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1. Introduction and main results

The classical Fermat’s last theorem that equation xn + yn = 1 has no non-trivial rational solutions,
when n ≥ 3, had been proved by Wiles in [1]. Considering x, y in xn + yn = 1 as elements in function
fields, we arrive at looking equations that may be called Fermat type functional equations

f (z)n + g(z)n = 1. (1.1)

In 1966, Gross [2] proved the Fermat type functional equation (1.1) has no transcendental meromorphic
solutions when n ≥ 4. If n = 2, then Eq (1.1) has the entire solutions f (z) = sin(h(z)) and g(z) =
cos(h(z)), where h(z) is any entire function, and no other solutions exist [3]. Baker [4] and Yang [5]
also obtained some related results on Fermat type functional equation.

In recent years, the analogue of Fermat type equations inspired numerous investigations.
Particularly, some authors have gotten a number of interesting results by considering that g(z) has
a special relationship with f (z) [6, 7]. For example, Liu et al. [6] considered the difference equation

f (z)2 + f (z + c)2 = 1, (1.2)
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and obtained the following result:

Theorem 1.1. (see [6], Theorem 1.1) The transcendental entire solutions with finite order of Eq (1.2)

must satisfy f (z) = sin(Az + B), where B is a constant and A =
(4k + 1)π

2c
, k is an integer.

Later on, considering a generalization of Eq (1.2) as

f (z)2 + P(z)2 f (z + c)2 = Q(z), (1.3)

where P(z),Q(z) are non-zero polynomials, Liu and Yang obtained a result (see [8], Theorem 2.1),
which is an improvement of Theorem A. Closely related to difference expressions are q-difference
expressions, where the usual shift f (z + c) of a meromorphic function will be replaced by the q-shift
f (qz). Liu and Cao [9] considered the entire solutions of Fermat type q-difference equations

f (z)2 + P(z)2 f (qz)2 = Q(z), (1.4)

where P(z),Q(z) are non-zero polynomials and |q| = 1. They showed the following theorem:

Theorem 1.2. (see [9], Theorem 2.6) If Eq (1.4) admits a transcendental entire solution of finite order,
then P(z) must be a constant P. This solution can be written as

f (z) =
Q1(z)ep(z) + Q2(z)e−p(z)

2

satisfying one of the following conditions:

(1) q satisfies p(qz) = p(z) and Q1(z) − iPQ1(qz) ≡ 0,Q2(z) + iPQ2(qz) ≡ 0, P4Q(q2z) = Q(z);
(2) q satisfies p(qz)+ p(z) = 2a0, and iPQ1(qz)e2a0 ≡ −Q2(z), iPQ2(qz) ≡ Q1(z)e2a0 , P4Q(q2z) = Q(z),

e8a0 = 1, where Q(z) = Q1(z)Q2(z) and p(z) is a non-constant polynomial.

Liu and Yang [7] in 2016 studied the existence and the forms of solutions of some quadratic
trinomial functional equations and obtained some precise properties on the meromorphic solutions
of the following equations

f (z)2 + 2α f (z) f ′(z) + f ′(z)2 = 1 (1.5)

and
f (z)2 + 2α f (z) f (z + c) + f (z + c)2 = 1. (1.6)

If α , ±1, 0, then Eq (1.5) has no transcendental meromorphic solutions (see [7], Theorem 1.3) and
the finite order transcendental entire functions of Eq (1.6) must be of order equal to one (see [7],
Theorem 1.4).

Recently, Luo et al. [10] investigated the transcendental entire solutions with finite order of the
quadratic trinomial difference equation

f (z + c)2 + 2α f (z) f (z + c) + f (z)2 = eg(z), (1.7)

and differential difference equation

f (z + c)2 + 2α f (z + c) f ′(z) + f ′(z)2 = eg(z), (1.8)

where α2(, 0, 1), c are constants and g(z) is a polynomial.
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Theorem 1.3. (see [10], Theorem 2.1) Let α2 , 0, 1, c(, 0) ∈ C and g be a polynomial. If the
difference equation (1.7) admits a transcendental entire solution f (z) of finite order, then g(z) must be
of the form g(z) = az + b, where a, b ∈ C.

In the above results, Nevanlinna theory of meromorphic functions [11, 12] and its difference
counterparts [13, 14] play a critical role. For related results, we refer the reader to [15–23] and the
references therein.

