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1. Introduction

The analysis of metric spaces has played a crucial role in different fields of pure and applied
sciences. We can find countless effective and stunning applications of this notion in different fields of
science (see [1, 2]). Many mathematicians extrapolated, generalized and expanded the idea of metric
spaces to different spaces. Branciari [3] gave the idea of a generalized metric by putting more general
inequality in the place of natural triangle inequality of a metric space. This inequality is called a
rectangular inequality which consists of four terms instead of three terms. Such a metric space is
famous as the Branciari metric space in literature. Bakhtin [4] initiated the concept of b-metric space
in 1989, which was properly described by Czerwik [5] in 1993. The b-metric is not continuous unlike
the classical metric in the topology created by it . Gordji et al. [6] gave the idea of orthogonality in the
notion of metric spaces and established some fixed point results for contraction mappings in
orthogonal metric spaces. In 2018, Jleli et al. [7] initiated the concept of F -metric space as a
generalizations of above all metric spaces. Recently, Kanwal et al. [8] united the concepts of F -MS
and orthogonal set to initiate the conception of orthogonal F -metric space. They presented some
common fixed point theorems in the framework of orthogonal F -MS.

On the other hand, Stefan Banach [9] was the pioneer researcher in this theory, having given the
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conception of contraction in the framework of metric spaces and established a fixed point theorem. It
has been tremendously appropriate in many areas such as optimization problems, differential equations,
economics and in various other fields. A lot of research work in this field have been given to the
improvement and generalization of Banach contraction principle in different ways. In 2011, Samet et
al. [10] gave the ideas of (α, ψ)-contraction and α-admissibility to generalize the Banach fixed point
theorem. Later on, Ramezani et al. [11] combined the concepts of orthogonality and α-admissibility
to introduce orthogonal α-admissible mapping. Subsequetly, Alizadeh [12] introduced the notion of
cyclic (α, β)-admissibility to prove some fixed point results.

In the present research work, we give rational (α, β, ψ)-contractions in the framework of orthogonal
F -MS and establish some fixed point results. We solve the existence and uniqueness of a fractional
differential equation by our leading theorem.

2. Preliminaries

We start this section with the definition of metric space in this way.
Let P , ∅. A metric is a function u : P × P → [0,+∞) satisfying:

(i) u(y, ς) = 0 if and only if y = ς,
(ii) u(y, ς) = u(ς, y),

(iii) u(y, ς) ≤ u(y, ω) + u(ω, ς),

for all y, ω, ς ∈ P. If u be a metric, then (P, u) is said to be a metric space.
In 1980, Fisher [13] established a fixed point theorem for mapping satisfying

u(ℜy,ℜς) ≤ ϱ1u(y, ς) + ϱ1
u(y,ℜy)u(ς,ℜς)

1 + u(y, ς)
,

for all y, ς ∈ P, where ϱ1, ϱ2 ∈ [0, 1
2 ) with ϱ1 + ϱ2 < 1.

Czerwik [5] presented the conception of b-metric by altering the triangular inequality of metric
space in this manner: for all y, ω, ς ∈ P and for some b ≥ 1,

u(y, ς) ≤ b [u(y, ω) + u(ω, ς)] .

Gordji et al. [6] gave the idea of the orthogonal set (O-set) and reinforced the concept of metric
space by introducing orthogonal metric space in 2017.

Definition 1. Let P , ∅. P is said to be an O-set if there exists some binary relation ⊥ ⊆ P × P
fulfilling the following axiom

there exists y0 such that ς ⊥ y0 or y0 ⊥ ς for all ς ∈ P.

Furthermore, y0 is said to be an orthogonal point. An O-set is represented as (P,⊥).

Definition 2. ( [6]) A sequence {yn} in O-set (P,⊥) is called an orthogonal sequence if yn ⊥ yn+1 or
yn+1 ⊥ yn, for all n ∈ N. We represent an orthogonal sequence by O-sequence.

Definition 3. ( [6]) Let (P,⊥) be an O-set. A mappingℜ : P → P is said to be ⊥-preserving if y ⊥ ς
impliesℜy ⊥ ℜς.

AIMS Mathematics Volume 8, Issue 11, 27347–27362.



27349

On the other hand, Jleli et al. [7] initiated the concept of an F -metric space (F -MS) as follows.
Let F be the class of functions ξ : (0,+∞)→ R satisfying

(F1) 0 < y1 < y2 ⇒ ξ(y1) ≤ ξ(y2),
(F2) for all {yn} ⊆ R

+, limn→∞ yn = 0 ⇐⇒ limn→∞ ξ(yn) = −∞.

