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Abstract: In this paper, we study the entire solutions of two quadratic functional equations in the
complex plane. One consists of three basic terms, f (z), f ′(z) and f (z + c), and the other one consists
of f (z), f ′(z) and f (qz). These two equations can be transformed into functional equations of Fermat-
type. We prove that if these two equations admit finite order transcendental entire solutions, then the
solutions of these two equations are both exponential functions, and their exponents are one degree
polynomials, whose coefficients of the first degree term are closely related to the coefficients of the
functional equation. Moreover, examples are given to show that the theorems are true. The feature
of this paper is that the Fermat-type equations contain three quadratic terms, while the equations that
have been studied in the previous articles in this field contain only two quadratic terms. The addition
of f (qz) will make the proof methods in this paper very different from those in the existing literature.
The proof becomes more difficult, and the number of cases that need to be discussed becomes much
larger. In addition, when dealing with the analytical property of f , we also use a different method from
the previous literature.
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1. Introduction

We all know Fermat’s last theorem: For an integer n > 2, the equation xn + yn = zn for x, y, z has no
positive integer solution. It took 356 years from when it was proposed in 1637, to 1993 when Wiles
conquered it. This equation can also be extended to functional equations. In complex analysis, the
researchers began to focus on meromorphic solutions of the equation f n(z) + gn(z) = hn(z). As far as
we know, Montel [22] was the first scholar to study this problem, and later Gross and Baker carried
out the follow-up research work [2, 9, 10]. Then, applying Nevanlinna theory to the study of this kind
of functional equation became a hot topic. For example, Yang et al. [31] studied the transcendental
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meromorphic solution of the functional equation f (z)2 + f ′(z)2 = 1 and found that the solution to

this equation must have the form of f (z) = 1
2

(
peλz + 1

pe−λz
)
, where p, λ are nonzero constants. With

the establishment of the Nevanlinna theory with the difference of meromorphic function [8, 11], more
attention was paid to Fermat-type functional equation with the difference of meromorphic function.
Liu et al. [15–17] studied the finite order transcendental entire solutions of Fermat-type difference
equations f (z + c)2 + f (z)2 = 1 and f (z + c)2 + f ′(z)2 = 1, and they obtained that the solutions of
these two equations are sine functions. Subsequently, more attention has been paid to this area of
research [14, 18–21, 23–25, 28–30, 33, 34].

In 2016, Liu and Yang [18] studied the existence of solutions to quadratic trinomial functional
equations, as well as the entire function and its derivatives and differences, and they converted the
equations in the following two theorems into Fermat- type equations by transformation.

Theorem 1.1. ([18, Theorem 1.4]) If α , 0,±1, then the finite order transcendental entire solution of
equation

f (z)2 + 2α f (z) f (z + c) + f (z + c)2 = 1

is of order one.

Theorem 1.2. ([18, Theorem 1.6]) If α , 0,±1, then the equation

f (z)2 + 2α f (z) f ′(z) + f ′(z)2 = 1

has no transcendental meromorphic solutions.

On the other hand, Han and Lü [12] studied the existence of solutions to the Fermat-type equation
when the right side was an exponential function. Here we only list the n = 2 case in their results.

Theorem 1.3. ([12, Theorem 1.1]) The meromorphic solutions of f of the following differential
equation

f (z)2 + f ′(z)2 = eαz+β

are
f (z) = e

β
2 sin(z + b)

if α = 0, and
f (z) = de

αz+β
2

if α , 0 with d2(1 + (α2 )2) = 1.

In the same article, they also studied the case of replacing f ′(z) with f (z + c) in the above equation,
and found that the solution of equation

f (z)2 + f (z + c)2 = eαz+β

is f (z) = de
αz+β

2 with d2(1 + eac) = 1.
Combining these conclusions above, Luo et al. [20] studied the following three equations with finite

order transcendental entire solutions. These three equations are

f (z + c)2 + 2α f (z) f (z + c) + f (z)2 = eg(z), (1.1)
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f (z + c)2 + 2α f ′(z) f (z + c) + f ′(z)2 = eg(z) (1.2)

and

f (z)2 + 2α f (z) f ′(z) + f ′(z)2 = eg(z), (1.3)

where α , 0,±1, c are constants and g(z) is a polynomial. If all these equations admit finite order
transcendental entire solutions, g(z) must be a polynomial with the degree of one, and the solutions
f of these equations are all exponential functions or the sum of two exponential functions whose
exponents are polynomials of the degree of one, as seen in Theorems 2.1–2.3 [20]. Each of these three
equations contains only two terms of f (z), f ′(z) or f (z + c), so can we consider a quadratic equation
that contains all three of these terms?

Inspired by this, we shall study the problem of finite order transcendental entire solutions of
functional equations involving the quadratic of f , its derivative and its difference. In fact, we studied
the finite order transcendental entire solution for (1.4) below.

Theorem 1.4. Suppose that α , 0,±1, β , 0, γ , 0 and c , 0 are four constants such that α2+β2+γ2 ,

1 + 2αβγ, and g(z) is a nonconstant polynomial. If the complex equation

[ f ′(z)]2 + [ f (z + c)]2 + f 2(z) + 2α f ′(z) f (z + c) + 2β f (z) f (z + c) + 2γ f (z) f ′(z) = eg(z) (1.4)

admits a transcendental entire solution f (z) of finite order, then for

δ =
1 − α2 − β2 − γ2 + 2αβγ

1 − α2 ,

the solution has two forms:

(1)

f (z) =
de

az+b
2

2i
√
δ
,

where a , 0 and b is an arbitrary constant. Moreover, g(z) = az + b, and d is a constant with

1 +
a2

4
+ eac + (aα + 2β)eac/2 + aγ = −

4δ
d2 .

(2)

f (z) =
ea1z+b1 − ea2z+b2

2i
√
δ

,

where a1, a2 (a1 , a2) are nonzero constants satisfying (1.5), and b1, b2 are arbitrary constants,
g(z) = (a1 + a2)z + b1 + b2.

a2
1 + 2γa1 + e2a1c + (2αa1 + 2β) · ea1c + 1 = 0;

a2
2 + 2γa2 + e2a2c + (2αa2 + 2β) · ea2c + 1 = 0;

[ea1c − ea2c + α(a1 − a2)]2 + (1 − α2)(a1 − a2)2 + 4δ = 0.

(1.5)

Let’s give two examples to show that Theorem 1.4 is true.
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Example 1.5. Suppose α = 1/3, β = γ = 1 and c = 2 in (1.4), then δ = −1/2. Set a = 2, b = 2, then
by the relationship of a and d, we have

d =

√
2√

4 + 8
3e2 + e4

.

We can verify that the entire function

f (z) =
±1√

4 + 8
3e2 + e4

· ez+1

is a solution of

[ f ′(z)]2 + [ f (z + 2)]2 + f 2(z) +
2
3

f ′(z) f (z + 2) + 2 f (z) f (z + 2) + 2 f (z) f ′(z) = e2z+2.