Motivated by the above equations and results, we investigate the existence and forms of entire
solutions of the following two quadratic trinomial q-difference differential equations

f (qz)2 + 2α f (z) f (qz) + f (z)2 = eg(z), (1.9)

where α2 , 0, 1 and q , 0,±1 are complex numbers, and g(z) is a polynomial.

f (qz)2 + 2α f ′(z) f (qz) + f ′(z)2 = eg(z), (1.10)

where α2 , 0, 1 and q , 0, 1 are complex numbers, and g(z) is a polynomial.
Below, for convenience, let

A1 =
1

2
√

1 + α
+

1

2i
√

1 − α
and A2 =

1

2
√

1 + α
−

1

2i
√

1 − α
. (1.11)

Theorem 1.4. If Eq (1.9) admits a transcendental entire solution f (z) with finite order, then g(z) must
satisfy deg(g(z)) > 2 and qdeg(g(z)) = 1. Furthermore,

f (z) = ±

√
2

2(
√

1 + α)
e

g(z)
2 .

We give an example to show that the result of Theorem 1.4 is precise as follows:

Example 1.1. f (z) = ±
√

6
6 e

z3
2 is a transcendental entire solution of

f
(−1

2
+

√
3

2
i)z

2

+ 4 f (z) f
(−1

2
+

√
3

2
i)z

 + f (z)2 = ez3
.

Here, g(z) = z3, q = −1
2 +

√
3

2 i, α = 2, A1 =
√

3−3
6 and A2 =

√
3+3
6 .

Corollary 1.1. If deg(g(z)) ≤ 2, then Eq (1.9) has no transcendental entire solution of f (z) with finite
order.

Corollary 1.2. If |q| , 1, then Eq (1.9) has no transcendental entire solution of f (z) with finite order.

Theorem 1.5. If Eq (1.10) admits a transcendental entire solution f (z) with finite order, then g(z) ≡ β,
q = −1 and

f (z) =

√
2

2t
(A1etz+y1 − A2e−tz+y2),

where t, y1, y2, β ∈ C satisfying β = y1 + y2 and t = ±i.
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We give an example to show that the result of Theorem 1.5 is precise as follows:

Example 1.2. f (z) =
√

2
2i (

√
3−3
6 eiz+ln i −

√
3+3
6 e−iz) is a transcendental entire solution of

f (−z)2 + 4 f ′(z) f (−z) + f ′(z)2 = eln i.

Here, g(z) ≡ ln i, q = −1, α = 2, A1 =
√

3−3
6 and A2 =

√
3+3
6 .

Corollary 1.3. If deg(g(z)) ≥ 1, then Eq (1.10) has no transcendental entire solution of f (z) with finite
order.

Corollary 1.4. If q , 0,±1, then Eq (1.10) has no transcendental entire solution of f (z) with finite
order.

2. Some lemmas

Lemma 2.1. [12] Let f j(z), j = 1, 2, 3 be meromorphic functions and f1(z) is not a constant. If

3∑
j=1

f j(z) ≡ 1,

and
3∑

j=1

N
(
r,

1
f j

)
+ 2

3∑
j=1

N(r, f j) < (λ + o(1))T (r), r ∈ I,

where λ < 1, T (r) = max1≤ j≤3{T (r, f j)} and I represents a set of r ∈ (0,∞) with infinite linear measure.
Then, f2 ≡ 1 or f3 ≡ 1.

Lemma 2.2. [12] If f j(z), g j(z)(1 ≤ j ≤ n, n ≥ 2) are entire functions satisfying

(1)
∑n

j=1 f j(z)eg j(z) ≡ 0;
(2) The orders of f j are less than that of egh(z)−gk(z) for 1 ≤ j ≤ n, 1 ≤ h < k ≤ n.

Then f j(z) ≡ 0 for 1 ≤ j ≤ n.

Lemma 2.3. [12] Let p(z) be a nonzero polynomial with degree n. If p(qz) − p(z) is a constant, then
qn = 1 and p(qz) ≡ p(z). If p(qz) + p(z) is a constant, then qn = −1 and p(qz) + p(z) = 2a0, where a0

is the constant term of p(z).

