ≡ sup
ω∈Ec
‖F(ω)‖B < ∞.

By Banach-Alaoglu theorem, F(Ec) is weak relatively compact sets. Let k ∈ N+, and

Vk ≡

{
x ∈ B : | f1(x)| <

1
k
, · · · , | fk(x)| <

1
k

}
.

Then there exist ∀k ∈ N+,∃ {xik}
Nk
i=1 ⊂ F(Ec) such that

{F(ω) : ω ∈ Ec} ⊂

Nk⋃
i=1

(xik + Vk) .

Let

Eik ≡ {ω ∈ Ec : F(ω) − xik ∈ Vk} .

and Ẽ1k = E1k, for i > 1,we can define

Ẽik ≡ Eik\

 i−1⋃
j=1

E jk

 .
We can construct a finite-valued measurable function

Fk =

Kk∑
i=1

xikIẼik
.

Because Fk(Ec) ⊂ F(Ec),

sup
{
‖Fk(ω)‖B : ω ∈ Ec, k ∈ N+

}
≤ M < ∞.
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For all n ∈ N+, for k > n,

sup
ω∈Ec
| fn(Fk(ω)) − fn(F(ω))| <

1
k
.

Therefore,
lim
k→∞

sup
ω∈Ec
| fn(Fk(ω)) − fn(F(ω))| = 0.

By Theorem 3.5, Fk weakly converge to F almost uniformly.
Consider the possibility that a sequence of finite-valued simple function Fk that weakly converge to

F almost uniformly, then there exists a E ∈ F such that µ(E) = 0 and ∀ f ∈ B∗,

lim
n→∞

sup
ω∈Ec
| f (Fk(ω)) − f (F(ω))| = 0.

Then there exists a k0 ∈ N+ such that

sup
ω∈Ec
| f (Fk0(ω)) − f (F(ω))| < 1.

Because Fk0 is finite-valued function,

sup
ω∈Ec
| f (F(ω))| ≤ sup

ω∈Ec
| f (Fk0(ω)) − f (F(ω))| + sup

ω∈Ec
| f (Fk0(ω))|

≤ 1 + ‖ f ‖B∗ sup
ω∈Ec

wwwwwFk0(ω)
wwwww
B
< ∞.

By Uniform Boundedness Principle,
sup
ω∈Ec
‖F(ω)‖B < ∞.

Therefore, F ∈ L∞(Ω,F , µ;B). �

Now we will proof L∞(Ω,F , µ;B) is complete in the sense of weak convergence almost uniformly.

Theorem 3.7. Let Fk, k = 1, 2, · · · ∈ L∞(Ω,F , µ;B) be a almost uniformly weak Cauchy sequence,
then ∃F ∈ L∞(Ω,F , µ;B) such that Fk weakly converge to F almost uniformly.

Proof. Suppose Fk ∈ L∞(Ω,F , µ;B) is a almost uniformly weak Cauchy sequence, then there exists a
E ∈ F such that µ(E) = 0 and for all k ∈ N+,

sup
ω∈Ec
‖Fk(ω)‖B < ∞.

And ∀ f ∈ B∗,
lim
n→∞

sup
p∈N+

sup
ω∈Ec
| f (Fn+p(ω)) − f (Fn(ω))| = 0.

Fixed f ∈ B∗,∃k0 ∈ N+ such that ∀k > k0,

sup
ω∈Ec
| f (Fk(ω)) − f (Fk0(ω))| < 1.

For i = 1, · · · , k0,
sup
ω∈Ec
| f (Fi(ω))| ≤ ‖ f ‖B∗ sup

ω∈Ec
‖Fi(ω)‖B .
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Therefore,

sup {| f (Fk(ω))| : k ∈ N+, ω ∈ Ec} ≤ 1 + ‖ f ‖B∗ max
(
sup
ω∈Ec
‖F1(ω)‖B , · · · , sup

ω∈Ec

wwwwwFk0(ω)
wwwww
B

)
.

By Uniform Boundedness Principle, there exists M ∈ (0,∞) such that

{Fk(ω) : k ∈ N+, ω ∈ Ec} ⊂
{
x ∈ B : ‖x‖B ≤ M

}
.

Fixed ω ∈ Ec, {Fk(ω)}k∈N+
is a bounded sequence, which means it’s a weak relatively compact

sequence. Therefore exists a subsequence
{
Fki(ω)

}
i∈N+

and F(ω) ∈ B such that Fki(ω) weakly converge
to F(ω). Because {Fk(ω)}k∈N+

is a weak cauchy sequence, ∀ f ∈ B∗,∀ε > 0,∃K ∈ N+ such that
∀m, n ≥ K,

| f (Fm(ω)) − f (Fn(ω))| <
ε

2
.

Meanwhile, ∃i0 ∈ N+ such that ki0 > N and

| f (Fki0
(ω)) − f (F(ω))| <

ε

2
,

when k > ki0 ,

| f (Fk(ω)) − f (F(ω))| ≤ | f (Fk(ω)) − fki0
(F(ω))| + | f (Fki0

(ω)) − f (F(ω))| < ε.

which means Fk(ω) weakly converge to F(ω). By Mazur Theorem,

F(ω) ∈ c̄o {Fk(ω)}k∈N+
⊂

{
x ∈ B : ‖x‖B ≤ M

}
,

where c̄o {Fk(ω)}k∈N+
is convex hull of {Fk(ω)}k∈N+

in norm topology of B. Therefore, F is essential
bounded, and

‖F‖L∞(Ω,F ,µ;B) ≤ sup
ω∈Ec
‖F(ω)‖B ≤ M.