Example 1.6. Suppose

α =
3πi
4
, β = 1 +

3π2

2
, γ = −

5πi
4

and c = 1 in (1.4), then δ = π2. a1 = πi, a2 = 3πi, b1, b2 are arbitrary constants. We can verify that the
entire function

f (z) =
eπiz+b1 − e3πiz+b2

±2πi
is a solution of

[ f ′(z)]2 + [ f (z + 1)]2 + f 2(z) +
3πi
2

f ′(z) f (z + 1) + (2 + 3π2) f (z) f (z + 1) −
5πi
2

f (z) f ′(z) = e4πiz+b1+b2 .

From Theorem 1.4 we have the following corollary.

Corollary 1.7. Under the assumption of Theorem 1.4, if the degree of polynomial g(z) is greater than
one, then (1.4) does not have a transcendental solution with finite order.

If q(, 0, 1) is a constant, then f (qz) is called the q-difference of meromorphic function f (z). The
q-difference is also an important research content in the value distribution theory, and the research on
it can be traced back to the early 20th century [5, 13].

In recent decades, with the establishment of Nevanlinna theory related to it [3], the research on
q-difference has been vigorously developed, and this theory has been applied to many q-difference
equations to get a lot of results [4,6,7,16,26,27]. Therefore, we considered to replace f (z+ c) in (1.4)
by f (qz) as to get a q-difference functional equation, and then studied the finite order transcendental
entire solution of this equation. Through the complicated discussion and calculation of different cases,
we came to the following conclusion.

Theorem 1.8. Suppose that α , 0,±1, β , 0, γ , 0,±1 and q , 0, 1 are four constants such that
α2 + β2 + γ2 , 1 + 2αβγ, and g(z) is a nonconstant polynomial. If the complex equation

[ f ′(z)]2 + [ f (qz)]2 + f 2(z) + 2α f ′(z) f (qz) + 2β f (z) f (qz) + 2γ f (z) f ′(z) = eg(z) (1.6)
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admits a transcendental entire solution f (z) of finite order, then

f (z) = ±e
az+b

2

and g(z) = aqz + b, b is an arbitrary constant, a , 0 and γ2 , 1 such that a2

4 + γa + 1 = 0,
αa + 2β = 0.

(1.7)

Here is an example to test the truth of the Theorem 1.8.

Example 1.9. Suppose α = 1/2, β = −1, γ = −5/4 and q is any constant except 0, 1 in (1.6), then we
can verify that the entire function f (z) = ±e2z+1 is a solution of

[ f ′(z)]2 + [ f (qz)]2 + f 2(z) + f ′(z) f (qz) − 2 f (z) f (qz) −
5
2

f (z) f ′(z) = e4qz+2.

A corollary also can be obtained from Theorem 1.8.

Corollary 1.10. Under the assumption of Theorem 1.8, if the degree of polynomial g(z) is greater than
one, then (1.6) does not admit transcendental entire solution with finite order.

Remark 1.11. Equations (1.4) and (1.6) can be transformed into three term quadratic equations by
linear transformation. The purpose of restrictions α2 , 1 and α2 + β2 + γ2 , 1+ 2αβγ in Theorems 1.4
and 1.8 is to not allow these three term quadratic equations to degenerate into quadratic equations with
two or one terms, which have been studied in previous literatures. This can be seen easily from (3.2)
in the proof below.

Remark 1.12. From the proof of Theorems 1.4 and 1.8 and the above three examples, we can find
that if the two equations have finite order transcendental entire solutions, then the solutions of both
equations are exponential functions and their exponents are polynomials with the degree of one.
For (1.4), after the solution was substituted into the equation, the terms of the equation contained the
common factor eg(z). After dividing both sides of the equation by eg(z), the relationship between the
coefficients of the equation and the coefficients of the exponent was obtained. For (1.6), when one
substitutes the solution into it, the term eg(z) in the right side of the equation is equal to [ f (qz)]2 in the
left side, which can be subtracted from both sides of the equation. The signs of the other two mixed
terms containing f (qz) are opposite to each other, so these two mixed terms were canceled out.

2. Preliminary lemmas

The following lemma played a key role in the proofs of this paper. It is about the factorization of
an entire function. In particular, if f (z) was a finite order entire function without zero, then f (z) = eh(z)

where h(z) was a nonconstant polynomial, as seen in Theorems 1.42 and 1.44 [32].

Lemma 2.1. (Hadamard’s factorization theorem) [32, Theorem 2.5] Let f be an entire function of
finite order λ( f ) with zeros {a1, a2, · · · } ⊂ C \ {0} and a k-fold zero at the origin. Then,

f (z) = zkP(z)eQ(z)
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where P(z) is the canonical product of f formed with the non-null zeros of f ,

P(z) =
∞∏

n=1

(
1 −

z
an

)
e

z
an
+ 1

2

(
z

an

)2
+···+ 1

h

(
z

an

)h

,

and h is the smallest integer for which this series converges, called the genus of the canonical product.
Q(z) is a polynomial of degree ≤ λ( f ) and h ≤ λ.

The second lemma belongs to Borel. It’s about the combination of entire functions, and we’ll use it
repeatedly in the proofs in Sections 3 and 4. When using it, the key is to verify the second condition
below.

Lemma 2.2. [32, Theorem 1.52] If f j(z)( j = 1, 2, · · · , n) and g j(z)( j = 1, 2, · · · , n)(n ≥ 2) are entire
functions satisfying

(1)
∑n

j=1 f j(z)eg j(z) ≡ 0,

(2) the orders of f j are less than that of egh(z)−gk(z) for 1 ≤ j ≤ n, 1 ≤ h < k ≤ n.

Then, f j ≡ 0, ( j = 1, 2, · · · , n).

3. Proof of Theorem 1.4

According to the linear algebra, any quadratic form can be reduced to the standard form by a non-
degenerate linear transformation. So, setting

f (z) = w,

f ′(z) = u − αv + αβ−γ1−α2 w,

f (z + c) = v − β−αγ1−α2 w

(3.1)

and substituting it into (1.4), we obtain that

u2 + (1 − α2)v2 +
1 − α2 − β2 − γ2 + 2αβγ

1 − α2 w2 = eg(z). (3.2)

For simplicity and convenience, let’s denote

δ :=
1 − α2 − β2 − γ2 + 2αβγ

1 − α2 ,

then (3.2) can convert into  √
u2 + (1 − α2)v2

e
g(z)

2

2

+

 √δw
e

g(z)
2

2

= 1. (3.3)

Consequently, we have √
u2 + (1 − α2)v2

e
g(z)

2

+ i ·

√
δw

e
g(z)

2

 ·  √
u2 + (1 − α2)v2

e
g(z)

2

− i ·

√
δw

e
g(z)

2

 = 1. (3.4)
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By Hadamard’s factorization theorem, if the multiplicities of any zeros of the entire function u2 +