3. Proof of Theorem 1.4

Let f (z) be a transcendental entire solution with finite order of Eq (1.9). Denote

f (z) =
1
√

2
(µ + ν) and f (qz) =

1
√

2
(µ − ν),

where µ, ν are entire functions. It can be deduced from Eq (1.9) that

(1 + α)µ2 + (1 − α)ν2 = eg(z). (3.1)
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From Eq (3.1), we have  √1 + αµ

e
g(z)

2

2

+

 √1 − αν

e
g(z)

2

2

= 1.

The above equation leads to √1 + αµ

e
g(z)

2

+ i

√
1 − αν

e
g(z)

2

  √1 + αµ

e
g(z)

2

− i

√
1 − αν

e
g(z)

2

 = 1. (3.2)

We observe that both
√

1+αµ

e
g(z)

2
+ i

√
1−αν

e
g(z)

2
and

√
1+αµ

e
g(z)

2
− i

√
1−αν

e
g(z)

2
have no zeros. Combining Eq (3.2) with

the Hadamard factorization theorem, there exists a polynomial p(z) such that
√

1 + αµ

e
g(z)

2

+ i

√
1 − αν

e
g(z)

2

= ep(z) and

√
1 + αµ

e
g(z)

2

− i

√
1 − αν

e
g(z)

2

= e−p(z). (3.3)

Set
γ1(z) = p(z) +

g(z)
2

and γ2(z) = −p(z) +
g(z)

2
. (3.4)

It follows from Eq (3.3) that

µ =
eγ1(z) + eγ2(z)

2
√

1 + α
and ν =

eγ1(z) − eγ2(z)

2i
√

1 − α
.

This leads to

f (z) =
1
√

2
(µ + ν) =

1
√

2

(
eγ1(z) + eγ2(z)

2
√

1 + α
+

eγ1(z) − eγ2(z)

2i
√

1 − α

)
=

1
√

2
(A1eγ1(z) + A2eγ2(z))

(3.5)

and

f (qz) =
1
√

2
(µ − ν) =

1
√

2

(
eγ1(z) + eγ2(z)

2
√

1 + α
−

eγ1(z) − eγ2(z)

2i
√

1 − α

)
=

1
√

2
(A2eγ1(z) + A1eγ2(z)),

(3.6)

where A1 and A2 are defined as Eq (1.11).
It follows from Eq (3.5) that

f (qz) =
1
√

2
(A1eγ1(qz) + A2eγ2(qz)). (3.7)

Since α2 , 0, 1, we have that both A1 and A2 are nonzero constants. Combining with Eqs (3.6)
and (3.7), we have

eγ1(z)−γ2(qz) +
A1

A2
eγ2(z)−γ2(qz) −

A1

A2
eγ1(qz)−γ2(qz) = 1. (3.8)

Case 1. γ1(z) − γ2(qz) is a non-constant polynomial. Using Lemma 2.1 in Eq (3.8), we have

A1

A2
eγ2(z)−γ2(qz) ≡ 1 or −

A1

A2
eγ1(qz)−γ2(qz) ≡ 1.
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If A1
A2

eγ2(z)−γ2(qz) ≡ 1, then γ2(z) − γ2(qz) is a constant. By Lemma 2.3, γ2(z) − γ2(qz) ≡ 0. Thus, we
have A1

A2
= 1, which contradicts with α , 0, 1.

If −A1
A2

eγ1(qz)−γ2(qz) ≡ 1, then it follows from Eq (3.8) that eγ1(z)−γ2(z) = −A1
A2
. In view of Eq (3.4), we

get that

−
A1

A2
e2p(qz) ≡ 1 and e2p(z) = −

A1

A2
.

It is easy to get that p(z) is a constant and A2
A1
= A1

A2
. This leads to A2

1 = A2
2, which contradicts with

α2 , 0, 1.
Case 2. γ1(z) − γ2(qz) is a constant. Let κ = γ1(z) − γ2(qz), κ ∈ C. Then, γ2(qz) = γ1(z) − κ. In view

of Eq (3.4), 2p(z) = γ1(z) − γ2(z). Equation (3.8) reduces to

A2

A1
(eκ − 1) + eκe−2p(z) = e2p(qz). (3.9)

Case 2.1. κ = γ1(z) − γ2(qz) ≡ 0. From Eq (3.9) we have e2(p(z)+p(qz)) = 1, which gives that
p(z) + p(qz) ≡ 0. It follows from Eq (3.4) that

0 ≡ p(z) + p(qz) =
1
2

(γ1(z) − γ2(z) + γ1(qz) − γ2(qz)) =
1
2

(−γ2(z) + γ1(qz)).

