
http://www.aimspress.com/journal/Math

AIMS Mathematics, 8(11): 27439–27459.
DOI: 10.3934/math.20231404
Received: 23 July 2023
Revised: 12 September 2023
Accepted: 21 September 2023
Published: 27 September 2023

Research article

The coupling system of Kirchhoff and Euler-Bernoulli plates with
logarithmic source terms: Strong damping versus weak damping of
variable-exponent type

Adel M. Al-Mahdi1,2,∗

1 The Preparatory Year Program, King Fahd University of Petroleum & Minerals, Dhahran 31261,
Saudi Arabia

2 The Interdisciplinary Research Center in Construction and Building Materials, King Fahd
University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia

* Correspondence: Email: almahdi@kfupm.edu.sa.

Abstract: In this paper, we study the asymptotic behavior of solutions of the dissipative coupled
system where we have interactions between a Kirchhoff plate and a Euler-Bernoulli plate. We
investigate the interaction between the internal strong damping acting in the Kirchhoff equation and
internal weak damping of variable-exponent type acting in the Euler-Bernoulli equation. By using
the potential well, the energy method (multiplier method) combined with the logarithmic Sobolev
inequality, we prove the global existence and derive the stability results. We show that the solutions
of this system decay to zero sometimes exponentially and other times polynomially. We find explicit
decay rates that depend on the weak damping of the variable-exponent type. This outcome extends
earlier results in the literature.
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1. Introduction

Plate problems have been broadly explored by mathematicians and other scientists. These types
of problems have a lot of applications in different areas of science and engineering, such as elasticity,
material engineering, mechanical engineering, nuclear physics and optics. In linear elasticity theory,
one of the equations widely used in the construction of engineering equipment is based on the plate
equation:

ρutt − γ∆utt + β∆2u + Lu = 0, in Ω, t > 0, (1.1)
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where γ > 0, and Lu denotes some dissipative mechanism. This plate equation corresponds to the
model formulated by G. Kirchhoff. In the absence of the rotational inertia γ = 0, the model is known
as the Euler-Bernoulli plate. These two models have different characteristics: While one is hyperbolic,
the other is elliptic. When these equations are dissipative by the same mechanism, the asymptotic
behavior of their solutions differs. For example, if Lu = ut, under appropriate boundary conditions, the
Euler-Bernoulli model decays exponentially while the Kirchhoff model does not. An exhaustive study
of the asymptotic behavior of these models with different dissipative mechanisms can be found in J. E.
Lagnese’s book [1]. We start off by reviewing some works related to the quasi-linear wave equation
and plate equation. Cavalcanti et al. [2] considered the following equation:

|ut|
ρutt − ∆utt − ∆u − γ∆ut = 0, in Ω, t > 0, (1.2)

and proved the global existence of weak solutions and uniform decay rates of the energy in the
presence of a strong damping of the form −∆ut acting as the domain and assuming that the relaxation
function decays exponentially. Messaoudi and Tatar [3] studied (1.2), but without a strong damping
(γ = 0). They showed that the memory term is enough to stabilize the solution. Han and Wang [4],
for (γ = 0), investigated the general decay result of the energy of (1.2) with nonlinear damping.
In [5], Liu investigated (1.2) with weakly nonlinear time-dependent dissipation and source terms, and
he established explicit and general energy decay rate results without imposing any restrictive growth
assumption on the damping term at the origin. For the quasi-linear plate equations, we mention the
work of Al-Gharabli et al. [6] where they studied the well-posedness and asymptotic stability for a
quasi-linear viscoelastic plate equation with a logarithmic nonlinearity. Recently, Al-Mahdi [7] studied
the same problem as in Al-Gharabli et al. [6], but with infinite memory. With the imposition of a
minimal condition on the relaxation function, he obtained an explicit and general decay rate result for
the energy. In [8], Kakumani and Yadav considered a plate equation with infinite memory, nonlinear
damping, and logarithmic source. They proved the explicit and general decay rate of the solution.

For the damped wave equation, Chen and Xu [9] considered the following wave equation with the
logarithmic source term:

utt − ∆u + ∆2u − ω (∆utt + ∆ut) + |ut|
r−1ut = u ln |u|, in Ω, t > 0, (1.3)

where Ω ⊂ Rn(n ≥ 1) is a bounded domain with smooth boundary ∂Ω, ω ∈ {0, 1}, and r ≥ 1. Based on
the potential well method, they constructed several conditions to prove the global existence or infinite
time blow-up with subcritical initial energy. They also used the scaling technique to extend these
results to the critical initial energy. Moreover, they surrounded the blow-up at arbitrarily high initial
energy. Lian et al. [10] considered the following fourth-order nonlinear wave equations:

utt − ∆u + ∆2u +

n∑
i=1

σi
(
uxi

)
− ∆ut + |ut|

r−1ut = f (u), in Ω, t > 0, (1.4)

where Ω ⊂ Rn(n ≥ 1) is a bounded domain with smooth boundary ∂Ω, and r ≥ 1. The nonlinear
function f (u) and the function σi(i = 1, ..., n) satisfy some specific conditions. They proved the local
solution by using the fix point theory. Then, by constructing the potential well structure frame, they
established the global existence, asymptotic behavior and blow-up of solutions for the subcritical initial
energy and critical initial energy, respectively. In addition, they proved the blow-up in a finite time of
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solutions for the arbitrarily positive initial energy case. For the single plate equation with nonlinear
damping and a logarithmic source term, Gongwei [11] considered the following:

utt + ∆2u + |ut|
m−2ut = |u|p−2u ln |u|k, in Ω, t > 0, (1.5)

where Ω ⊂ Rn(n ≥ 1) is a bounded domain with smooth boundary ∂Ω and k is a positive real number.
The constant exponents m ≥ 2 and p satisfies:

2 < p <
2(n − 2)

n − 4
if n ≥ 5, and 2 < p < +∞, if n ≤ 4. (1.6)