(1 − α2)v2 is even number, then
√

u2 + (1 − α2)v2 is also an entire function. The following (3.5) holds
in the complex plane, where p(z) is a polynomial. If u2 + (1 − α2)v2 have some zeros with odd number

multiplicities, then
√

u2 + (1 − α2)v2 has branch points in the complex plane. Branches are obtained
by connecting finite branch points and infinity points appropriately by line segments. These segments
are called branch cuts, and

√
u2 + (1 − α2)v2 is analytic and univalent in every branch [1,35]. Since the

two analytical factors on the left side of (3.4) have no zeros in each branch, there exists an analytical
function p(z) such that the equations

√
u2+(1−α2)v2

e
g(z)

2
+ i ·

√
δw

e
g(z)

2
= ep(z),

√
u2+(1−α2)v2

e
g(z)

2
− i ·

√
δw

e
g(z)

2
= e−p(z)

(3.5)

hold in every branch. Denote

λ1(z) := p(z) +
g(z)

2
, λ2(z) := −p(z) +

g(z)
2
,

then,

w =
eλ1(z) − eλ2(z)

2i
√
δ

(3.6)

hold in every branch. Moreover, noting that w = f (z) is an entire function with finite order, the
righthand side of (3.6) can be extended to the whole complex plane. Therefore, one can supplement
the definition of function p(z) at the points on branch cuts by the limiting values, and it is still called
p(z) after supplementary definition. Thus, p(z) is analytic on the whole complex plane, so it’s an entire
function. Because ep(z) is of finite order, p(z) is actually a polynomial, so we get

u2 + (1 − α2)v2 =

(
eλ1(z) + eλ2(z)

2

)2

. (3.7)

Noting that f (z) = w, we have 
f (z) = eλ1(z)−eλ2(z)

2i
√
δ
,

f ′(z) = λ
′
1(z)eλ1(z)−λ′2(z)eλ2(z)

2i
√
δ

,

f (z + c) = eλ1(z+c)−eλ2(z+c)

2i
√
δ
.

(3.8)

From (3.1), we know that
u = f ′(z) + α f (z + c) + γ f (z)

and
v = f (z + c) +

β − αγ

1 − α2 f (z).
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Substituting the above u, v into (3.7) we get

[ f ′(z)]2 + [ f (z + c)]2 +
β2 + γ2 − 2αβγ

1 − α2 f 2(z)

+2α f ′(z) f (z + c) + 2β f (z + c) f (z) + 2γ f ′(z) f (z)

=
e2λ1(z) + e2λ2(z) + 2eλ1(z)+λ2(z)

4
. (3.9)

For simplicity and convenience, we give the following notation:

λ1 := λ1(z), λ2 := λ2(z), λ1 := λ1(z + c), λ2 := λ2(z + c).

Substituting (3.8) into (3.9) we obtain

λ′21 e2λ1 + λ′22 e2λ2 − 2λ′1λ
′
2eλ1+λ2

−4δ
+

e2λ1 + e2λ2 − 2eλ1+λ2

−4δ

+
β2 + γ2 − 2αβγ

1 − α2 ·
e2λ1 + e2λ2 − 2eλ1+λ2

−4δ

+2α ·
λ′1eλ1+λ1 − λ′1eλ1+λ2 − λ′2eλ1+λ2 + λ′2eλ2+λ2

−4δ
(3.10)

+2β ·
eλ1+λ1 − eλ1+λ2 − eλ1+λ2 + eλ2+λ2

−4δ

+2γ ·
λ′1e2λ1 − λ′1eλ1+λ2 − λ′2eλ1+λ2 + λ′2e2λ2

−4δ

=
e2λ1 + e2λ2 + 2eλ1+λ2

4
.

The transcendental terms appearing in the above equation have exponents

2λ1, 2λ2, λ1 + λ2, 2λ1, 2λ2, λ1 + λ2, λ1 + λ1, λ1 + λ2, λ1 + λ2 and λ2 + λ2.

In order to apply Lemma 2.2 to (3.10), we checked whether the pairwise difference between these
exponents was constant. If λ1 ≡ λ2, then f (z) ≡ 0 this was impossible, so λ1 . λ2. The following two
cases are discussed.

Case 1. If λ1 − λ2 is a nonzero constant, then p(z) is a constant, denoted by p in the following.
Consequently, for p , kπi(k ∈ Z),

f (z) = w =
(ep − e−p)eg(z)/2

2i
√
δ

. (3.11)

Then,

f ′(z) =
(ep − e−p)eg(z)/2

2i
√
δ

·
g′(z)

2
(3.12)

and

f (z + c) =
(ep − e−p)eg(z+c)/2

2i
√
δ

. (3.13)

AIMS Mathematics Volume 8, Issue 11, 27414–27438.



27422

Substituting (3.11)–(3.13) into (1.4), the terms in the left side of (1.4) can be expressed respectively as

[ f ′(z)]2 = d2eg(z)

−4δ ·
(g′(z))2

4 ,

[ f (z + c)]2 = d2eg(z+c)

−4δ ,

f 2(z) = d2eg(z)

−4δ ,

2α f ′(z) f (z + c) = 2α · d2e
g(z)+g(z+c)

2

−4δ ·
g′(z)

2 ,

2β f (z) f (z + c) = 2β · d2e
g(z)+g(z+c)

2

−4δ ,

2γ f (z) f ′(z) = 2γ · d2eg(z)

−4δ ·
g′(z)

2 ,

(3.14)

where d := ep − e−p. If the degree of polynomial g(z) is greater than one, the three exponents
g(z), g(z + c) and g(z)+g(z+c)

2 are pairwise distinct. By Lemma 2.2, we obtained that after combining like
terms, the coefficients of these three exponential terms eg(z), eg(z+c) and e

g(z)+g(z+c)
2 are zero. In particular,

d2

−4δ = 0 since it’s the coefficient of the sole term eg(z+c). This is impossible, because that means f ≡ 0,
so the degree of g(z) is one. Therefore, suppose g(z) = az + b, a(, 0), b are constants. Substitute it
into (3.14), then into (1.4), and eliminate eg(z) from both sides of this equation. Then, we get

1 +
a2

4
+ eac + (aα + 2β)eac/2 + aγ = −

4δ
d2 . (3.15)

This means if the constants α, β, γ, c in the original (1.4) are known, then the solution is

f (z) =
de

az+b
2

2i
√
δ
,

where constants a, d should satisfy the relationship of (3.15), and b is an arbitrary constant.
Case 2. If λ1−λ2 is not a constant, then p(z) is not a constant; instead, it is a nonconstant polynomial.

For (3.10) we multiply −4δ on both sides, combine like terms and move all the terms to the left side of
this equation, then the right side is just zero. Thus, the coefficients of the distinct transcendental terms
can be listed in Table 1.

Table 1. Transcendental terms and corresponding coefficients.