Further, we have γ1(z) ≡ γ1(q2z) and γ2(z) ≡ γ2(q2z). Recall that f (z) is transcendental, then from
Eq (3.5) we have that γ1(z) and γ2(z) cannot be constant at the same time. By the assumption that
q , 0,±1, we get a contradiction.

Case 2.2. κ = γ1(z) − γ2(qz) . 0. Using the Nevanlinna second fundamental theorem for e2p(qz),
we have

T (r, e2p(qz)) ≤ N(r, e2p(qz)) + N
(
r,

1
e2p(qz)

)
+ N

r, 1
e2p(qz) −

A2
A1

(eκ − 1)

 + S (r, e2p(qz))

≤ N
(
r,

1
e2p(z)

)
+ S (r, e2p(qz)) = S (r, e2p(qz)),

which shows that p(qz) is a constant.
We claim that g(z) is a polynomial. If g(z) is a constant, then by combining with p(qz) as a constant

and Eq (3.4), we have both γ1(z) and γ2(z) are constants. From Eq (3.5), we have f (z) is a constant,
which contradicts with f (z) is transcendental.

Thus, deg(g(z)) ≥ 1. Set p(z) ≡ η, where η ∈ C. Then, it follows from Eqs (3.4) and (3.8) that(
e2η +

A1

A2

)
e

g(z)−g(qz)
2 = 1 +

A1

A2
e2η. (3.10)

If g(z) − g(qz) is a non-constant polynomial, then by using Lemma 2.2 in Eq (3.10), we have
e2η +

A1

A2
= 0,

1 +
A1

A2
e2η = 0.
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It gives A2
1 = A2

2, which contradicts with α2 , 0, 1. Thus, g(z) − g(qz) is a constant.
Further, by Lemma 2.3, we obtain g(z) − g(qz) ≡ 0 and qdeg(g(z)) = 1. Since q , ±1, then

deg(g(z)) , 1, 2. Combining with deg(g(z)) ≥ 1, we have deg(g(z)) > 2. Moreover, Eq (3.10)
reduces to

e2η +
A1

A2
= 1 +

A1

A2
e2η.

Thus, we have A1
A2
− 1 =

(
A1
A2
− 1

)
e2η. Since A1 , A2, then A1

A2
− 1 , 0. Hence, we have e2η = 1. It gives

eη = ±1, i.e., ep(z) ≡ ±1.
From Eqs (3.4) and (3.5), we have

f (z) =

√
2(A1ep(z) + A2e−p(z))

2
e

g(z)
2 =
±
√

2(A1 + A2)
2

e
g(z)

2 .

And together with Eq (1.11), we obtain

f (z) = ±

√
2

2(
√

1 + α)
e

g(z)
2 .

We completed the proof of Theorem 1.4.

4. Proof of Theorem 1.5

Let f (z) be a transcendental entire solution with finite order of Eq (1.10). Using the same argument
as in the proof of Theorem 1.4, we have

f ′(z) =
1
√

2
(A1eγ1(z) + A2eγ2(z)) (4.1)

and
f (qz) =

1
√

2
(A2eγ1(z) + A1eγ2(z)). (4.2)

In view of Eqs (4.1) and (4.2), it follows that

f ′(qz) =
1
√

2
(A1eγ1(qz) + A2eγ2(qz)) =

1
√

2q
(A2γ

′
1(z)eγ1(z) + A1γ

′
2(z)eγ2(z)).

This leads to
γ′1(z)

q
eγ1(z)−γ2(qz) +

A1

qA2
γ′2(z)eγ2(z)−γ2(qz) −

A1

A2
eγ1(qz)−γ2(qz) = 1. (4.3)

Case 1. γ1(qz) − γ2(qz) is a constant. From Eq (3.4), we have γ1(qz) − γ2(qz) = 2p(qz). Thus, p(z)
is a constant. Let ι ≡ ep(z), where ι ∈ C\{0}.

Furthermore, we have deg(g(z)) ≥ 1. Otherwise, from Eq (3.4), we have that both γ1(z) and
γ2(z) are constants. It follows from Eq (4.1) that f ′(z) is a constant, which conflicts with f (z) being
transcendental.