He established the local existence, global existence, and decay estimate of the solution at subcritical
initial energy. He also proved that the solution with negative initial energy experiences a blow-up in a
finite time under suitable conditions. Moreover, he proved the blow-up in a finite time of solution at
the arbitrarily high initial energy when m = 2. For the wave equation with weak and strong damping
terms and the logarithmic source term, Lian and Xu [12] considered the following:

utt − ∆u − ω (∆utt + ∆ut) + µut = u ln |u|, in Ω, t > 0, (1.7)

where Ω ⊂ Rn(n ≥ 1) is a bounded domain with smooth boundary ∂Ω, ω ≥ 0, and µ > −ωλ1 where
λ1 being the first eigenvalue of the operator −∆ under homogeneous Dirichlet boundary conditions.
By using the contraction mapping principle and the potential well, they proved the local existence,
global existence, energy decay and, infinite time blow-up of the solution with three different levels of
initial energy. For the Kirchhoff plate equation, Liua et al. [13] considered the following viscoelastic
Kirchhoff-like plate equation:

utt − ∆utt + ∆2u −
∫ t

0
g(t − s)∆2u(s)ds − ∆pu + ut − ∆ut = |u|q−2u, in Ω, t > 0, (1.8)

where Ω ⊂ Rn is a bounded domain with smooth boundary ∂Ω, ∆pu = div
(
|∇u|q−2∇u

)
, and the kernel g

and the growth exponents p, q satisfy some specific conditions. The authors proved the local existence
and uniqueness of the solution by linearization and the contraction mapping principle. Then, they
established the global existence of solution with subcritical and critical initial energy by applying
the potential well theory. Moreover, they proved the asymptotic behavior of the global solution with
positive initial energy strictly below the depth of potential well. We also refer the reader to the recent
work in [14] for more existence, stability, and blow-up results of semilinear hyperbolic equations.

For the stability of coupled quasi-linear systems, we referred to [15] and [16]. In [17], Hajjej
considered the following coupled system of quasi-linear viscoelastic Kirchhoff plate equations:|ut|

ρutt − ∆utt + ∆2u +
∫ t

0
g1(t − s)∆2u(s)ds + f1(u, z) = 0, in Ω, t > 0,

|zt|
ρztt − ∆ztt + ∆2z +

∫ t

0
g2(t − s)∆2z(s)ds + f2(u, z) = 0, in Ω, t > 0.

(1.9)

He established the existence of local weak solutions by the Faedo-Galerkin approach and, by using the
perturbed energy method, he proved a general decay rate of the energy for a wide class of relaxation
functions.
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In what follows, we will present some previously studied results that motivated this work. For
example, for the decoupled Kirchhoff equation , we point out the work of Oquendo and Astudillo [18]
where the authors studied the asymptotic behavior of the solutions of the equation:

utt − γ∆utt + β∆2u +

∫ ∞

0
g(s)∆2θu(t − s)ds = 0, in Ω, t > 0, (1.10)

where the kernel decreases exponentially. Using the semigroup theory, they have shown that the
solutions decay exponentially when θ = 1 and decay polynomially when θ < 1 . They also showed
that these decay rates are optimal. For a wider class of kernels, recently Al-Mahdi [19] considered
this equation for θ = 1 with g satisfying some convexity inequalities. Using multiplier methods, it
was proved that the solutions decay in a general way depending on the decay of the kernel. In relation
to stability results for problems with short memory, we noticed that the solutions present asymptotic
behavior similar to those with long memory [20–24]. We refer to the work of Rivera and Naso [25]
for (1.10) with γ = 0. Regarding indirectly dissipative coupled systems, it is well known that the study
of this kind of systems started with Russell [26]. He introduced a general framework for evolution
systems with indirect damping mechanisms. Later, Alabau et al. [27] studied a general framework
for the stabilization of weakly coupled wave equations dissipative indirectly by frictional dampings.
She showed that the solutions do not decay exponentially, but explicit polynomial decay rates were
obtained. Recently, studies on asymptotic behavior of wave-plate interactions were developed by
Tebou et al. [28]. He studied the stability for two systems where the dissipation acted only in one
equation as follows: utt − γ∆utt + ∆2u + αz + ut = 0, in Ω, t > 0,

ztt − ∆z + αu = 0, in Ω, t > 0
(1.11)

and utt − γ∆utt + ∆2u + αz = 0, in Ω, t > 0,
ztt − ∆z + αu + zt = 0, in Ω, t > 0,

(1.12)

It was proved that the solutions of both systems have a polynomial decay. Concerning viscoelastic
systems, we cited the work of Guesmia [29, 30], [31] and the references therein. Recently, Tyszka
et al. [32] considered the following coupled Kirchhoff and Euler-Bernoulli plates:ρ1utt − γ∆utt + β1∆

2u +
∫ ∞

0
g1(s)∆2θ1u(t − s)ds + α(u − z) = 0, in Ω, t > 0,

ρ2ztt + β2∆
2z +

∫ ∞
0

g2(s)∆2θ2z(t − s)ds + α(u − z) = 0, in Ω, t > 0,
(1.13)

and they established explicit decay rates that depend on the fractional exponents of the memory. They
concluded that the memory effects in the Euler-Bernoulli equation dissipate the system more slowly
than memory effects in the Kirchhoff equation.

1.1. Our problem

Motivated by all the above works, in this paper, we are interested in the asymptotic behavior of
the coupled system of Kirchhoff and the Euler-Bernoulli models. These models are governed by the
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following equations:
ρ1utt − γ∆utt + β1∆

2u + u + α(u − z)2 − δ1∆ut = κu ln |u|, in Ω, t > 0,
ρ2ztt + β2∆

2z + z − α(u − z)2 + δ2|zt|
(ν(x)−2)zt = κz ln |z|, in Ω, t > 0,

u(·, t) = z(·, t) = ∂u
∂ν

= ∂z
∂ν

= 0, on ∂Ω, t ≥ 0,
(u(0), z(0)) = (u0, z0), (ut(0), zt(0)) = (u1, z1), in Ω,

(P)

where γ is the rotational inertia coefficient, for (i = 1, 2) ρi and βi are the mass densities and the
flexural rigidity coefficients, respectively. The constants α is the coupling coefficient and we assume
all the considered coefficients in the system are positive. Here, Ω is a bounded and regular domain
of R2, with the smooth boundary ∂Ω. The vector ν is the unit outer normal to ∂Ω, ω(x) and ν(x)
are the variable-exponents and the constant κ is a small positive real number satisfying some specific
conditions. The initial data u0, z0, u1 and z1 lie in appropriate Hilbert space. The symbol ∆ is the
Laplacian operator.