Definition 4. ( [7]) Let P , ∅ and u : P×P → [0,+∞). Suppose that there exists (ξ, α) ∈ F × [0,+∞)
such that

(D1) (y, ς) ∈ P × P, u(y, ς) = 0 if and only if y = ς;
(D2) u(y, ς) = u(ς, y), for all y, ς ∈ P;
(D3) for all (y, ς) ∈ P × P, and (yi)N

i=1 ⊂ P, with (y1, yN) = (y, ς), we have

u(y, ς) > 0⇒ ξ(u(y, ς)) ≤ ξ(
N−1∑
i=1

u(yi, yi+1)) + α,

for all N ≥ 2. Then (P, u) is said to be an F -MS.

Example 1. ( [7]) Let P = R. Then u : P × P → [0,+∞) is an F -metric defined by

u(y, ς) =
{

(y − ς)2 if (y, ς) ∈ [0, 3] × [0, 3]
|y − ς| if (y, ς) < [0, 3] × [0, 3]

with ξ(t) = ln(t) and α = ln(3).

Definition 5. ( [7]) Let (P, u) be a F -MS.

(i) A sequence {yn} ⊆ P is called an F -convergent if

lim
n→∞
u(yn, y) = 0.

(ii) A sequence {yn} is an F -Cauchy, if

lim
n,m→∞

u(yn, ym) = 0.

In due course, Kanwal et al. [8] united the concepts of F -MS and O-set and introduced the notion
of orthogonal F -MS in such wise.

Definition 6. ( [8]) Let (P, ⊥) be an O-set and u : P × P → [0,+∞) be an F -metric, then (P,⊥, u) is
said to be an OF -MS.

Example 2. ( [8]) Let P = [0, 1]. Define an F -metric u given as

u (y, ς) =
{

e(|y−ς|), if y , ς,
0, if y = ς,

for all y, ς ∈ P, ξ(t) = −1
t , t > 0 and α = 1. Define y⊥ς if and only if yς ≤ y or yς ≤ ς. Then, for all

y ∈ P, 0⊥ς, so (P,⊥) is an O-set. Then, (P, u,⊥) is an OF -MS.
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Definition 7. ( [8]) Let (P, u,⊥) be an orthogonal F -MS andℜ : P → P. Thenℜ is professed to be
⊥-continuous at y ∈ P if for each O-sequence {yn} in P if yn → y, thenℜyn →ℜy. Also the mapping
ℜ is ⊥-continuous on P if the mappingℜ is ⊥-continuous in each y ∈ P.

Definition 8. ( [8]) Let (P, u,⊥) be an OF -MS. Then (P, u,⊥) is said to be a complete OF -MS, if
every Cauchy O-sequence is F -convergent in P.

Samet et al. [10] gave the idea of α-admissible mapping as follows:

Definition 9. A mappingℜ : P → P is called an α-admissible mapping if

α(y, ς) ≥ 1 implies α(ℜy,ℜς) ≥ 1.

Ramezani [11] introduced the concept of orthogonal α-admissible mapping in such wise.

Definition 10. A mappingℜ : P → P is called orthogonal α-admissible mapping if

y⊥ς and α(y, ς) ≥ 1 implies α(ℜy,ℜς) ≥ 1.

Alizadeh [12] gave the notion of cyclic (α,β)-admissibility of self mappingℜ : P → P.

Definition 11. A mapping ℜ : P → P is called a cyclic (α,β)-admissible mapping if there exist two
functions α, β : P → R+0 such that

(i) α(y) ≥ 1 implies β(ℜy) ≥ 1, for some y ∈ P,
(ii) β(y) ≥ 1 implies α(ℜy) ≥ 1, for some y ∈ P.

We extend the above notion to orthogonal cyclic (α,β)-admissibility of self mappingℜ : P → P.

Definition 12. A mapping ℜ : P → P is called an orthogonal cyclic (α, β)-admissible mapping if
there exist two functions α, β : P → R+0 such that

(i) α(y) ≥ 1 implies β(ℜy) ≥ 1, for all y ∈ P with y⊥ℜy,
(ii) β(y) ≥ 1 implies α(ℜy) ≥ 1, for all y ∈ P with y⊥ℜy.
For more details in this direction, we refer the readers to [14–19].

We also give a property (W) for orthogonal cyclic (α, β)-admissible mapping as follows:
Property (W): α(y) ≥ 1 and β(y) ≥ 1 for any y, ς ∈

{
y∗ ∈ P: y∗ = ℜy∗

}
and y⊥ς.