Combining with Eqs (3.4) and (4.3), we get that(
ι2

q
+

A1

qA2

)
g′(z)

2
e

g(z)−g(qz)
2 = 1 +

A1

A2
ι2. (4.4)
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If g(z) − g(qz) is a non-constant polynomial, then by using Lemma 2.2 in Eq (4.4), we get that
(
ι2

q
+

A1

qA2

)
g′(z)

2
= 0,

1 +
A1

A2
ι2 = 0.

(4.5)

The second equation of (4.5) gives that ι2 = −A2
A1

. Substituting this into the first equation of (4.5), we
have (

−A2

qA1
+

A1

qA2

)
g′(z)

2
= 0.

Since deg(g(z)) ≥ 1 and q , 0, 1, then we have −A2
A1
+ A1

A2
= 0. It gives that A2

1 = A2
2, which contradicts

with α2 , 0, 1.
If g(z) − g(qz) is a constant, by Lemma 2.3, we have g(z) − g(qz) ≡ 0 and qdeg(g(z)) = 1. Since q , 1,

then deg(g(z)) , 1. Note that deg(g(z)) ≥ 1, then deg(g(z)) ≥ 2.
Equation (4.4) reduces to (

ι2

q
+

A1

qA2

)
g′(z)

2
= 1 +

A1

A2
ι2.

This implies that
ι2

q
+

A1

qA2
= 0 and 1 +

A1

A2
ι2 = 0. Similar to the above, we also have A2

1 = A2
2, which is

a contradiction.
Case 2. γ1(qz)− γ2(qz) is a non-constant polynomial. Since γ1(qz)− γ2(qz) = 2p(qz), then we have

p(z) is a non-constant polynomial.
Next, we show that γ′1(z) . 0 and γ′2(z) . 0. From Eq (4.3), it is easy to get that γ′1(z) ≡ 0 and

γ′2(z) ≡ 0 cannot hold at the same time.
If γ′1(z) ≡ 0 and γ′2(z) . 0, then Eq (4.3) reduces to

A1

qA2
γ′2(z)eγ2(z)−γ2(qz) −

A1

A2
eγ1(qz)−γ2(qz) = 1.

Using the Nevanlinna second fundamental theorem for eγ1(qz)−γ2(qz), we have that

T (r, eγ1(qz)−γ2(qz)) ≤ N(r, eγ1(qz)−γ2(qz)) + N
(
r,

1
eγ1(qz)−γ2(qz)

)

+ N

r, 1

eγ1(qz)−γ2(qz) +
A2

A1

 + S (r, eγ1(qz)−γ2(qz))

≤ N

r, 1
A1

qA2
γ′2(z)eγ2(z)−γ2(qz)

 + S (r, eγ1(qz)−γ2(qz))

= S (r, eγ1(qz)−γ2(qz)),

which is a contradiction.
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Similarly, if γ′1(z) . 0 and γ′2(z) ≡ 0, we also get a contradiction.
Then, by using Lemma 2.1 in Eq (4.3), we have

γ′1(z)
q

eγ1(z)−γ2(qz) ≡ 1 or
A1

qA2
γ′2(z)eγ2(z)−γ2(qz) ≡ 1.

Case 2.1. If A1
qA2
γ′2(z)eγ2(z)−γ2(qz) ≡ 1, it implies that γ′2(z) is a nonzero constant, and γ2(z) − γ2(qz) is

a constant.
By Lemma 2.3, we have γ2(z) − γ2(qz) ≡ 0 and qdeg(γ2(z)) = 1. Since q , 1, then deg(γ2(z)) , 1,

which contradicts with γ′2(z) being a nonzero constant.
Case 2.2. If γ

′
1(z)
q eγ1(z)−γ2(qz) ≡ 1, then from Eq (4.3) we have

γ′2(z)
q

eγ2(z)−γ1(qz) = 1. (4.6)

The above two equations give that γ1(z) − γ2(qz) and γ2(z) − γ1(qz) are constants. Moreover, we also
have that γ′i (z)(i = 1, 2) are nonzero constants, i.e., deg(γi(z)) = 1(i = 1, 2).