Model (P) describes the interaction of Kirchhoff and the Euler-Bernoulli plates and the extensional
vibrations of thin rods [33]. Each one of these two plates are clamped along the boundary ∂Ω. The
analysis of stability issues for plate models is more challenging due to free boundary conditions and
the presence of variable-exponents nonlinearity and the logarithmic source terms. Moreover, in our
case, the source term competes with the dissipation induced by the variable-exponents dampings. The
strong damping term in the Kirchhoff equation (−δ∆ut) is introduced to treat the problems arising from
the rotational inertia term (−γ∆utt) in the same Kirchhoff equation.

As would be expected, nonlinearities enabled the detection of some obscure events. The distribution
form was altered by a logarithmic expression; it minimized sample skewness and, in some situations,
data skewness. Since most of the behaviors of some models in real-life applications are nonlinear,
the nonlinearity can be used to explain why torsional oscillation occurs. If we used logarithmic
nonlinearity, the oscillation’s amplitude would also decrease.

In addition, the considered system (P) has nonlinear dissipations induced by the variable-exponents
dampings. Equations with nonstandard growth conditions occur in the mathematical modeling of
various physical phenomena, such as the flows of electro-rheological fluids or fluids with temperature-
dependent viscosity, nonlinear viscoelasticity, processes of filtration through a porous media and the
image processing [34]. Therefore, it will be very interesting to study this interaction.

1.2. Our objectives

We studied the asymptotic behavior of solutions of the dissipative coupled system (P) where we
had interaction between a Kirchhoff plate and an Euler-Bernoulli plate. The Kirchhoff equation was
dissipated by a strong damping mechanism, while the Euler-Bernoulli equation was dissipated by
a nonlinear weak damping mechanism of variable-exponent type. We investigated the interactions
between Kirchhoff and Euler-Bernoulli plates and the level of the effectiveness of the damping
mechanism on the two equations and, we studied the competition between the nonlinear source terms
and the damping mechanisms.

To this end, we started using the potential well technique to prove the global existence of the
solutions of the system (P). Then, we applied the energy method (multiplier method) combined with
logarithmic Sobolev inequality to establish the stability results. We showed that the solutions of the

AIMS Mathematics Volume 8, Issue 11, 27439–27459.



27444

system (P) decay to zero sometimes exponentially and other times polynomially based on the value
of the exponents of the weaker damping. We derived explicit decay rates that depend on the variable-
exponents of the dissipative mechanisms.

2. Preliminaries

In this section, we present some materials needed in the proof of our results. We used the standard
Lebesgue space L2(Ω) and the Sobolev space H2

0(Ω) with their usual scalar products and norms.
Throughout this paper, c is used to denote a generic positive constant, and we shall assume the
following hypotheses:

(A1) : The variable exponent ν : Ω→ [1,∞) is a continuous function such that

ν1 := essinfx∈Ων(x), ν2 := esssupx∈Ων(x)

and 1 < ν1 ≤ ν(x) ≤ ν2 < ∞. Moreover, the variable function ν satisfies the log-Hölder continuity
condition; that is, for any δ with 0 < δ < 1, there exists a constant A > 0 such that,

|ν(x) − ν(y)| ≤ −
A

log |x − y|
, for all x, y ∈ Ω, with |x − y| < δ. (2.1)

(A2) : The constant κ in (P) satisfies 0 < κ < κ0, where κ0 is the unique solution of the equation
f (κ0) = 0 such that

f (s) =

√
2βπ
cps
− e−

3
2−

1
s

is a continuous and decreasing function on (0,∞), with

lim
s→0+

f (s) = ∞ and lim
s→∞

f (s) = −e−
3
2 .

Here, β = min{β1, β2} and cp is the smallest positive number satisfying

‖∇u‖22 ≤ cp‖∆u‖22, ∀u ∈ H2
0(Ω), (2.2)

and ‖.‖2 = ‖.‖L2(Ω).

Remark 2.1. The Assumption (A2) is needed only for the local existence.

The system (P) has a unique solution:

u ∈ L∞(R+; H4(Ω) ∩ H2
0(Ω)) ∩W1,∞(R+; H2

0(Ω)) ∩W2,∞(R+; L2(Ω)).

We state, without proof, the following standard existence and regularity result. It can be proved
by using the Faedo-Galerkin method and Banach fixed point theorem, as well as by following the
procedure by M. Cavalcanti [2] and the recent paper by Al-Mahdi et al. [35].
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Proposition 2.1. Let (u0, u1) ∈ H2
0(Ω) × L2(Ω) be given. Assume that (A1) − (A2) hold, then problem

(P) has a unique global (weak) solution

u, z ∈ C(R+; H2
0(Ω)) ∩C1(R+; L2(Ω)).

ut ∈ L∞
(
(0,T ); L2(Ω)

)
, zt ∈ L∞

(
(0,T ); L2(Ω)

)
∩ Lν(.)(Ω × (0,T )).

Moreover, if

(u0, u1) ∈ (H4(Ω) ∩ H2
0(Ω)) × H2

0(Ω),

then the solution satisfies

u ∈ L∞(H4(Ω) ∩ H2
0(Ω)) ∩W1,∞(R+; H2

0(Ω)) ∩W2,∞(R+; L2(Ω)).