3. Results and discussions

Let Ψ be the set of nondecreasing functions ψ : [0,∞) → [0,∞) such that
∑∞

n=1 ψ
n(t) < ∞ for each

t > 0, where ψn is the n-th iterate of ψ. These functions are known as comparison functions. Moreover,
ψ(t) < t for all t > 0 and ψ(0) = 0.

We define the notion of rational (α, β, ψ)-contraction as follows:

Definition 13. Let (P, u,⊥) be an OF -MS. A mapping ℜ : P → P is said to be a rational (α, β,
ψ)-contraction if there exist ψ ∈ Ψ, α, β : P−→ R+0 such that

for all y, ς ∈ P, y ⊥ ς, α (y) β(ς) ≥ 1 implies u(ℜy,ℜς) ≤ ψ [M(y, ς)] , (3.1)

where

M(y, ς) = max

 u(y, ς), u(y,ℜy)u(ς,ℜς)
1+u(y,ς) ,

u(y,ℜς)u(ς,ℜy)
1+u(y,ς)

 .
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Theorem 1. Let (P, u,⊥) be an O-complete OF -MS, ℜ : P → P is ⊥-preserving, orthogonal cyclic
(α, β, ψ)-admissible and a rational (α, β,ψ)-contraction. Assume that the following assertions hold:

(i) There exists y0 ∈ P such that α (y0) ≥ 1 and β (y0) ≥ 1;
(ii)ℜ : P → P is ⊥-continuous or;
(iii) If {yn} is an othogonal sequence in P such that yn → y

∗ and β (yn) ≥ 1, ∀ n ∈ N, then β (y∗) ≥ 1;
Then, there exists y∗ ∈ P such thatℜy∗ = y∗.

(iv) If the mapping P satisfies the (W), then the fixed point y∗ is unique.

Proof. Let ϵ > 0 be fixed and (ξ, α) ∈ F × [0,+∞) such that (D3) holds. By (F2), there exists δ > 0
such that

0 < t < δ =⇒ ξ(t) < ξ(t) − α. (3.2)

Since P is O-set andℜ : P → P so there exists y0 ∈ P such that y0 ⊥ ℜy0. By the assumption (i),
we have α (y0) ≥ 1 and β (y0) ≥ 1. Now, we define the sequence {yn} as

y1 = ℜy0, · · ·, yn+1 = ℜyn = ℜ
n+1
y0,

for all n ≥ 0. Since y0 ⊥ ℜy0 = y1, α (y0) ≥ 1, β (y0) ≥ 1 andℜ is orthogonal cyclic (α, β)-admissible,
so we have

α (y1) = α
(
ℜy0

)
≥ 1 and β (y1) = β

(
ℜy0

)
≥ 1.

By continuing this process, we get yn−1 ⊥ yn, α (yn) ≥ 1 and β (yn) ≥ 1, for all n ∈ N ∪ {0}. If
yn = yn+1, for any n ∈ N ∪ {0}, then clearly yn is a fixed point of ℜ. Suppose that yn , yn+1, for all
n ∈ N ∪ {0}. Hence, we assume that

u(ℜyn−1,ℜyn) = u(yn, yn+1) > 0,

for all n ∈ N ∪ {0}. Since yn−1 ⊥ yn andℜ is ⊥-preserving, so we get

yn = ℜyn−1 ⊥ ℜyn = yn+1

or
yn+1 = ℜyn ⊥ ℜyn−1 = yn,

for all n ∈ N∪ {0}. It implies that {yn} is an O-sequence. Since α (yn) ≥ 1 and β (yn) ≥ 1, ∀ n ∈ N∪ {0},
so

α (yn−1) β (yn) ≥ 1, (3.3)

for all n ∈ N ∪ {0}. From (3.1) and (3.3), we get

u(yn, yn+1) = u(ℜyn−1,ℜyn)
≤ ψ [M(yn−1, yn)] , (3.4)

where

M(yn−1, yn) = max

 u(yn−1, yn), u(yn−1,ℜyn−1)u(yn,ℜyn)
1+u(yn−1,yn) ,

u(yn−1,ℜyn)u(yn,ℜyn−1)
1+u(yn−1,yn)


AIMS Mathematics Volume 8, Issue 11, 27347–27362.