Finally, Fk weakly converge to F almost uniformly can be show. Fixed f ∈ B∗, there exists a
{
Fki

}
i∈N

such that
sup
ω∈Ec
| f (Fki(ω)) − f (Fki−1(ω))| <

1
2i .

Then

f (Fk0(ω)) +

∞∑
i=1

( f (Fki(ω)) − f (Fki−1(ω))) = f (F(ω)).

Let j→ ∞,

sup
ω∈Ec
| f (Fk j(ω)) − f (F(ω))| ≤

∞∑
i= j+1

sup
ω∈Ec
| f (Fki(ω)) − f (Fki−1(ω))| ≤

∞∑
i= j+1

1
2i → 0.

∀ε > 0,∃K ∈ N+ such that ∀m, n ≥ K,

sup
ω∈Ec
| f (Fm(ω)) − f (Fn(ω))| <

ε

2
.
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Meanwhile, ∃i0 ∈ N+ such that ki0 > N and

sup
ω∈Ec
| f (Fki0

(ω)) − f (F(ω))| <
ε

2
.

Therefore, for k > ki0 , we have

sup
ω∈Ec
| f (Fk(ω)) − f (F(ω))| ≤ sup

ω∈Ec
| f (Fk(ω)) − fki0

(F(ω))| + sup
ω∈Ec
| f (Fki0

(ω)) − f (F(ω))| < ε,

which means Fk weakly converge to F almost uniformly. �

Finally, we will provide a counterexample to demonstrate that there exists an F ∈ L∞(Ω;B) for
which Fn cannot converge to F in the norm topology of L∞(Ω;B) for any sequence of finite-valued
measurable functions Fn.

Let H = L2([−π, π],B([−π, π]), l), where l is Lebesgue measure. It is obvious that H is real
separable Hilbert space and H ′ = H by Riesz Representation Theorem, which means the dual space
ofH is separable.

Let n ∈ N,

h0 ≡
1
√

2π
, h2n−1(x) =

1
√
π

sin nx, h2n(x) =
1
√
π

cos nx, n ∈ N+.

Then {hn}n∈N is the unit orthogonal basis ofH , and

‖hn − hm‖
2
H

= 2, ∀n , m.

A measure space ([0, 1],B([0, 1]), l) is given. Let C be the Cantor set of [0, 1], and the countable
connected component of Cc denote by {En}n∈N+

.

F ≡
∞∑

n=1

hnIEn .

Then F ∈ L∞([0, 1],B([0, 1]), l;H), and

‖F‖L∞([0,1],B([0,1]),l;H) = 1.

However, given any zero measure set E, F(Ec) = {hn}n∈N, which means F(Ec) in not a sequential
compact set. Therefore, any sequence of finite-valued measurable function cannot converge to F in
norm topology of L∞([0, 1],B([0, 1]), l;H). Let

Fk ≡ h0IC +

k∑
n=1

hnIEn .

Then Fk are finite-valued measurable functions. Given m ∈ N+, for k > m,

sup
ω∈Cc
〈hm, F(ω) − Fk(ω)〉H = sup

ω∈Cc

〈
hm,

∞∑
n=k+1

hnIEn(ω)
〉
H

= 0,

and l(C) = 0, which means Fk weakly converge to F almost uniformly.
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4. Prospect

In this paper, we give a necessary and sufficient condition for the existence of a sequence of finite-
valued measurable function which converge to F ∈ L∞(Ω,F , µ;B) in topology of essential supremum
and give a new convergence which makes any F ∈ L∞(Ω,F , µ;B) can find sequence of finite-valued
measurable function which converge to F. On this basis, we can raise some valuable problems:

(1) Definition 3.1 and the proof of Theorem 3.2 to Theorem 3.6 depend on the separability of B∗, if
we can extended the conclusion to the condition that B∗ is a general Banach space?

(2) If we can use a topology to convergence defined in Definition 3.1. For example, let f ∈ B∗, we
define the seminorm p f by

p f (F) = ‖ f (F)‖L∞(Ω,F ,µ;R) .

If we can prove that p f (F) = 0 for all f implies ‖F‖L∞(Ω,F ,µ;B) = 0, then the the family P ≡{
p f : f ∈ B∗

}
can determine a new topology to characterize the convergence.

(3) Based on (2) and Theorem 3.2, we guess the following assertions are equivalent:

(a) Fk weakly converge to F almost uniformly.
(b) For all f ∈ B∗, we have

lim
n→∞
‖ f (Fk) − f (F)‖L∞(Ω,F ,µ;R) = 0.

(c) There exists E ∈ F such that µ(E) = 0, and for all f ∈ B∗, we have

lim
n→∞

sup
ω∈Ec
| f (Fk(ω)) − f (F(ω))| = 0.

Here F, Fk, k = 1, 2, · · · ∈ L∞(Ω,F , µ;B).

5. Conclusions

In the work, a necessary and sufficient condition for the existence of a sequence of finite-valued
measurable function which converge to any given F ∈ L∞(Ω,F , µ;B) is given. A new convergence
is defined. In this convergence, any F ∈ L∞(Ω,F , µ;B) has a sequence of finite-valued measurable
function which converge to F. Finally, a counterexample is also given to show that there exists F ∈
L∞(Ω,F , µ;B) for which Fn cannot converge to F in the norm topology of L∞(Ω,F , µ;B) for any
sequence of finite-valued measurable functions Fn.
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