Lemma 2.1. [36, 37] (Logarithmic Sobolev inequality) Let u be any function in H1
0(Ω) and a > 0 be

any number. Then, ∫
Ω

u2 ln |u|dx ≤
1
2
‖u‖22 ln ‖u‖22 +

a2

2π
‖∇u‖22 − (1 + ln a)‖u‖22. (2.3)

Corollary 2.1. Let u be any function in H2
0(Ω) and a be any positive real number. Then∫

Ω

u2 ln |u|dx ≤
1
2
‖u‖22 ln ‖u‖22 +

cpa2

2π
‖∆u‖22 − (1 + ln a)‖u‖22. (2.4)

Proof. The proof of Corollary (2.1) can be established by using (2.2) and Corollary (2.3). �

We define the energy functional E(t) associated to system (P) as follows:

E(t) :=
1
2

[
ρ1‖ut‖

2
2 + ρ2‖zt‖

2
2

]
+

1
2

[
β1‖∆u‖22 + β2‖∆z‖22

]
+
κ + 2

4

[
‖u‖22 + ‖z‖22

]
+
γ

2
‖∇ut‖

2
2 +

α

3

∫
Ω

(u − z)3dx −
κ

2

∫
Ω

u2 ln |u|dx −
κ

2

∫
Ω

z2 ln |z|dx.
(2.5)

By multiplying the two equations in (P) by ut and zt, respectively, integrating over Ω, using integration
by parts and using the fact that

d
dt
κ

2

∫
Ω

u2 ln |u|dx = κ

∫
Ω

uut ln |u|dx +
d
dt
κ

4

∫
Ω

u2dx, (2.6)

we added the results together, and get

d
dt

E(t) = −δ1

∫
Ω

|∇ut|
2dx − δ2

∫
Ω

|zt|
ν(·)dx ≤ 0. (2.7)
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3. Global existence

In this section, we state and prove a global existence result using the potential wells corresponding
to the Logarithmic nonlinearity. For this purpose, we define the following functionals

J(u, z) =
1
2

[
‖β1∆u‖22 + β2‖∆z‖22

]
−
κ

2

∫
Ω

u2 ln |u|dx −
κ

2

∫
Ω

z2 ln |z|dx +
κ + 2

4

[
‖u‖22 + ‖z‖22

]
. (3.1)

I(u, z) =
[
β1‖∆u‖22 + β2‖∆z‖22

]
− κ

∫
Ω

u2 ln |u|dx − κ
∫

Ω

z2 ln |z|dx +
[
‖u‖22 + ‖z‖22

]
. (3.2)

Remark 3.1. (1) From the above definitions, it is clear that

J(u, z) =
1
2

I(u, z) +
κ

4

[
‖u‖22 + ‖z‖22

]
, (3.3)

E(t) =
1
2

(
ρ1‖ut‖

2
2 + ρ2‖zt‖

2
2

)
+
γ

2
‖∇ut‖

2
2 + J(u, z) +

α

3

∫
Ω

(u − z)3dx. (3.4)

(2) According to the Logarithmic Sobolev inequality, J(u, z) and I(u, z) are well defined.

We define the potential well (stable set) as

W = {(u, z) ∈ H2
0(Ω) × H2

0(Ω), I(u, z) > 0} ∪ {(0, 0)}.

The potential well depth is defined by

0 < d = inf
(u,z)
{sup

p≥0
J(pu, pz) : (u, z) ∈ H2

0(Ω) × H2
0(Ω), ‖∆u‖2 , 0 and ‖∆z‖2 , 0}, (3.5)

and the well-known Nehari-manifold

N = {(u, z) : (u, z) ∈ H2
0(Ω) × H2

0(Ω) : I(u, z) = 0, ‖∆u‖2 , 0 and ‖∆z‖2 , 0}. (3.6)

Proceeding as in [38, 39], one has
0 < d = inf

(u,z)∈N
J(u, z). (3.7)

Lemma 3.1. For any (u, z) ∈ H2
0(Ω)×H2

0(Ω), ‖u‖2 , 0 and ‖z‖2 , 0. If φ(p) := J(pu, pz), then we have

I(pu, pz) = pφ′(p)


> 0, 0 ≤ p < p∗,

= 0, p = p∗,

< 0, p∗ < p < +∞,

where

p∗ = exp

β1‖∆u‖22 + β2‖∆z‖22 −
∫

Ω
u2 ln |u|κdx −

∫
Ω

z2 ln |z|κdx

κ(‖u‖22 + ‖z‖22)

%,
where % (will be defined in the proof) is a positive constant that depends on the value of the positive
constant κ.
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Proof.

φ(p) = J(pu, pz) =
1
2

p2
(
β1‖∆u‖22 + β2‖∆z‖22

)
−

1
2

p2
(∫

Ω

u2 ln |u|κdx +

∫
Ω

z2 ln |z|κdx
)

+ p2
(
κ + 2

4
−
κ

2
ln |p|

) (
‖u‖22 + ‖z‖22

)
.

Taking common factors reduces to

φ(p) =
1
2

p2
[
β1‖∆u‖22 + β2‖∆z‖22 −

∫
Ω

u2 ln |u|κdx −
∫

Ω

z2 ln |z|κdx
]

+
1
2

p2
[(
κ + 2

2
− κ ln |p|

) (
‖u‖22 + ‖z‖22

)]
︸                                         ︷︷                                         ︸

F

.

Since ‖u‖2 , 0 and ‖z‖2 , 0, then, we have

I(pu, pz) = p
dJ (pu, pz)

dp
= pφ′(p)

= p2
(
β1‖∆u‖22 + β2‖∆z‖22

)
− p2

(∫
Ω

u2 ln |u|κdx +

∫
Ω

z2 ln |z|κdx
)

+ p2 (1 − κ ln |p|)
(
‖u‖22 + ‖z‖22

)
.

The above derivative calculated using the following derivative

dF
dp

=

[
κp
2

+ p − κp ln |p| −
κp
2

] (
‖u‖22 + ‖z‖22

)
= (p − κp ln |p|)

(
‖u‖22 + ‖z‖22

)
.