27352

= max

 u(yn−1, yn), u(yn−1,yn)u(yn,yn+1)
1+u(yn−1,yn) ,

u(yn−1,yn+1)u(yn,yn)
1+u(yn−1,yn)


= max

{
u(yn−1, yn),

u(yn−1, yn)u(yn, yn+1)
1 + u(yn−1, yn)

}
≤ max {u(yn−1, yn), u(yn, yn+1)} .

Because u(yn−1,yn)
1+u(yn−1,yn) < 1. Now, if max {u(yn−1, yn), u(yn, yn+1)} = u(yn, yn+1), then by (3.4), we have

u(yn, yn+1) ≤ ψ [u(yn, yn+1)] < u(yn, yn+1)

a contradiction. Thus max {u(yn−1, yn), u(yn, yn+1)} = u(yn−1, yn). Hence, by (3.4), we get

u(yn, yn+1) ≤ ψ [u(yn−1, yn)] ,

for all n ∈ N ∪ {0}. Inductively, we obtain

u(yn, yn+1) ≤ ψn [u(y0, y1)] ,

for all n ∈ N ∪ {0}. As ψ ∈ Ψ, so there exists some n0 such that

0 <
+∞∑

n≥n0

ψn [u(y0, y1)] < δ.

Hence, by (3.2) and (F1), we have

ξ

m−1∑
i=n

ψi [u(y0, y1)]

 ≤ ξ
 +∞∑

i=n0

ψi [u(y0, y1)]

 < ξ (ϵ) − a, (3.5)

where m > n ≥ n0. Thus by (D3) and (3.5) for u(yn, ym) > 0,m > n ≥ n0, we have

ξ (u(yn, ym)) ≤ ξ

m−1∑
i=n

u(yi, yi+1)

 + a

≤ ξ

m−1∑
i=n

ψi [u(y0, y1)]

 + a

< ξ (ϵ) ,

which, from (F1), gives that
u(yn, ym) < ϵ,

for all m > n ≥ n0. Therefore, {yn} is a Cauchy O-sequence in (P,⊥, u). As (P,⊥, u) is O-complete, so
there exists y∗ ∈ P such that, limn→∞ yn → y

∗. Now, we show that y∗ = ℜy∗. Sinceℜ is ⊥-continuous
by the assumption (ii), so we haveℜyn →ℜy

∗ as n→ ∞. Thus

ℜy∗ = lim
n→∞
ℜyn = lim

n→∞
yn+1 = y

∗.
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Next, we suppose that (iii) holds. We suppose on the contrary that y∗ is not the fixed point of ℜ.
Then u(ℜyn, y

∗) , 0. Now since {yn} is an O-sequence in (P,⊥, u) such that limn→∞ yn → y
∗, so by the

assumption(iii), we have β (y∗) ≥ 1. Hence, α (yn) β (y∗) ≥ 1. Now by (3.1), we have

ξ
(
u(ℜy∗, y∗)

)
≤ ξ

(
u(ℜy∗,ℜyn) + u(ℜyn, y

∗)
)
+ α

≤ ξ

 ψ
max

 u(y∗, yn), u(y
∗,ℜy∗)u(yn,ℜyn)

1+u(y∗,yn) ,
u(y∗,ℜyn)u(yn,ℜy

∗)
1+u(y∗,yn)




+u(ℜyn, y
∗)

 + α
= ξ

 ψ
max

 u(y∗, yn), u(y
∗,ℜy∗)u(yn,yn+1)

1+u(y∗,yn) ,
u(y∗,yn+1)u(yn,ℜy

∗)
1+u(y∗,yn)




+u(ℜyn, y
∗)

 + α.
Letting n→ ∞, in the above inequality and using the fact that

lim
n→∞

ξ

ψ max

 u(y∗, yn), u(y
∗,ℜy∗)u(yn,yn+1)

1+u(y∗,yn) ,
u(y∗,yn+1)u(yn,ℜy

∗)
1+u(y∗,yn)


 + u(ℜyn, y

∗)

 + α,
we have ξ

(
u(ℜy∗, y∗)

)
= −∞. Hence, by (F2), we have u(ℜy∗, y∗) = 0, which is a contradiction. Thus

ℜy∗ = y∗. □

Now, we suppose that y/ = ℜy/ is another fixed point of ℜ such that y/ , y∗. Since the mapping
P satisfies the property (W), so by the assumption (iv), we have y∗⊥y/ or y/ ⊥ y∗ and α (y∗) ≥ 1 and
β
(
y/

)
≥ 1. Then as α (y∗) β

(
y/

)
≥ 1, so by (3.1), we have

u(y∗, y/) = u(ℜy∗,ℜy/) ≤ ψ
[
M(y∗, y/)