Transcendental terms Corresponding coefficients

e2λ1 λ′21 + 2γλ′1 + 1
e2λ2 λ′22 + 2γλ′2 + 1
eλ1+λ2 −2λ′1λ

′
2 − 2γ(λ′1 + λ

′
2) + 4δ − 2

e2λ1 1
e2λ2 1
eλ1+λ2 −2
eλ1+λ1 2αλ′1 + 2β
eλ1+λ2 −2αλ′1 − 2β
eλ1+λ2 −2αλ′2 − 2β
eλ2+λ2 2αλ′2 + 2β

AIMS Mathematics Volume 8, Issue 11, 27414–27438.
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Because the difference between any two of 2λ1, 2λ2, λ1 +λ2 is not constant, the term containing e2λ1

cannot combine with terms containing e2λ2 or eλ1+λ2 .
Suppose that deg(λ1) = m > 1 and deg(λ2) = n > 1. If the term containing e2λ1 cannot combine

with any other transcendental terms, then its coefficient has to be zero for any z ∈ C by Lemma 2.2.
This is impossible, since its coefficients are nonconstant polynomials. The only term in the coefficient
that may cancel out with λ′21 is the term that contains λ′2. They must have the same degree, so we have
2(m − 1) = n − 1. By the same arguments, we have m − 1 = 2(n − 1) by considering λ′22 with λ′1. Then,
we get a contradiction, and it yields that deg(λ1), deg(λ2) are both at most one.

Therefore, we can assume that λ1 = a1z + b1 and λ2 = a2z + b2 where a1 , a2 are constants, and
b1, b2 are arbitrary constants. The transcendental terms and the corresponding coefficients in Table 1
can convert into those in Table 2. Since the three transcendental terms e2λ1 , e2λ2 and eλ1+λ2 cannot be
combined with each other, we get the following system of (3.16) with respect to the coefficients by
Lemma 2.2. 

a2
1 + 2γa1 + e2a1c + (2αa1 + 2β) · ea1c + 1 = 0,

a2
2 + 2γa2 + e2a2c + (2αa2 + 2β) · ea2c + 1 = 0,
−2a1a2 − 2γ(a1 + a2) − 2e(a1+a2)c − (2αa1 + 2β) · ea2c

−(2αa2 + 2β) · ea1c + 4δ − 2 = 0.

(3.16)

Table 2. The transcendental term after the change and the corresponding coefficients.

Before After Corresponding coefficients

e2λ1 e2λ1 a2
1 + 2γa1 + 1

e2λ1 e2λ1 e2a1c

eλ1+λ1 e2λ1 (2αa1 + 2β) · ea1c

e2λ2 e2λ2 a2
2 + 2γa2 + 1

e2λ2 e2λ2 e2a2c

eλ2+λ2 e2λ2 (2αa2 + 2β) · ea2c

eλ1+λ2 eλ1+λ2 −2a1a2 − 2γ(a1 + a2) + 4δ − 2
eλ1+λ2 eλ1+λ2 −2e(a1+a2)c

eλ1+λ2 eλ1+λ2 (−2αa1 − 2β) · ea2c

eλ1+λ2 eλ1+λ2 (−2αa2 − 2β) · ea1c

Adding the three equations in (3.16) together, they convert into
a2

1 + 2γa1 + e2a1c + (2αa1 + 2β) · ea1c + 1 = 0,
a2

2 + 2γa2 + e2a2c + (2αa2 + 2β) · ea2c + 1 = 0,
[ea1c − ea2c + α(a1 − a2)]2 + (1 − α2)(a1 − a2)2 + 4δ = 0.

(3.17)

Therefore, the original (1.4) has solutions of the form

f (z) =
ea1z+b1 − ea2z+b2

2i
√
δ

,

where a1, a2 (a1 , a2) are nonzero constants satisfying (3.17), and b1, b2 are arbitrary constants.
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4. Proof of Theorem 1.8

For an exponential polynomial f (z) with finite order, the exponents for each exponential terms of
f ′(z) are the same as those of f (z), but the exponents of f (qz) are not the same as the exponents of f (z)
for q , 0, 1. The term eg(z) in the right side of (1.6) with coefficient one must combine with one of these
two kinds of exponential terms, transcendental terms in f (z) or f (qz), by Lemma 2.2. The following
are divided into two cases for discussion.

Case 1. If eg(z) can combine with the exponential terms in f (z), then replacing f (z + c) by f (qz) in
Section 3 and using the same methods in it we get

f (z) = eλ1(z)−eλ2(z)

2i
√
δ
,

f ′(z) = λ
′
1(z)eλ1(z)−λ′2(z)eλ2(z)

2i
√
δ

,

f (qz) = eλ1(qz)−eλ2(qz)

2i
√
δ
,

(4.1)

where λ1(z), λ2(z), δ are the same as in Section 3, and we also have

u = f ′(z) + α f (qz) + γ f (z), v = f (qz) +
β − αγ

1 − α2 f (z).

Substituting the above u, v into

u2 + (1 − α2)v2 =

(
eλ1(z) + eλ2(z)

2

)2

, (4.2)

it yields

[ f ′(z)]2 + [ f (qz)]2 +
β2 + γ2 − 2αβγ

1 − α2 f 2(z) + 2α f ′(z) f (qz) + 2β f (qz) f (z) + 2γ f ′(z) f (z)

=
e2λ1(z) + e2λ2(z) + 2eλ1(z)+λ2(z)

4
. (4.3)

For simplicity and convenience, we denote

λ1 := λ1(z), λ2 := λ2(z), λ̃1 := λ1(qz), λ̃2 := λ2(qz).

Substituting (4.1) into (4.3) we get

λ′21 e2λ1 + λ′22 e2λ2 − 2λ′1λ
′
2eλ1+λ2

−4δ
+

e2λ̃1 + e2λ̃2 − 2eλ̃1+λ̃2

−4δ

+
β2 + γ2 − 2αβγ

1 − α2 ·
e2λ1 + e2λ2 − 2eλ1+λ2

−4δ

+2α ·
λ′1eλ1+λ̃1 − λ′1eλ1+λ̃2 − λ′2eλ̃1+λ2 + λ′2eλ2+λ̃2

−4δ
(4.4)

+2β ·
eλ1+λ̃1 − eλ1+λ̃2 − eλ̃1+λ2 + eλ2+λ̃2

−4δ
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+2γ ·
λ′1e2λ1 − λ′1eλ1+λ2 − λ′2eλ1+λ2 + λ′2e2λ2

−4δ

=
e2λ1 + e2λ2 + 2eλ1+λ2

4
.

The transcendental terms appearing in (4.4) have exponents

2λ1, 2λ2, λ1 + λ2, 2λ̃1, 2λ̃2, λ̃1 + λ̃2, λ1 + λ̃1, λ1 + λ̃2, λ̃1 + λ2 and λ2 + λ̃2.