Now, solving φ′(p) = 0 with dividing both sides by p2κ
(
‖u‖22 + ‖z‖22

)
, we get

p∗ = exp

β1‖∆u‖22 + β2‖∆z‖22 −
∫

Ω
u2 ln |u|κdx −

∫
Ω

z2 ln |z|κdx

κ(‖u‖22 + ‖z‖22)

%,
and % = e

1
κ . Since ‖u‖2 , 0 and ‖z‖2 , 0, then we can prove that limp→0 φ(p) = 0, and limp→+∞ φ(p) =

−∞. Thus, we can find p > 0 (small enough) such that φ(p0). This means that J(pu) is increasing on
0 < p ≤ p∗ and decreasing on p∗ ≤ p < ∞ and takes the maximum at p = p∗. In other words, there
exists a unique p∗ ∈ (0,∞) such that I(p∗u) = 0 and so, we have the desired result. �

Lemma 3.2. Let (u, z) ∈ H2
0(Ω) × H2

0(Ω) and if 0 < ‖u‖2, ‖z‖2 ≤ e
(κ+1)
κ

√
2π

cpβκ
. Therefore, I(u, z) ≥ 0,

where β = min{β1, β2}.

Proof. Using the Logarithmic Sobolev inequality (2.1), for any a > 0, we have

I(u, z) = β1||∆u||22 + β2||∆z||22 −
∫

Ω

u2 ln |u|κdx −
∫

Ω

z2 ln |z|κdx +
[
‖u‖22 + ‖z‖22

]
≥

(
β1 −

cpκa2

2π

)
||∆u||22 +

(
β2 −

cpκa2

2π

)
||∆z||22 + κ(1 + ln a)‖u‖22

−
κ

2
‖u‖22 ln ‖u‖22 + κ(1 + ln a)‖z‖22 −

κ

2
‖z‖22 ln ‖z‖22 +

[
‖u‖22 + ‖z‖22

]
.

(3.8)
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Taking a ≤
√

2βπ
cpκ

in (3.8) where β = min{β1, β2}, we obtain

I(u, z) ≥

1 + κ

1 + ln

√
2βπ
cpκ

 − κ2 ln ‖u‖22

 ‖u‖22 +

1 + κ

1 + ln

√
2βπ
cpκ

 − κ2 ln ‖z‖22

 ‖z‖22. (3.9)

Now, to calculate the potential well depth d, we have

sup
p≥0

J(pu, pz)} = J(p∗u, p∗z) =
1
2

I(p∗u, p∗z) +
κ(p∗)2

4

[
‖u‖22 + ‖z‖22

]
=
κ(p∗)2

4

[
‖u‖22 + ‖z‖22

]
.

(3.10)

A combination of (3.9) and Lemma (3.1) gives us

0 = I(p∗u, p∗z) ≥

1 + κ

1 + ln

√
2βπ
cpκ

 − κ2 ln ‖p∗u‖22

 ‖p∗u‖22
+

1 + κ

1 + ln

√
2βπ
cpκ

 − κ2 ln ‖p∗z‖22

 ‖p∗z‖22.
(3.11)

Therefore, we must have

p∗‖u‖2 ≥

√
2βπ
cpκ

e
(κ+1)
κ ⇒ (p∗)2‖u‖22 ≥

2βπ
cpκ

e
2(κ+1)
κ (3.12)

and

p∗‖z‖2 ≥

√
2βπ
cpκ

e
(κ+1)
κ ⇒ (p∗)2‖z‖22 ≥

2βπ
cpκ

e
2(κ+1)
κ . (3.13)

From, (3.12) and (3.13), we find

(p∗)2
[
‖u‖22 + ‖z‖22

]
≥

2βπ
cpκ

e
(κ+1)
κ ⇒ κ

(p∗)2

4

[
‖u‖22 + ‖z‖22

]
≥
βπ

2cp
e

2(κ+1)
κ . (3.14)

Hence, from (3.10) and (3.14), we conclude that the potential well depth d satisfies

d ≥
βπ

2cp
e

2(κ+1)
κ , (3.15)

where β = min{β1, β2}. In addition, if 0 < ‖u‖2, ‖z‖2 ≤ e
(κ+1)
κ

√
2βπ
cpκ

, then

1 + κ

1 + ln

√
2βπ
cpκ2

 − κ2 ln ‖u‖22 ≥ 0 and 1 + κ

1 + ln

√
2βπ
cpκ

 − κ2 ln ‖z‖22 ≥ 0,

which gives I(u, z) ≥ 0. �
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Lemma 3.3. Let (u0, u1), (z0, z1) ∈ H1
0(Ω) × L2(Ω) such that 0 < E(0) < d and I(u0, z0) > 0. Then any

solution of (P), (u, z) ∈ W.

Proof. Let T be the maximal existence time of a weak solution of (u, z). From (2.7) and (3.4), we have
for any t ∈ [0,T ),

1
2

(
ρ1‖ut‖

2 + ρ2‖zt‖
2
)

+
γ

2
‖∇ut‖

2 +
α

3

∫
Ω

(u − z)3dx + J(u, z)

≤
1
2

(
ρ1‖u1‖

2 + ρ2‖z1‖
2
)

+
γ

2
‖∇u1‖

2 +
α

3

∫
Ω

(u0 − z0)3dx + J(u0, z0) < d.
(3.16)

Then we claim that (u(t), z(t)) ∈ W for all t ∈ [0,T ). If not, then there is a t0 ∈ (0,T ) such that
I(u(t0), z(t0)) < 0. Using the continuity of I(u(t), z(t)) in t, we deduce that there exists a t∗ ∈ (0,T ) such
that I(u(t∗), z(t∗)) = 0. Then, using the definition of d in (3.5) gives

d ≤ J(u(t∗), z(t∗)) ≤ E(u(t∗), z(t∗)) ≤ E(0) < d,

which is a contradiction. �

4. Technical lemmas

In this section, we state and prove the following lemmas.