]
= ψ

max

 u(y∗, y/), u(y
∗,ℜy∗)u(y/,ℜy/)

1+u(y∗,y/) ,
u(y∗,ℜy/)u(y/,ℜy∗)

1+u(y∗,y/)




= ψ

max

 u(y∗, y/), u(y
∗,y∗)u(y/,y/)

1+u(y∗,y/) ,
u(y∗,y/)u(y/,y∗)

1+u(y∗,y/)




= ψ

[
max

{
u(y∗, y/),

u(y∗, y/)u(y/, y∗)
1 + u(y∗, y/)

}]
≤ ψ

(
u(y∗, y/)

)
< u(y∗, y/),

which is a contradiction. Hence, y/ = y∗. Thus the fixed point is unique.

Corollary 1. Let (P, u,⊥) be an O-complete OF -MS, ℜ : P → P is ⊥-preserving and orthogonal
cyclic (α, β)-admissible. Suppose that there exist ψ ∈ Ψ, α, β : P−→ R+0 and l > 0, such that

(
u(ℜy,ℜς) + l

)α(y)β(ς)
≤ (ψ [M(y, ς)] + l) , (3.6)

for all y, ς ∈ P, y ⊥ ς, where

M(y, ς) = max

 u(y, ς), u(y,ℜy)u(ς,ℜς)
1+u(y,ς) ,

u(y,ℜς)u(ς,ℜy)
1+u(y,ς)

 .
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Assume that the following assertions hold:
(i) There exists y0 ∈ P such that α (y0) ≥ 1 and β (y0) ≥ 1;
(ii)ℜ : P → P is ⊥-continuous or;
(iii) If {yn} is an orthogonal sequence in P such that yn → y

∗ and β (yn) ≥ 1, for all n ∈ N; then
β (y∗) ≥ 1.

Then there exists y∗ ∈ P such thatℜy∗ = y∗.
(iv) If the mapping P satisfies the property (W), then the fixed point y∗ is unique.

Proof. Let α (y) β(ς) ≥ 1 for y, ς ∈ P. Then, from (3.6), we get(
u(ℜy,ℜς) + l

)
≤

(
u(ℜy,ℜς) + l

)α(y)β(ς)
≤ (ψ [M(y, ς)] + l) .

Then we obtain,
u(ℜy,ℜς) ≤ ψ [M(y, ς)]

where

M(y, ς) = max

 u(y, ς), u(y,ℜy)u(ς,ℜς)
1+u(y,ς) ,

u(y,ℜς)u(ς,ℜy)
1+u(y,ς)

 .
Hence, the conditions of Theorem 1 are satisfied andℜ has a unique fixed point. □

Corollary 2. Let (P, u,⊥) be an O-complete orthogonal F -MS, ℜ : P → P is ⊥-preserving and
orthogonal cyclic (α, β)-admissible mapping. Suppose that there exist ψ ∈ Ψ and α, β : P−→ R+0 , such
that

(α (y) β(ς) + 1)u(ℜy,ℜς)
≤ 2ψ[M(y,ς)], (3.7)

for all y, ς ∈ P with y ⊥ ς, where

M(y, ς) = max

 u(y, ς), u(y,ℜy)u(ς,ℜς)
1+u(y,ς) ,

u(y,ℜς)u(ς,ℜy)
1+u(y,ς)

 .
Assume that the following assertions hold:

(i) There exists y0 ∈ P such that α (y0) ≥ 1 and β (y0) ≥ 1;
(ii)ℜ : P → P is ⊥-continuous or;
(iii) If {yn} is an orthogonal sequence in P such that yn → y

∗ and β (yn) ≥ 1, for all n ∈ N, then
β (y∗) ≥ 1;

Then there exists y∗ ∈ P such thatℜy∗ = y∗.
(iv) If the mapping P satisfies the property (W), then the fixed point y∗ is unique.

Proof. Let α (y) β(ς) ≥ 1 for y, ς ∈ P. Then, from (3.7), we get

2u(ℜy,ℜς) = (1 + 1)u(ℜy,ℜς)
≤ (α (y) β(ς) + 1)u(ℜy,ℜς)

≤ 2ψ[M(y,ς)].

Then we obtain,
u(ℜy,ℜς) ≤ ψ [M(y, ς)] ,

AIMS Mathematics Volume 8, Issue 11, 27347–27362.