In order to apply Lemma 2.2 to (4.4), we checked whether the pairwise difference between these
exponents was constant. If λ1 ≡ λ2, then f (z) ≡ 0. This is impossible, so λ1 . λ2.

Subcase 1.1. If λ1(z) − λ2(z) is a nonzero constant, then p(z) is a nonzero constant, denoted by p in
the following for simplicity. Consequently,

f (z) = w =
(ep − e−p)eg(z)/2

2i
√
δ

. (4.5)

Then,

f ′(z) =
(ep − e−p)eg(z)/2

2i
√
δ

·
g′(z)

2
(4.6)

and

f (qz) =
(ep − e−p)eg(qz)/2

2i
√
δ

. (4.7)

Substituting (4.5)–(4.7) into (1.6), the terms in the left side of this equation can be expressed as

[ f ′(z)]2 = d2eg(z)

−4δ ·
(g′(z))2

4 ,

[ f (qz)]2 = d2eg(qz)

−4δ ,

f 2(z) = d2eg(z)

−4δ ,

2α f ′(z) f (qz) = 2α · d2e
g(z)+g(qz)

2

−4δ ·
g′(z)

2 ,

2β f (z) f (qz) = 2β · d2e
g(z)+g(qz)

2

−4δ ,

2γ f (z) f ′(z) = 2γ · d2eg(z)

−4δ ·
g′(z)

2 ,

(4.8)

where d := ep − e−p.
If polynomial g(z) contains at least two nonconstant terms, without loss of generality, we set

g(z) = anzn + · · · + amzm + · · · + a0, n > m,

then,
g(qz) = an(qz)n + · · · + am(qz)m + · · · + a0

and
g(qz) − g(z) = an(qn − 1)zn + · · · + am(qm − 1)zm + · · · .
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If g(qz) − g(z) is a constant and one has q = 1, then this contradicts the assumption and g(qz) − g(z)
is not a constant. By the same argument, g(qz) − g(z)+g(qz)

2 is also not a constant. Therefore, the three

exponential terms, eg(z), eg(qz) and e
g(z)+g(qz)

2 , are pairwise distinct, even if we don’t consider their constant
coefficients. Substituting (4.8) into (1.6) and applying Lemma 2.2 to the obtained equation, we get that
the coefficients of the three exponential terms are zero. In particular, d2

−4δ = 0 since it’s the coefficient
of the sole term eg(qz). This is impossible, because that means that f ≡ 0.

So, g(z) is the form of g(z) = anzn + b, where an(, 0), b are constants. Substitute this into (4.8) and
we obtain that 

[ f ′(z)]2 = d2eanzn+b

−4δ ·
(nanzn−1)2

4 ,

[ f (qz)]2 = d2eanqnzn+b

−4δ ,

f 2(z) = d2eanzn+b

−4δ ,

2α f ′(z) f (qz) = 2α · nanzn−1

2 · d2e
an(1+qn)zn

2 +b

−4δ ,

2β f (z) f (qz) = 2β · d2e
an(1+qn)zn

2 +b

−4δ ,

2γ f (z) f ′(z) = 2γ · d2eanzn+b

−4δ ·
nanzn−1

2 ,

(4.9)

then take the above expressions into (1.6). If qn , 1, the expression of [ f (qz)]2 has a zero coefficient
by Lemma 2.2, that is d2

−4δ = 0, which is impossible, so qn = 1. Then, for all z ∈ C we have

(nanzn−1)2

4
+ 2 + (α + β)nanzn−1 + 2β ≡ −

4δ
d2

by eliminating eg(z) from both sides of (1.6), so n has to be one, and q = qn = 1, which contradicts the
assumption.

Subcase 1.2. If λ1 − λ2 is not a constant, then p(z) is not a constant; instead, it is a nonconstant
polynomial. We multiply −4δ, combine like terms in (4.4), and move all the terms to the left side of
the equation, then the right side is just zero. Thus, the coefficients of the distinct transcendental terms
are listed in Table 3.

Table 3. Transcendental terms and corresponding coefficients.

Transcendental terms Corresponding coefficients

e2λ1 λ′21 + 2γλ′1 + 1
e2λ2 λ′22 + 2γλ′2 + 1
eλ1+λ2 −2λ′1λ

′
2 − 2γ(λ′1 + λ

′
2) + 4δ − 2

e2λ̃1 1
e2λ̃2 1
eλ̃1+λ̃2 −2
eλ1+λ̃1 2αλ′1 + 2β
eλ1+λ̃2 −2αλ′1 − 2β
eλ̃1+λ2 −2αλ′2 − 2β
eλ2+λ̃2 2αλ′2 + 2β
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By the same method in Case 2 of Section 3 (proof of Theorem 1.4), the degree of λ1(z) and λ2(z)
both are at most one. Set λ1(z) = a1z + b1 and λ2(z) = a2z + b2, where a1 , a2, b1, b2 are arbitrary
constants, then λ̃1(z) = a1qz + b1 and λ̃2(z) = a2qz + b2. Substituting these into Table 3, we get the
results in Table 4.

Table 4. Transcendental terms and corresponding coefficients.

No. Before After Corresponding coefficients

① e2λ1 e2a1z+2b1 a2
1 + 2γa1 + 1

② e2λ2 e2a2z+2b2 a2
2 + 2γa2 + 1

③ eλ1+λ2 e(a1+a2)z+b1+b2 −2a1a2 − 2γ(a1 + a2) + 4δ − 2
④ e2λ̃1 e2a1qz+2b1 1
⑤ e2λ̃2 e2a2qz+2b2 1
⑥ eλ̃1+λ̃2 e(a1+a2)qz+b1+b2 −2
⑦ eλ1+λ̃1 ea1(1+q)z+2b1 2αa1 + 2β
⑧ eλ1+λ̃2 e(a1+a2q)z+b1+b2 −2αa1 − 2β
⑨ eλ̃1+λ2 e(a1q+a2)z+b1+b2 −2αa2 − 2β
⑩ eλ2+λ̃2 ea2(1+q)z+2b2 2αa2 + 2β

The coefficient of term ④ in Table 4 is one and it must combine with some like terms by
Lemma 2.2. 2a1q in term ④ may be equal to 2a2 in term ②, a1 + a2 in term ③, a1 + a2q in term ⑧ and
a2 + a2q in term ⑩ since q , 1, a1 , a2. Then, we also considered that terms ⑤ and ⑥ must combine
with some other like terms, respectively, since their coefficients are both nonzero, so there are many
cases that have to be discussed. Through discussion for all possible cases, it is impossible to have a
finite order entire solution (see the Appendix).

Case 2. If eg(z) can combine with the exponential terms in f (qz), then
u = f ′(z) + α f (qz) + γ f (z),
v = f (z) + β−αγ1−γ2 f (qz),

w = f (qz),

(4.10)

and (1.6) can convert into

u2 + (1 − γ2)v2 + δ′w2 = eg(z), (4.11)

where

δ′ :=
1 − α2 − β2 − γ2 + 2αβγ

1 − γ2 .