Set
η1 = γ1(z) − γ2(qz) and η2 = γ2(z) − γ1(qz),

where η1, η2 ∈ C.
In view of Eq (3.4), we have2p(z) + 2p(qz) = [γ1(z) − γ2(qz)] − [γ2(z) − γ1(qz)] = η1 − η2,

g(z) − g(qz) = [γ1(z) − γ2(qz)] + [γ2(z) − γ1(qz)] = η1 + η2.
(4.7)

By Lemma 2.3, we get that qdeg(p(z)) = −1 and qdeg(g(z)) = 1. Since q , 1, then deg(g(z)) , 1.
We now show that deg(g(z)) = 0. If deg(g(z)) ≥ 2, by combining with deg(γi(z)) = 1 and Eq (3.4),

then we have deg(p(z)) = deg(g(z)). Therefore, qdeg(p(z)) = qdeg(g(z)) = 1, which contradicts with
qdeg(p(z)) = −1. Hence, we have g(z) ≡ β, where β ∈ C.

Recall that deg γi(z) = 1(i = 1, 2). It follows from Eq (3.4) that γ1(z) + γ2(z) = g(z) ≡ β.
Set

γ1(z) = tz + y1 and γ2(z) = −tz + y2, (4.8)

where t ∈ C\{0}, y1, y2 ∈ C such that β = y1 + y2.
It follows from Eqs (3.4) and (4.8) that p(z) = tz + y1−y2

2 . And together with qdeg(p(z)) = −1, then we
have q = −1.

By substituting q = −1 and Eq (4.8) into γ
′
1(z)
q eγ1(z)−γ2(qz) ≡ 1 and Eq (4.6), we obtain

−tey1−y2 = 1 and tey2−y1 = 1,

respectively. It gives that t = ±i.
Furthermore, substituting Eq (4.8) into Eq (4.1), we have

f ′(z) =
1
√

2
(A1etz+y1 + A2e−tz+y2).

Integration of the above equation gives that

f (z) =

√
2

2t
(A1etz+y1 − A2e−tz+y2).

We completed the proof of Theorem 1.5.
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5. Conclusions

In this paper, we showed that the explicit forms for entire solutions of two certain types of Fermat-
type q-difference differential equations. In addition, we have given specific examples to illustrate our
results.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

This article was partially supported by National Natural Science Foundation of China
(NSFC)(NO.12171127, NO.12301095) and Topic on Fundamental and application fundamental
research of Guangzhou in 2023 (No. 2023A04J0648). The corresponding author was supported by
the National Natural Science Foundation of China (NSFC)(No. 12171127). The third author was
supported by the National Natural Science Foundation of China (NSFC)(NO.12301095) and Topic on
Fundamental and application fundamental research of Guangzhou in 2023 (No. 2023A04J0648). The
authors thank the anonymous referee for the careful reading and some helpful comments.

Conflict of interest

The authors state no conflict of interest.

References

1. A. Wiles, Modular elliptic curves and Fermat’s last theorem, Ann. Math., 141 (1995), 443–551.

2. F. Gross, On the equation f n + gn = 1, Bull. Amer. Math. Soc., 72 (1966), 86–88.

3. F. Gross, On the equation f n + gn = hn, Am. Math. Mon., 73 (1966), 1093–1096.
https://doi.org/10.2307/2314644

4. I. N. Baker, On a class of meromorphic functions, Proc. Am. Math. Soc. 17 (1966), 819–822.
https://doi.org/10.2307/2036259

5. C. C. Yang, A generalization of a theorem of p. montel on entire functions, Proc. Am. Math. Soc.,
26 (1970), 332–334. https://doi.org/10.2307/2036399

6. K. Liu, T. B. Cao, H. Z. Cao, Entire solutions of Fermat type differential-difference equations,
Arch. Math., 99 (2012), 147–155. https://doi.org/10.1007/s00013-012-0408-9

7. K. Liu, L. Z. Yang, A note on meromorphic solutions of Fermat types equations, An. Stiint. Univ.
Al. I. Cuza Lasi. Mat. (N.S.), 1 (2016), 317–325.

8. K. Liu, L. Z. Yang, On entire solutions of some differential-difference equations, Comput. Methods
Funct. Theory,13 (2013), 433–447. https://doi.org/10.1007/s40315-013-0030-2

9. K. Liu, T. B. Cao, Entire solutions of Fermat type q-difference differential equations, Electron. J.
Differ. Equ., 59 (2013), 1–10.