27355

where

M(y, ς) = max

 u(y, ς), u(y,ℜy)u(ς,ℜς)
1+u(y,ς) ,

u(y,ℜς)u(ς,ℜy)
1+u(y,ς)

 .
Hence, the conditions of Theorem 1 are satisfied andℜ has a unique fixed point. □

Corollary 3. Let (P, u,⊥) be an O-complete orthogonal F -MS, ℜ : P → P is ⊥-preserving and
orthogonal cyclic (α, β)-admissible mapping. Suppose that there exist ψ ∈ Ψ and α, β : P−→ R+0 , such
that

α (y) β(ς)u(ℜy,ℜς) ≤ ψ [M(y, ς)] , (3.8)

for all y, ς ∈ P with y ⊥ ς, where

M(y, ς) = max

 u(y, ς), u(y,ℜy)u(ς,ℜς)
1+u(y,ς) ,

u(y,ℜς)u(ς,ℜy)
1+u(y,ς)

 .
Assume that the following conditions hold:

(i) There exists y0 ∈ P such that α (y0) ≥ 1 and β (y0) ≥ 1;
(ii)ℜ : P → P is ⊥-continuous or;
(iii) If {yn} is an orthogonal sequence in P such that yn → y

∗ and β (yn) ≥ 1 for all n ∈ N, then and
β (y∗) ≥ 1;

Then there exists y∗ ∈ P such thatℜy∗ = y∗.
(iv) If the mapping P satisfies the property (W), then the fixed point y∗ is unique.

Proof. Let α (y) β(ς) ≥ 1 for y, ς ∈ P. Then, from (3.8), we get

u(ℜy,ℜς) ≤ α (y) β(ς)u(ℜy,ℜς) ≤ ψ [M(y, ς)] .

Then we obtain,
u(ℜy,ℜς) ≤ ψ [M(y, ς)] ,

where

M(y, ς) = max

 u(y, ς), u(y,ℜy)u(ς,ℜς)
1+u(y,ς) ,

u(y,ℜς)u(ς,ℜy)
1+u(y,ς)

 .
Hence, the conditions of Theorem 1 are satisfied andℜ has a unique fixed point. □

Corollary 4. Let (P, u,⊥) be an O-complete orthogonal F -MS, ℜ : P → P is ⊥-preserving and
orthogonal cyclic (α, β)-admissible mapping such that

α (y) β(ς) ≥ 1 implies u(ℜy,ℜς) ≤ kM(y, ς),

for all y, ς ∈ P with y ⊥ ς, where 0 < k < 1 and

M(y, ς) = max

 u(y, ς), u(y,ℜy)u(ς,ℜς)
1+u(y,ς)

, u(y,ℜς)u(ς,ℜy)
1+u(y,ς)

 .
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Assume that the following assertions hold:
(i) Yhere exists y0 ∈ P such that α (y0) ≥ 1 and β (y0) ≥ 1;
(ii)ℜ : P → P is ⊥-continuous or;
(iii) If {yn} is an orthogonal sequence in P such that yn → y

∗ and β (yn) ≥ 1 for all n ∈ N, then and
β (y∗) ≥ 1;

Then there exists y∗ ∈ P such thatℜy∗ = y∗.
(iv) If the mapping P satisfies the property (W), then the fixed point y∗ is unique.

Proof. Taking ψ(t) = kt, where 0 < k < 1 in Theorem 1. □

Now, we prove that our result is a real generalization of main result of Faraji et al. [19].

Corollary 5. ( [19]) Let (P, u,⊥) be a complete F -MS, ℜ : P → P is cyclic (α, β)-admissible
mapping. Suppose that there exist ψ ∈ Ψ and α, β : P−→ R+0 such that

α (y) β(ς) ≥ 1 implies u(ℜy,ℜς) ≤ ψ [M(y, ς)] , (3.9)

where

M(y, ς) = max

 u(y, ς), u(y,ℜy)u(ς,ℜς)
1+u(y,ς) ,

u(y,ℜς)u(ς,ℜy)
1+u(y,ς)


for all y, ς ∈ P.

Assume that the following assertions hold:
(i) There exists y0 ∈ P such that α (y0) ≥ 1 and β (y0) ≥ 1;
(ii)ℜ : P → P is continuous or;
(iii) If {yn} is a sequence in P such that yn → y

∗ and β (yn) ≥ 1, for all n ∈ N, then β (y∗) ≥ 1;
Then there exists a unique point y∗ ∈ P such thatℜy∗ = y∗.