By the same method in Section 3, we have
f (qz) = eλ1(z)−eλ2(z)

2i
√
δ′
,

f (z) = eλ1(z/q)−eλ2(z/q)

2i
√
δ′
,

f ′(z) = λ
′
1eλ1(z/q)−λ′2eλ2(z/q)

2qi
√
δ′

,

(4.12)
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where
λ1(z) = p(z) + g(z)/2, λ2(z) = −p(z) + g(z)/2,

p(z) is a polynomial. Here, λ1(z/q), λ2(z/q) are composite functions with respect to z, and according
to the chain rule for derivatives, λ′1 and λ′2 represent the derivative of the outer function. By the same
method in Case 1, we can divide into two subcases.

Subcase 2.1. If λ1(z) − λ2(z) is a constant, then (4.12) can be rewritten as
f (z) = de

g(z/q)
2

2i
√
δ′
,

f ′(z) = de
g(z/q)

2

2i
√
δ′
·

g′

2q ,

f (qz) = de
g(z)

2

2i
√
δ′
,

(4.13)

where d = ep − e−p. Here, g(z/q) is a composite function with respect to z, and according to the chain
rule for derivatives, g′ here represents the derivative of the outer function. Substituting (4.13) into each
term in the right side of (1.6), we have

[ f ′(z)]2 = d2eg(z/q)

−4δ′ ·
(g′)2

4q2 ,

[ f (qz)]2 = d2eg(z)

−4δ′ ,

f 2(z) = d2eg(z/q)

−4δ′ ,

2α f ′(z) f (qz) = 2α · d2e
g(z)+g(z/q)

2

−4δ′ ·
g′

2q ,

2β f (z) f (qz) = 2β · d2e
g(z)+g(z/q)

2

−4δ′ ,

2γ f (z) f ′(z) = 2γ · d2eg(z/q)

−4δ′ ·
g′

2q .

(4.14)

If polynomial g(z) contains at least two nonconstant terms, without loss of generality we set

g(z) = anzn + · · · + amzm + · · · + a0, n > m,

then
g(z/q) = an(z/q)n + · · · + am(z/q)m + · · · + a0

and

g(z/q) − g(z) = an

(
1
qn − 1

)
zn + · · · + am

(
1

qm − 1
)

zm + · · · .

If g(z/q) − g(z) is a constant and one has q = 1, this contradicts the assumption and g(z/q) − g(z) is
not a constant. By the same argument, g(z/q) − g(z)+g(z/q)

2 is also not a constant. Therefore, the three

exponential terms, eg(z), eg(qz) and e
g(z)+g(qz)

2 , are distinct and can’t combine like terms. Substituting (4.14)
into (1.6) and applying Lemma 2.2 to the obtained equation, we get that the coefficients of the three
exponential terms are zeroes after combining like terms:

d2

−4δ′ − 1 ≡ 0,
d2

−4δ′ ·
(g′)2

4q2 +
d2

−4δ′ + 2γ · d2

−4δ′ ·
g′

2q ≡ 0,

2α · d2

−4δ′ ·
g′

2q + 2β · d2

−4δ′ ≡ 0.

(4.15)
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Since the three equations hold for all z ∈ C, g(z/q) has a degree of one, and so does g(z).
Therefore, we can set g(z/q) = az + b, then g(z) = aqz + b, where a , 0 and b is an arbitrary

constant. Noting that g′ represents the derivative of the outer function, so g′ = aq, then the above
equations convert into 

d2

−4δ′ = 1,
a2

4 + 1 + 2γa ≡ 0,
αa + 2β ≡ 0.

(4.16)

Thus, it yields α2 + β2 − 2αβγ = 0 and γ2 , 1.
In other words, (1.6) admits a solution in this case with the form f (z) = e

az+b
2 and g(z) = aqz + b

such that a2

4 + 1 + 2γa ≡ 0,
αa + 2β ≡ 0,

(4.17)

then α2 + β2 − 2αβγ = 0 and γ2 , 1.
Subcase 2.2. If λ1(z) − λ2(z) is nonconstant, then from (4.11) we have

u2 + (1 − γ2)v2 =

(
eλ1(z) + eλ2(z)

2

)2

. (4.18)

Substituting (4.10) into (4.18) we deduce that

[ f ′(z)]2 + [ f (z)]2 +
α2 + β2 − 2αβγ

1 − γ2 [ f (qz)]2

+2α f ′(z) f (qz) + 2β f (qz) f (z) + 2γ f ′(z) f (z) (4.19)

=
e2λ1(z) + e2λ2(z) + 2eλ1(z)+λ2(z)

4
.

For simplicity and convenience, we denote

λ1 := λ1(z), λ2 := λ2(z), λ̂1 := λ1(z/q), λ̂2 := λ2(z/q).

Substituting (4.12) into (4.19) we obtain

1
q2 ·
λ′21 e2λ̂1 + λ′22 e2λ̂2 − 2λ1

′λ2
′eλ̂1+λ̂2

−4δ′
+

e2λ̂1 + e2λ̂2 − 2eλ̂1+λ̂2

−4δ′

+
α2 + β2 − 2αβγ

1 − γ2 ·
e2λ1 + e2λ2 − 2eλ1+λ2

−4δ′

+2α ·
1
q
·
λ′1eλ1+λ̂1 − λ′1eλ̂1+λ2 − λ′2eλ1+λ̂2 + λ′2eλ2+λ̂2

−4δ′

+2β ·
eλ1+λ̂1 − eλ1+λ̂2 − eλ̂1+λ2 + eλ2+λ̂2

−4δ′
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+2γ ·
1
q
·
λ′1e2λ̂1 − λ′1eλ̂1+λ̂2 − λ′2eλ̂1+λ̂2 + λ′2e2λ̂2

−4δ′

=
e2λ1 + e2λ2 + 2eλ1+λ2

4
. (4.20)

Let’s multiply both sides of (4.20) by −4δ′ and move all terms to the left side of the equation. After
combining the terms of the same kind, we get the results in Table 5.

Table 5. Transcendental terms and corresponding coefficients.

Transcendental terms Corresponding coefficients

e2λ1 1
e2λ2 1
eλ1+λ2 4δ′ − 2
e2λ̂1 1

q2 · λ
′2
1 +

2γ
q · λ

′
1 + 1

e2λ̂2 1
q2 · λ

′2
2 +

2γ
q · λ

′
2 + 1

eλ̂1+λ̂2 − 2
q2 λ
′
1λ
′
2 −

2γ
q (λ′1 + λ

′
2) − 2

eλ1+λ̂1 2α
q λ
′
1 + 2β

eλ1+λ̂2 − 2α
q λ
′
2 − 2β

eλ̂1+λ2 − 2α
q λ
′
1 − 2β

eλ2+λ̂2 2α
q λ
′
2 + 2β

Using the method in Subcase 1.2, we can also obtain that there are no suitable finite order
transcendental entire solutions for (1.6) in this case. The details are omitted here.