AIMS Mathematics Volume 8, Issue 11, 27659–27669.

http://dx.doi.org/https://doi.org/10.2307/2314644
http://dx.doi.org/https://doi.org/10.2307/2036259
http://dx.doi.org/https://doi.org/10.2307/2036399
http://dx.doi.org/https://doi.org/10.1007/s00013-012-0408-9
http://dx.doi.org/https://doi.org/10.1007/s40315-013-0030-2


27669

10. J. Luo, H. Y. Xu, F. Hu, Entire solutions for several general quadratic trinomial differential
difference equations, Open Math., 19 (2021), 1018–1028. https://doi.org/10.1515/math-2021-
0080

11. W. K. Hayman, Meromorphic functions, Oxford: Clarendon Press, 1964.

12. C. C. Yang, H. X. Yi, Uniqueness theory of meromorphic functions, Dordrecht: Springer, 2003.

13. Y. M. Chiang, S. J. Feng, On the nevanlinna characteristic of f (z+η) and difference equations in the
complex plane, Ramanujan J., 16 (2008), 105–129. https://doi.org/10.1007/s11139-007-9101-1

14. R. G. Halburd, R. J. Korhonen, Difference analogue of the lemma on the logarithmic derivative
with applications to difference equations, J. Math. Anal. Appl., 314 (2006), 477–487.
https://doi.org/10.1016/j.jmaa.2005.04.010

15. K. Ishizaki, A note on the functional equation f n + gn + hn = 1 and some complex differential
equations, Comput. Methods Funct. Theory, 2 (2003), 67–85. https://doi.org/10.1007/BF03321010

16. B. Q. Li, Entire solutions of (uz1)
m + (uz2)

n = eg, Nagoya Math. J., 178 (2005), 151–162.

17. B. Q. Li, On certain non-linear differential equations in complex domains, Arch. Math., 91 (2008),
344–353. https://doi.org/10.1007/s00013-008-2648-2

18. K. Liu, Meromorphic functions sharing a set with applications to difference equations, J. Math.
Anal. Appl., 359 (2009), 384–393. https://doi.org/10.1016/j.jmaa.2009.05.061

19. M. L. Liu, L. Y. Gao, Transcendental solutions of systems of complex differential-difference
equations, Sci. Sin. Math., 49 (2019), 1633. https://doi.org/10.1360/N012018-00061

20. J. F. Tang, L. W. Liao, The transcendental meromorphic solutions of a certain type
of nonlinear differential equations, J. Math. Anal. Appl., 334 (2007), 517–527.
https://doi.org/10.1016/j.jmaa.2006.12.075

21. H. Y. Xu, Y. Y Jiang, Results on entire and meromorphic solutions for several systems of
quadratic trinomial functional equations with two complex variables, RACSAM, 116 (2022), 8.
https://doi.org/10.1007/s13398-021-01154-9

22. H. Y. Xu, Y. H. Xu, X. L. Liu, On solutions for several systems of complex nonlinear
partial differential equations with two variables, Anal. Math. Phys., 13 (2023), 47.
https://doi.org/10.1007/s13324-023-00811-z

23. H. Y. Xu, L. Xu, Transcendental entire solutions for several quadratic binomial and trinomial PDEs
with constant coefficients, Anal. Math. Phys., 12 (2022), 64. https://doi.org/10.1007/s13324-022-
00679-5

© 2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 8, Issue 11, 27659–27669.

http://dx.doi.org/https://doi.org/10.1515/math-2021-0080
http://dx.doi.org/https://doi.org/10.1515/math-2021-0080
http://dx.doi.org/https://doi.org/10.1007/s11139-007-9101-1
http://dx.doi.org/https://doi.org/10.1016/j.jmaa.2005.04.010
http://dx.doi.org/https://doi.org/10.1007/BF03321010
http://dx.doi.org/https://doi.org/10.1007/s00013-008-2648-2
http://dx.doi.org/https://doi.org/10.1016/j.jmaa.2009.05.061
http://dx.doi.org/https://doi.org/10.1360/N012018-00061
http://dx.doi.org/https://doi.org/10.1016/j.jmaa.2006.12.075
http://dx.doi.org/https://doi.org/10.1007/s13398-021-01154-9
http://dx.doi.org/https://doi.org/10.1007/s13324-023-00811-z
http://dx.doi.org/https://doi.org/10.1007/s13324-022-00679-5
http://dx.doi.org/https://doi.org/10.1007/s13324-022-00679-5
http://creativecommons.org/licenses/by/4.0

	Introduction and main results
	Some lemmas
	Proof of Theorem ??
	Proof of Theorem ??
	Conclusions