Lemma 4.1. Assume that (A1 − A2) hold and let (u0, z0), (u1, z1) ∈ H2
0(Ω)× L2(Ω). Then, the functional

is defined by

L(t) = NE(t) + ρ1

∫
Ω

uutdx + ρ2

∫
Ω

zztdx + γ

∫
Ω

∇u · ∇utdx (4.1)

satisfies, along the solutions of (P),

L ∼ E, (4.2)

and

L′(t) ≤
{
−ϑE(t) + ρ2

∫
Ω

z2
t dx, ν1 ≥ 2;

−ϑE(t) + ρ2

∫
Ω

z2
t dx − cE′(t) − cE−Θ(t)E′(t), 1 < ν1 < 2.

(4.3)

where Θ = 2−ν1
ν1−1 > 0.

Proof. We prove (4.3)2, and the proof of the (4.3)1 is straightforward. To prove (4.3)2, we differentiate
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L(t) and use integrations by parts, to get

L′(t) = −Nδ1

∫
Ω

|∇ut|
2dx − Nδ2

∫
Ω

|zt|
ν(·)dx

+ ρ1

∫
Ω

u2
t dx +

∫
Ω

u
[
− β1∆

2u + γ∆utt − u − α(u − z)2 + δ1∆ut + κu ln |u|
]
dx

+ ρ2

∫
Ω

z2
t dx +

∫
Ω

z
[
− β2∆

2z − z + α(u − z)2 − δ2|zt|
q(·)−2zt + κz ln |z|

]
dx

+ γ

∫
Ω

|∇ut|
2dx + γ

∫
Ω

∇u · ∇uttdx

=

∫
Ω

(
ρ1|ut|

2 + ρ2|zt|
2
)

dx −
∫

Ω

(
β1|∆u|2 + β2|∆z|2

)
dx

−

∫
Ω

u2dx −
∫

Ω

z2dx − α
∫

Ω

(u − z)3dx − Nδ2

∫
Ω

|zt|
ν(·)dx

+ γ

∫
Ω

|∇ut|
2dx + γ

∫
Ω

∇u · ∇uttdx + γ

∫
Ω

u∆uttdx + δ

∫
Ω

u∆utdx

− δ2

∫
Ω

z|zt|
ν(·)−2ztdx + κ

∫
Ω

u2 ln |u|dx + κ

∫
Ω

z2 ln |z|dx − Nδ1

∫
Ω

|∇ut|
2dx.

(4.4)

Integration by part leads

L′(t) =

∫
Ω

(
ρ1|ut|

2 + ρ2|zt|
2
)

dx −
∫

Ω

(
β1|∆u|2 + β2|∆z|2

)
dx

−

∫
Ω

u2dx −
∫

Ω

z2dx − α
∫

Ω

(u − z)3dx − Nδ2

∫
Ω

|zt|
ν(·)dx

+ γ

∫
Ω

|∇ut|
2dx − δ

∫
Ω

∇u · ∇utdx − Nδ1

∫
Ω

|∇ut|
2dx

− δ2

∫
Ω

z|zt|
ν(·)−2ztdx + κ

∫
Ω

u2 ln |u|dx + κ

∫
Ω

z2 ln |z|dx.

(4.5)

Since u ∈ H2
0(Ω), we have

∫
Ω

u2dx ≤ cp

∫
Ω

|∇u|2dx ≤ cp
2
∫

Ω

|∆u|2dx

and ∫
Ω

u2
t dx ≤ cp

∫
Ω

|∇ut|
2dx,

where cp is the Poincare constant. Using this estimate and Young’s inequility, Eq (4.5) becomes for a
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positive constant ε > 0

L′(t) ≤ ρ2

∫
Ω

|zt|
2dx −

(
β1 − εcp

) ∫
Ω

|∆u|2dx − β2

∫
Ω

|∆z|2dx

−

∫
Ω

u2dx −
∫

Ω

z2dx − Nδ2

∫
Ω

|zt|
ν(·)dx

+ κ

∫
Ω

u2 ln |u|dx + κ

∫
Ω

z2 ln |z|dx − α
∫

Ω

(u − z)3dx

− δ2

∫
Ω

z|zt|
ν(·)−2ztdx −

(
Nδ1 − γ − cρ −

δ2

4ε

) ∫
Ω

|∇ut|
2dx.

(4.6)

Using (2.7) and the Logarthmic Sobolev inequality, (4.6) becomes

L′(t) ≤ ρ2

∫
Ω

|zt|
2dx − α

∫
Ω

(u − z)3dx

−

(
β1 − εcρ −

a2cρκ
2π

) ∫
Ω

|∆u|2dx −
(
β2 −

a2cρκ
2π

) ∫
Ω

|∆z|2dx

−

(
1 −

κ

2
ln ‖u‖22 + κ(1 + ln a)

)
‖u‖22 −

(
1 −

κ

2
ln ‖z‖22 + κ(1 + ln a)

)
‖z‖22

−δ2

∫
Ω

z|zt|
ν(·)−2ztdx︸                   ︷︷                   ︸

I2

−

(
Nδ1 − γ − cρ −

δ2

4ε

) ∫
Ω

|∇ut|
2dx.