5. Conclusions

In this paper we proved two theorems (Theorems 1.4 and 1.8), studied the finite order entire
solutions of (1.4) and (1.6), respectively and found the concrete forms of solutions of these two
equations, both of which were exponential functions. Examples 1.5 and 1.6 verified the two cases of
solutions of the equation in Theorem 1.4, and Example 1.9 verified the truth of Theorem 1.8. The
equations studied in this paper can be transformed into the Fermat-type equation with three quadratic
terms by linear transformation, which improves the previous Fermat-type equations with only two
quadratic terms, so it is very novel.
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Appendix

We divided Table 4 into the following four cases with 10 subcases, but in each case there is no
finite order transcendental entire solution. The classification is based on the fact that terms ④,⑤ and
⑥ in Table 4 must be combined with other terms, since their coefficients are nonzero. Otherwise, they
contradict with Lemma 2.2.

Case A1. Term ④ can combine with term ② and ⑨ in Table 4, that is, a1q = a2. Since term ⑤

should also combine with other terms, we split into some subcases.
Subcase A1.1. Term ⑤ may combine with term ① in Table 4. Thus, we get the results in Table A1.

Table A1. q = a2
a1
= −1, a2 = −a1.

No. Transcendental terms Corresponding coefficients

① e2a1z e2b1
(
a2

1 + 2γa1 + 1
)

② e−2a1z e2b2
(
a2

1 − 2γa1 + 1
)

③ e0 eb1+b2
(
2a2

1 + 4δ − 2
)

④ e−2a1z e2b1

⑤ e2a1z e2b2

⑥ e0 −2eb1+b2

⑦ e0 e2b1 (2αa1 + 2β)

⑧ e2a1z eb1+b2 (−2αa1 − 2β)

⑨ e−2a1z eb1+b2 (2αa1 − 2β)

⑩ e0 e2b2 (−2αa1 + 2β)

After combining terms of the same kind in Table A1, according to Lemma 2.2, we know that the
coefficients must always be zero, and the following equations were obtained

e2b1
(
a2

1 + 2γa1 + 1
)
+ e2b2 + eb1+b2 (−2αa1 − 2β) = 0,

e2b2
(
a2

1 − 2γa1 + 1
)
+ e2b1 + eb1+b2 (2αa1 − 2β) = 0,

eb1+b2
(
a2

1 + 2δ − 2
)
+ e2b1 (αa1 + β) + e2b2 (−αa1 + β) = 0.

Thus, we have 
eb1 = ±eb2 ,

α = ±γ,

β = ±1,

it yields δ = 0, which is impossible.
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Subcase A1.2. Term ⑤ may combine with term ③ in Table 4. Then, we obtained the results in
Table A2 as follows.

Table A2. q = a2
a1
= −1/2, a2 = −a1/2.

No. Transcendental terms Corresponding coefficients

① e2a1z e2b1
(
a2

1 + 2γa1 + 1
)

② e−a1z e2b2

(
a2

1
4 − γa1 + 1

)
③ e

a1
2 ·z eb1+b2

(
a2

1 − γa1 + 4δ − 2
)

④ e−a1z e2b1

⑤ e
a1
2 ·z e2b2

⑥ e−
a1
4 ·z −2eb1+b2

⑦ e
a1
2 ·z e2b1 (2αa1 + 2β) = 0

⑧ e
5a1

4 ·z eb1+b2 (−2αa1 − 2β) = 0

⑨ e−a1z eb1+b2 (αa1 − 2β) = eb1+b2 (−3β)

⑩ e−
a1
4 ·z e2b2 (−αa1 + 2β)

Combining terms of the same kind and according to Lemma 2.2, we know that the coefficients must
always be zero, and the following equations are obtained

e2b1
(
a2

1 + 2γa1 + 1
)
= 0,

e2b2

(
a2

1
4 − γa1 + 1

)
+ e2b1 + eb1+b2 (αa1 − 2β) = 0,

eb1+b2
(
a2

1 − γa1 + 4δ − 2
)
+ e2b2 + e2b1 (2αa1 + 2β) = 0,

−2eb1+b2 + e2b2 (−αa1 + 2β) = 0,

eb1+b2 (−2αa1 − 2β) = 0.

For the above equation system, there is no suitable solution a1.
Case A2. Term ④ can combine with term ③ in Table 4, that is, 2a1q = a1+a2. Since term ⑤ should

also combine with other terms, we split it into three subcases.
Subcase A2.1. Term ⑤ may combine with term ① in Table 4. We get the results in Table A3.
From Table A3, after combining terms of the same kind, according to Lemma 2.2, we know that the

coefficients must always be zero, and the following equations are obtained

e2b1
(
a2

1 + 2γa1 + 1
)
+ e2b2 + eb1+b2 (−2αa1 − 2β) = 0,

e2b2
(
4a2

1 − 4γa1 + 1
)
= 0,

eb1+b2
(
4a2

1 + 2γa1 + 4δ − 2
)
+ e2b1 + e2b2 (−4αa1 + 2β) = 0,

−2eb1+b2 + e2b1 (2αa1 + 2β) = 0,
eb1+b2 (4αa1 − 2β) = 0.
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For the above equation system, there is no suitable solution a1.

Table A3. q = a1+a2
2a1
= −1/2, a2 = −2a1.

No. Transcendental terms Corresponding coefficients

① e2a1z e2b1
(
a2

1 + 2γa1 + 1
)

② e−4a1z e2b2
(
4a2

1 − 4γa1 + 1
)

③ e−a1z eb1+b2
(
4a2

1 + 2γa1 + 4δ − 2
)

④ e−a1z e2b1

⑤ e2a1z e2b2

⑥ e
a1
2 ·z −2eb1+b2

⑦ e
a1
2 ·z e2b1 (2αa1 + 2β)

⑧ e2a1z eb1+b2 (−2αa1 − 2β)

⑨ e−
5a1

2 z eb1+b2 (4αa1 − 2β)

⑩ e−a1z e2b2 (−4αa1 + 2β)

Subcase A2.2. Term ⑤ may combine with term ⑦ in Table 4. Then, we get the results in Table A4.

Table A4. q = a1+a2
2a1
= −1

4 , a2 = −
3
2a1.

No. Transcendental terms Corresponding coefficients

① e2a1z e2b1
(
a2

1 + 2γa1 + 1
)

② e−3a1z e2b2
(

9
4 a2

1 − 3γa1 + 1
)

③ e−
1
2 a1z eb1+b2

(
3a2

1 + γa1 + 4δ − 2
)

④ e−
1
2 a1z e2b1

⑤ e
3
4 a1z e2b2

⑥ e
1
8 a1z −2eb1+b2

⑦ e
3
4 a1·z e2b1 (2αa1 + 2β)

⑧ e
11
8 a1z eb1+b2 (−2αa1 − 2β)

⑨ e−
7a1

4 z eb1+b2 (3αa1 − 2β)

⑩ e−
9
8 a1z e2b2 (−3αa1 + 2β)

In Table A4, the term ⑥ cannot combine with other transcendental terms; it’s impossible.