Proof. Suppose that
y ⊥ ς ⇐⇒ u(ℜy,ℜς) ≤ ψ [M(y, ς)]

where

M(y, ς) = max

 u(y, ς), u(y,ℜy)u(ς,ℜς)
1+u(y,ς) ,

u(y,ℜς)u(ς,ℜy)
1+u(y,ς)


Fix y0 ∈ P. As ℜ satisfies the condition (3.9) for all ς ∈ P, y0 ⊥ ς. Hence, (P,⊥) is an O-set. It is
obviously that P is O-complete F -MS andℜ is an ⊥-contraction, ⊥-continuous and ⊥-preserving. By
applying Theorem 1,ℜ has a unique fixed point in P.

□

4. Applications

Fixed point theory is a very important tool to solve differential and integral equations used to obtain
solutions of different mathematical models, dynamical systems, models in economy, game theory,
physics, computer science, engineering, neural networks and many others (see [20–30]).

In this section, let us give an application of our fixed point theorem to a nonlinear differential
equation of fractional order
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CDη(y(t)) = g(t, y(t)), (0 < t < 1, 1 < η ≤ 2) (4.1)

along with the integral boundary conditions

y(0) = 0 , y/(0) = I, (0 < I < 1),

where CDη represents the Caputo fractional derivative of order η defined by

CDηg(t) =
1

Γ( j − η)

t∫
0

(t − s) j−η−1 g j(s)ds,

(
j − 1 < η < j, j =

[
η
]
+ 1

)
and g is a continuous function. Consider

P= {y : y ∈ C ([0, 1],R)}

with supremum norm ∥y∥∞ = supt∈[0,1] |y(t)| . Thus, (P, ∥y∥∞) is a Banach space. Note that

Iηg(t) =
1
Γ(η)

t∫
0

(t − s)η−1 g(s)ds, with η > 0

is Riemann-Liouville fractional integral.

Lemma 1. ( [8]) A Banach space (P, ∥·∥∞) equipped with the F -metric d defined by

d(y, ς) = ∥y − ς∥∞ = sup
t∈[0,1]
|y(t) − ς(t)|

and orthogonal relation y⊥ς ⇔ yς ≥ 0, where y, ς ∈ P, is an orthogonal F -metric space

Theorem 2. Suppose that the mapping g is continuous. Assume that the following conditions hold:

(i) There exists a constant ϑ such that

∥g (t, y) − g (t, ς)∥ ≤ ϑ ∥y − ς∥ ,

for t ∈ [0, 1] and for all y, ς ∈ P such that y(t)ς(t) ≥ 0 and with ϑϖ < 1, where

ϖ =
1

Γ(η + 1)
+

2λη+1Γ(η)(
2 − λ2)Γ(η + 1)

.

(ii) There existsℜ : (P,⊥, d)→ (P,⊥, d) defined by

ℜy(t) =
1
Γ(η)

t∫
0

(t − s)η−1 g (s, y(s)) ds

+
2t(

2 − λ2)Γ(η)

λ∫
0


s∫

0

(s − m)η−1 g (m, y(m)) dm

 ds,
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for all y, ς ∈ P such that y(t)ς(t) ≥ 0. Alsoℜ is orthogonal cyclic (α, β)-admissible.
(iii) There exists y0(t) ∈ (P,⊥, d) with y0(t) ≥ 0 for t ∈ [0, 1] such that y0(t) ⊥ ℜy0(t) and there exist
α, β : P → R+0 such that α (y0(t)) ≥ 1 and β (y0(t)) ≥ 1.
(iv)ℜ : P → P is ⊥-continuous or.
(v) If {yn} is an othogonal sequence in P such that yn → y

∗ and β (yn) ≥ 1 for all n ∈ N, then and
β (y∗) ≥ 1.

Then (4.1) has a solution.

Proof. It is well known from (see [8, 31]) that y ∈ P is a solution of (4.1) if y ∈ P is a solution of the
integral equation

y(t) =
1
Γ(η)

t∫
0

(t − s)η−1 g (s, y(s)) ds

+
2t(

2 − λ2)Γ(η)

λ∫
0


s∫

0

(s − m)η−1 g (m, y(m)) dm

 ds.