(4.7)

Now, we start following [40] for estimating the integrals I2 in (4.7) as follows:I2 ≤ λ2cρ2
∫

Ω
|∆z|2dx +

∫
Ω

cλ2(x)|zt|
ν(x)dx ν1 ≥ 2,

I2 ≤ λ2cρ2
∫

Ω
|∆z|2dx +

∫
Ω

cλ2(x)|zt|
ν(x)dx +

(∫
Ω

cλ2(x)|zt|
ν(x)dx

)ν1−1
, 1 < ν1 < 2,

(4.8)

where the positive constants λ2, c come from Young’s inequality and cρ is the Poincare constant.
Inserting the above two estimates in (4.7) we get

L′(t) ≤ ρ2

∫
Ω

|zt|
2dx − α

∫
Ω

(u − z)3dx −
(
Nδ1 − γ − cρ −

δ2

4ε

) ∫
Ω

|∇ut|
2dx

−

(
β1 − εcρ −

a2cρκ
2π

) ∫
Ω

|∆u|2dx −
(
β2 − λ2cρ2 −

a2cρκ
2π

) ∫
Ω

|∆z|2dx

−

(
1 −

κ

2
ln ‖u‖22 + κ(1 + ln a)

)
‖u‖22 −

(
1 −

κ

2
ln ‖z‖22 + κ(1 + ln a)

)
‖z‖22

− [Nδ2 − c]
∫

Ω

|zt|
ν(·)dx + cΛ̃1

(∫
Ω

|zt|
ν(x)dx

)ν1−1

,

(4.9)

where c is a positive constant that depends on λ2 and

Λ̃1 =

{
1, 1 < ν1 < 2;
0, ν1 ≥ 2.

(4.10)
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Recall that we selected earlier a <
√

2βπ
cρκ

where β = min{β1, β2} which makes Υ1 := β1 −
a2cρκ

2π > 0 and

Υ2 := β2 −
a2cρκ

2π > 0. After that, we chose ε = Υ1
2cρ

and λ2 = Υ2
2cρ2 . Finally, we selected N large enough

so that Nδ2 − c,Nδ1 − γ − cρ − δ2

4ε > 0. Recalling (2.7) with these choices leads to

L′(t) ≤ ρ2

∫
Ω

|zt|
2dx − α

∫
Ω

(u − z)3dx − cE′(t)

−
Υ1

2

∫
Ω

|∆u|2dx −
Υ2

2

∫
Ω

|∆z|2dx − c
∫

Ω

|zt|
ν(·)dx + cΛ̃1

(∫
Ω

|zt|
ν(x)dx

)ν1−1

−

(
1 −

κ

2
ln ‖u‖22 + κ(1 + ln a)

)
‖u‖22 −

(
1 −

κ

2
ln ‖z‖22 + κ(1 + ln a)

)
‖z‖22.

(4.11)

Now, assume further that 0 < E(0) < `τ < d, where

` = max{d} =
βπ

2cρ
e2

(
(κ+1)
κ

)
, (4.12)

and 0 < τ < 1 will be carefully selected later (see (4.17)). Combining (2.5), (2.7), and (4.12), we have

ln ‖u‖22 < ln
(
4
κ

E(t)
)
< ln

(
4
κ

E(0)
)
< ln

(
4
κ
`τ

)
< ln

2τβπe2+ 2
κ

κcρ

. (4.13)

Now, we select a such that

ln ‖u‖22 − 2(1 + ln a) < 0⇒ ln ‖u‖22 < ln a2 + 2 ln e⇒ ln ‖u‖22 < ln a2e2. (4.14)

This means that we need ‖u‖22 < a2e2. From, (4.13), we select a such that

2τβπe
2
κ

κcρ
< a2, and recall a <

√
2π
cρκ

, (4.15)

which means a must satisfy

e
1
κ

√
2βπτ
κcρ

< a <

√
2π
cρκ

. (4.16)

To estimate τ, it is clear that from (4.16), we have

e
1
κ

√
2βπτ
κcρ

<

√
2π
cρκ
⇒ τ <

1
√
βe1/κ

< 1, (4.17)

where β = min{β1, β2}. With these choices, we have guaranteed that

1 −
κ

2
ln ‖u‖22 + κ(1 + ln a) > 0 and 1 −

κ

2
ln ‖z‖22 + κ(1 + ln a) > 0.

Then, (4.11) becomes for some positive constant c,

L′(t) ≤ −cE(t) − cE′(t) + ρ2

∫
ν

z2
t dx + cΛ̃1

(
− E′(t)

)ν1−1
. (4.18)
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Using Young’s inequality with ζ = 1
ν1−1 and ζ∗ = 1

2−ν1
on this term EΘ(t)

(
− E′(t)

)ν1−1, then for any
ε > 0, we have

EΘ(t)
(
− E′(t)

)ν1−1
≤ εE

Θ
2−ν1 (t) + cε

(
− E′(t)

)
.

Multiplying both sides of the last inequality by E−Θ where Θ = 2−ν1
ν1−1 gives us(

− E′(t)
)ν1−1

≤ εE(t) + cεE−Θ(t)
(
− E′(t)

)
.

Inserting these estimates in the last term in (4.18), we have

L′(t) ≤ −(c − ε)E(t) + ρ2

∫
ν

z2
t dx + cεΛ̃1E−Θ(t)

(
− E′(t)

)
. (4.19)

Therefore, the estimate (4.3) is established. On the other hand, if needed, we can choose N even larger
so that L ∼ E. �

Lemma 4.2. Assume that (A1) holds. If ν1 ≥ 2, then∫
ν

z2
t dx ≤ −cE′(t), if ν2 = 2, (4.20)∫

ν
z2

t dx ≤ −cE′(t) + c (−E′(t))
2
ν2 , if ν2 > 2. (4.21)

Proof. The proof can be found in [40]. �

5. Decay estimates

We present and prove our results on the decay in this section.

Theorem 5.1. Under the assumptions (A1) and (A2), the energy functional (2.5) satisfies, for some
positive constants λ1, σ1 and for any t ≥ 0,

E(t) ≤ µ1e−λ1t, if ν1 = ν2 = ν(x) = 2, (5.1)

and
E(t) ≤

σ1

(t + 1)
(
ν2−2

2

) , if ν1 ≥ 2 and ν2 > 2. (5.2)

Proof. To prove (5.1), we impose Lemma 4.2 in (4.3)1 and use the equivalence properties L ∼ E to get

L′ (t) ≤ −cL (t) + c(−E′(t)).