Subcase A2.3. Term ⑤ may combine with term ⑨ in Table 4. Then, we deduce the results in
Table A5.
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Table A5. q = a1+a2
2a1
= 1

4 , a2 = −
1
2a1.

No. Transcendental terms Corresponding coefficients

① e2a1z e2b1
(
a2

1 + 2γa1 + 1
)

② e−a1z e2b2
(
a2

2 + 2γa2 + 1
)

③ e
1
2 a1z eb1+b2 (−2a1a2 − 2γ(a1 + a2) + 4δ − 2)

④ e
1
2 a1z e2b1

⑤ e−
1
4 a1z e2b2

⑥ e
1
8 a1z −2eb1+b2

⑦ e
5
4 a1z e2b1 (2αa1 + 2β)

⑧ e
7
8 a1z eb1+b2 (−2αa1 − 2β)

⑨ e−
1
4 a1z eb1+b2 (−2αa2 − 2β)

⑩ e−
5
8 a1z e2b2 (2αa2 + 2β)

In Table A5, the term ⑥ cannot combine with other transcendental terms; it’s impossible.

Case A3. Term ④ can combine with term ⑧ in Table 4, that is, 2a1q = a1 + a2q. Since term ⑤

should also combine with other terms, we split it into two subcases.

Subcase A3.1. Term ⑤ may combine with term ③ in Table 4. We get the results in Table A6.

Table A6. q = a1
2a1−a2

= 1
4 , a2 = −2a1.

No. Transcendental terms Corresponding coefficients

① e2a1z e2b1
(
a2

1 + 2γa1 + 1
)

② e−4a1z e2b2
(
a2

2 + 2γa2 + 1
)

③ e−a1z eb1+b2 (−2a1a2 − 2γ(a1 + a2) + 4δ − 2)

④ e
1
2 a1z e2b1

⑤ e−a1z e2b2

⑥ e−
1
4 a1z −2eb1+b2

⑦ e
5
4 a1z e2b1 (2αa1 + 2β)

⑧ e
1
2 a1z eb1+b2 (−2αa1 − 2β)

⑨ e−
7
4 a1z eb1+b2 (−2αa2 − 2β)

⑩ e−
5
2 a1z e2b2 (2αa2 + 2β)

The term ⑥ cannot combine with other transcendental terms; this is impossible.

Subcase A3.2. Term ⑤ may combine with term ⑨ in Table 4. We get the results in Table A7.
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Table A7. q = a1
2a1−a2

= 1
3 , a2 = −a1.

No. Transcendental terms Corresponding coefficients

① e2a1z e2b1
(
a2

1 + 2γa1 + 1
)

② e−2a1z e2b2
(
a2

2 + 2γa2 + 1
)

③ e0 eb1+b2 (−2a1a2 − 2γ(a1 + a2) + 4δ − 2)

④ e
2
3 a1z e2b1

⑤ e−
2
3 a1z e2b2

⑥ e0 −2eb1+b2

⑦ e
4
3 a1z e2b1 (2αa1 + 2β)

⑧ e
2
3 a1z eb1+b2 (−2αa1 − 2β)

⑨ e−
2
3 a1z eb1+b2 (−2αa2 − 2β)

⑩ e−
4
3 a1z e2b2 (2αa2 + 2β)

By ⑦ and ⑩ in Table A7, we have a1 = a2, which is a contradiction.

Case A4. Term ④ can combine with term ⑩ in Table 4, that is, 2a1q = a2 + a2q. Since term ⑤

should also combine with other terms, we split it into three subcases.

Subcase A4.1. Term ⑤ may combine with term ① in Table 4. We get the results in Table A8.

Table A8. q = a2
2a1−a2

= −1
2 , a2 = −2a1.

No. Transcendental terms Corresponding coefficients

① e2a1z e2b1
(
a2

1 + 2γa1 + 1
)

② e−4a1z e2b2
(
4a2

1 − 4γa1 + 1
)

③ e−a1z eb1+b2
(
4a2

1 + 2γa1 + 4δ − 2
)

④ e−a1z e2b1

⑤ e2a1z e2b2

⑥ e
1
2 a1 −2eb1+b2

⑦ e
1
2 a1z e2b1 (2αa1 + 2β)

⑧ e2a1z eb1+b2 (−2αa1 − 2β)

⑨ e−
5
2 a1z eb1+b2 (4αa1 − 2β)

⑩ e−a1z e2b2 (−4αa1 + 2β)

Subcase A4.2. Term ⑤ may combine with term ③ in Table 4. Then, we have the results in Table
A9.
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Table A9. q = a2
2a1−a2

= −1
4 , a2 = −

2
3a1.

No. Transcendental terms Corresponding coefficients

① e2a1z e2b1
(
a2

1 + 2γa1 + 1
)

② e−
4
3 a1z e2b2

(
a2

2 + 2γa2 + 1
)

③ e
1
3 a1z eb1+b2 (−2a1a2 − 2γ(a1 + a2) + 4δ − 2)

④ e−
1
2 a1z e2b1

⑤ e
1
3 a1z e2b2

⑥ e−
1
12 a1 −2eb1+b2

⑦ e
3
4 a1z e2b1 (2αa1 + 2β)

⑧ e
7
6 a1z eb1+b2 (−2αa1 − 2β)

⑨ e−
11
12 a1z eb1+b2 (−2αa2 − 2β)

⑩ e−
1
2 a1z e2b2 (2αa2 + 2β)

The term ⑥ cannot combine with other transcendental terms; it’s impossible.
Subcase A4.3. Term ⑤ may combine with term ⑦ in Table 4. Then, we get the results in Table

A10.

Table A10. q = a2
2a1−a2

= −1
3 , a2 = −a1.

No. Transcendental terms Corresponding coefficients

① e2a1z e2b1
(
a2

1 + 2γa1 + 1
)

② e−2a1z e2b2
(
a2

2 + 2γa2 + 1
)

③ e0 eb1+b2 (−2a1a2 − 2γ(a1 + a2) + 4δ − 2)

④ e−
2
3 a1z e2b1

⑤ e
2
3 a1z e2b2

⑥ e0 −2eb1+b2

⑦ e
2
3 a1z e2b1 (2αa1 + 2β)

⑧ e
4
3 a1z eb1+b2 (−2αa1 − 2β)

⑨ e−
4
3 a1z eb1+b2 (−2αa2 − 2β)

⑩ e−
2
3 a1z e2b2 (2αa2 + 2β)

From ⑧ and ⑨ in Table A10, we have a1 = a2; it’s impossible.
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