Then, problem (4.1) is equivalent to find y ∈ P which is a fixed point of mappingℜ. Suppose that
⊥ ⊆ P × P be defined by

y⊥ς ⇔ y(t)ς(t) ≥ 0,

for all t ∈ [0, 1]. Then the mapping P is orthogonal under ⊥, since for y ∈ P, there exists ς(t) = 0, for
all t ∈ [0, 1] such that y(t)ς(t) = 0. Now define d : P × P → [0,+∞) by

d(y, ς) = ∥y − ς∥∞ = sup
t∈[0,1]
∥y(t) − ς(t)∥ ,

for all y, ς ∈ P, then (P, d,⊥) is a complete orthogonal F -MS. It is very easy to prove that ℜ is
⊥-continuous. We first prove thatℜ is ⊥-preserving. Suppose y(t)⊥ς(t), for all t ∈ [0, 1]. Now

ℜy(t) =
1
Γ(η)

t∫
0

(t − s)η−1 g (s, y(s)) ds

+
2t(

2 − λ2)Γ(η)

λ∫
0


s∫

0

(s − m)η−1 g (m, y(m)) dm

 ds > 0,

which implies thatℜy(t)⊥ℜς(t), i.e.,ℜ is ⊥-preserving. Thus, for all t ∈ [0, 1], y(t)⊥ς(t), we have

α (y(t)) β (ς(t))
∥∥∥ℜy(t) −ℜς(t)

∥∥∥

≤
∥∥∥ℜy(t) −ℜς(t)

∥∥∥ =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

1
Γ(η)

t∫
0

(t − s)η−1 g (s, y(s)) ds

+ 2t
(2−λ2)Γ(η)

λ∫
0

 s∫
0

(s − m)η−1 g (m, y(m)) dm
 ds

− 1
Γ(η)

t∫
0

(t − s)η−1 g (s, ς(s)) ds

− 2t
(2−λ2)Γ(η)

λ∫
0

 s∫
0

(s − m)η−1 g (m, ς(m)) dm
 ds

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
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≤
1
Γ(η)

t∫
0

∥t − s∥η−1
∥g (s, y(s)) − g (s, ς(s))∥ ds

+
2t(

2 − λ2)Γ(η)

λ∫
0


s∫

0

(s − m)η−1
∥g (m, ς(m)) − g (m, y(m))∥ dm

 ds,

which implies

α (y(t)) β (ς(t))
∥∥∥ℜy(t) −ℜς(t)

∥∥∥
≤


1
Γ(η)

t∫
0
∥t − s∥η−1 ds

+ 2t
(2−λ2)Γ(η)

λ∫
0

 s∫
0
∥s − m∥η−1 dm

 ds

ϑϖ ∥y − ς∥∞

=

(
1

Γ(η + 1)
+

2λη+1Γ(η)(
2 − λ2)Γ(η + 1)

)
ϑ ∥y(s) − ς(s)∥∞

= ϑϖ ∥y − ς∥∞

≤ ϑϖM(y, ς),

where

M(y, ς) = max

 ∥y − ς∥∞ ,
∥y−ℜy∥∞∥ς−ℜς∥∞

1+∥y−ς∥∞
,

∥y−ℜς∥∞∥ς−ℜy∥∞
1+∥y−ς∥∞

 .
Taking ϱ = ϑϖ < 1. Define α, β : P → R+0 by

α(y) =
{

1, if y(t) > 0
0, otherwise.

and

β(ς) =
{

1, if ς(t) > 0
0, otherwise.

Now, if ψ(t) = ϱt, where ϱ ∈ (0, 1), then ψ ∈ Ψ. Hence from above, we have

α(y)β(ς)d(ℜy,ℜς) ≤ ψ (M(y, ς)) ,

where

M(y, ς) = max

 u(y, ς), u(y,ℜy)u(ς,ℜς)
1+u(y,ς) ,

u(y,ℜς)u(ς,ℜy)
1+u(y,ς)

 ,
for all y, ς ∈ P. Hence, all the condition of Corollary 4 are satisfied and thus Eq (4.1) has a unique
solution. □
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5. Conclusions

In the present research work, we introduced rational (α, β, ψ)-contraction in the framework of
OF -MS and established some fixed point results. We derived the main result of Faraji et al. [19] as
consequences of our leading result. We solved the existence and uniqueness of fractional differential
equation by our leading theorem. Our results are new and significantly contribute to the existing
literature in the fixed point theory.

In this direction, obtaining the fixed points of multi-valued mappings and fuzzy mappings for
rational (α, β, ψ)-contraction in the framework of OF -MS can be fascinating results for the
researchers. Moreover, one can solve fractional differential inclusion problems as applications of
these proposed outlines.

Nomenclature

The following abbreviations are used in this manuscript:
(P, u,⊥) Orthogonal F -metric space
ℜ Self mapping
{yn} Orthogonal sequence
CDη Caputo fractional derivative of order η
(P, ∥y∥∞) Banach space.
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