This gives us
L′1 (t) ≤ −cL (t)

where L1 = L + cE ∼ E. Integrating the last estimate over the interval (0, t) and using the equivalence
properties L1,L ∼ E, the proof of (5.1) is completed.

Now, we prove the estimate in (5.2). For this, we impose Lemma 4.2 in (4.3)2 to obtain

L′ (t) ≤ −cL (t) + (−E′(t))
2
ν2 + cεΛ̃1E−Θ(t)

(
− E′(t)

)
.
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The following result obtained by multiplying the last equation by Eα where α = ν2−2
2 > 0, and

noting that α − Θ =
ν2(ν1−2)−2

2(ν1−1) > 0,

EαL′ (t) ≤ −cEαL (t) + Eα (−E′(t))
2
ν2 + cΛ̃1 (−E′(t)) .

This reduces to
L′1 (t) ≤ −cEαL (t) + Eα (−E′(t))

2
ν2 ,

where L2 = EαL + cΛ̃1E ∼ E. With the use of the Young inequality on the last term, we get for ε > 0

L′1 (t) ≤ −cEα+1L (t) + εE
αν2
ν2−2 + cε (−E′(t)) .

Taking ε small enough, the above estimate becomes:

L2(t) ≤ −cEα+1(t), ∀t ≥ 0, (5.3)

where L2 = L1 + cE ∼ E. Integration over (0, t) and using E ∼ L2 gives us

E(t) <
cν2

(t + 1)1/α , ∀ t > 0, (5.4)

where α = ν2−2
2 > 0. �

Theorem 5.2. Under the assumptions (A1) and (A2), the energy functional (2.5) satisfies, for a positive
constant C1 and 1 < ν1 < 2, the following estimate:

E(t) ≤ C1 (1 + t)
−1
Θ , t > 0, ν2 = 2, (5.5)

where Θ = 2−ν1
ν1−1 > 0.

Proof. To prove (5.5), we impose Lemma (4.2) in (4.3)2 to have

L′ (t) ≤ −cE (t) + c
(
−E′(t)

)
+ c

(
−E′(t)

)
+ cΛ̃1E−Θ(t)(−E′(t)), (5.6)

where Θ = 2−ν1
ν1−1 > 0. Therefore, Eq (5.6) becomes

L′1 (t) ≤ −cE (t) + cΛ̃1EΘ(t)(−E′(t)), (5.7)

where L1 = L + cE ∼ E. The following is obtained by multiplying (5.7) by EΘ,

EΘ(t)L′1 (t) ≤ −cEΘ+1(t) − cΛ̃1E′(t),

which leads to
L′2 (t) ≤ −cEΘ+1(t)

for L2 = EµL1 + cΛ̃1E ∼ E. Then, we get the following decay estimate:

E(t) ≤ C
[

1
(t + 1)

] 1
Θ

, ∀ t > 0. (5.8)

This completes the proof of (5.5). �
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Theorem 5.3. Under the assumptions (A1) and (A2), the energy functional (2.5) satisfies for a positive
constant C1, 1 < ν1 < 2 and ν2 > 2 the following estimate:

E(t) <
C1

(t + 1)
(

2
ν2−2

) , t > 0. (5.9)

Proof. To prove (5.9), we use Lemma 4.2 in (4.3)1 to obtain

L′ (t) ≤ −cE (t) + c (−E′(t))
2
ν2 − cΛ̃1E−Θ(t)E′(t).

Multiplying by Eα for α = ν2−2
2 > 0, noting that α − Θ > 0 and Young’s inequality, we obtain for a

positive constant ε,
EαL′ (t) ≤ −cEα+1 (t) + εE

αν2
ν2−2 + cΛ̃1 (−E′(t)) .

Using α = ν2−2
2 and E ∼ L, the above equation reduced to

EαL′ (t) ≤ − (c − cε) Eα+1L (t) + cΛ̃1 (−E′(t)) .

Taking ε small enough, the above estimate becomes:

L2(t) ≤ −cEα+1(t), ∀t ≥ 0, (5.10)

where L2 = EαL + cΛ̃1E ∼ E.
Integration over (0, t) and using the fact E ∼ L2, gives

E(t) <
Cν2

(t + 1)1/α , ∀ t > 0, (5.11)

where α = ν2−2
2 > 0. So, the proof of (5.9) is completed. �

6. Concluding remarks

We considered a coupled system of plate equations. We investigated the interaction of Kirchhoff

and the Euler-Bernoulli plates. Kirchhoff equation is dissipated by a strong damping mechanism while
the Euler-Bernoulli equation is dissipated by a weak damping mechanism of variable-exponent type.
We noticed the following:

• The system (P) decays exponentially when ν(x) = 2 and polynomially when 1 < ν1 < 2 or ν1 > 2.
• We found that decay rates depend on the weak damping of variable-exponent type.
• The strong damping term in the Kirchhoff equation (−δ∆ut) is introduced to treat the problems

arising from the rotational inertia term (−γ∆utt) in the same Kirchhoff equation and we can obtain
the same decay results if we replace this strong damping by a memory damping

∫ t

0
g(t− s)∆u(s)ds

where the memory function g satisfies g′(s) ≤ −g(s).
• We can obtain the same decay results if we replace the coupling term α(u − z) by αuz2 and αzu2.
• The flexural rigidity coefficients βi play a role in the analysis and they can control the well depth

d either stretching or shrinking while the mass densities coefficients do not play any role.

AIMS Mathematics Volume 8, Issue 11, 27439–27459.
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• The constant κ on the source terms plays a role in the existence and stability. It also affects the
well depth d.
• In our system (P), the single term u in the Kirchhoff equation and z in the Euler-Bernoulli equation

play important roles in the existence and the stability as well.
• It is an interesting problem if one can investigate the coupling the system (P) where the coupling

is on the logarithmic source terms such as if the source terms were κz ln |ut| and κu ln |zt|.
• It is an interesting problem if one can investigate the coupling system (P) where the damping is

the logarithmic function such as if the dampings were −ut ln |ut| and −zt ln |zt|.
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