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1. Introduction

Consider existence and nonexistence of positive solutions to the following type of nonlocal discrete
Kirchhoff equation:

− [a + b(
n∑

j=1

m+1∑
i=1

|∆1x(i − 1, j)|2 +
m∑

i=1

n+1∑
j=1

|∆2x(i, j − 1)|2)] ·
(
∆2

1x(i − 1, j) + ∆2
2x(i, j − 1)

)
= f ((i, j), x(i, j)), ∀(i, j) ∈ [1,m] × [1, n],

(1.1)

subject to Dirichlet boundary conditions

x(i, 0) = x(i, n + 1) = 0, i ∈ [0,m + 1], x(0, j) = x(m + 1, j) = 0, j ∈ [0, n + 1], (1.2)

where, given constants a, b > 0 and m, n > 0 are integers. For integers ℏ ≤ ℘, let [ℏ, ℘] = {ℏ, ℏ +
1, · · · , ℘} denote a discrete segment. Forward difference operators ∆1x(i, j) = x(i + 1, j) − x(i, j),
∆2x(i, j) = x(i, j + 1) − x(i, j) and ∆2x(i, j) = ∆(∆x(i, j)). R+ denotes the set of all nonnegative real
numbers and the nonlinearity f ((i, j), x) fulfills:
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(H1) f : [0,m + 1] × [0, n + 1] × R → R+ is continuous in x. If x ≤ 0, then f ((i, j), x) ≡ 0 for all
(i, j) ∈ [0,m + 1] × [0, n + 1];
(H2) for (i, j) ∈ [1,m] × [1, n], f ((i, j),x)

x3 is nondecreasing with respect to x ≥ 0.
Notice that (1.1) with Dirichlet boundary conditions (1.2) is usually taken in regard to the discrete

analogue of the following Kirchhoff type problem: −
(
a + b

∫
Ω

|∇u|2
)
△u = f (x, u), in Ω,

u = 0, on Ω.

(1.3)

Owing to taking into account the effects of the changes in the length of a string during vibrations, (1.3)
is an extension of the classical d’Alembert’s wave equations [1]. Kirchhoff type equation (1.3) concerns
not only the non-Newton mechanics, but also the physical laws of the universe, population dynamics
models, the problem of plasma and so on. Consequently, it has captured keen research interest and
there are many papers that have emerged. For example, Perera and Zhang [2] achieved a nontrivial
solution by combining a critical group with the Yang index. Both in [3] and [4], the authors displayed
results on multiple solutions including sign-changing solutions. Without the Ambrosetti-Rabinowitz
condition, ground state solutions to the N-Kirchhoff equation was studied in [5]. For more interesting
results, we refer the reader to [6, 7] and references therein.

It is well known that difference equation models are established in lots of areas, for instance,
mechanical engineering, neural networks, biology, computer science and so on. For example, using
difference equations, a two-patch SIR disease model was established in [8]. The authors studied the
interaction between wild and sterile mosquitoes by a difference equation model in [9]. Because of
wide applications, difference equations have been investigated extensively and many results have been
achieved. Here we mention a few. Yu, Guo and Zuo [10] considered periodic solutions of second
order self-adjoint difference equations, Zhou and Ling [11] presented results on positive solutions to a
discrete two-point boundary value problem, and Kuang and Guo [12] dealt with heteroclinic solutions
for p-Laplacian difference equations with a parameter and Nastasi, Tersian and Vetro [13] gave results
on the existence of at least two non-zero homoclinic solutions without using Ambrosetti-Rabinowitz
type-conditions.

As pointed out in [14], partial difference equations, involving two or more discrete variables, have
been used in recent investigations related to digital control systems, image processing, neural networks,
population models and social behaviors. Recently, many authors turned their interest towards study of
them. For example, Long and Zhang [15, 16] achieved multiple solutions of second order partial
difference equations via Morse theory. Meanwhile, results on periodic solutions of partial difference
equations via critical point theorems were presented in [17–19].

The nonlocal discrete Kirchhoff type equation (1.1), a basic nonlinear partial difference equation,
not only contains bivariate sequences with two independent integer variables, but also involves the
discrete Kirchhoff term

b(
n∑

j=1

m+1∑
i=1

|∆1x(i − 1, j)|2 +
m∑

i=1

n+1∑
j=1

|∆2x(i, j − 1)|2)(∆2
1x(i − 1, j) + ∆2

2x(i, j − 1)).

Thus, it is more difficult and interesting to study. Recently, based on critical point theory and variational
methods, the authors [20] obtained the existence of at least three solutions. We move our attention
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to (1.1) and obtain some results. For example, we obtained sign-changing solutions in [21] and
displayed results on infinitely many solutions in [22,23]. Also, in [24], we studied nontrivial solutions
via Morse theory. Meanwhile, it is well known that positive solutions play an important role in research,
there seems few results concerned with positive solutions of (1.1). Moreover, above mentioned results
indicate that critical point theory is a strong candidate for study of (1.1). Consequently, in this paper,
we manage to deal with the existence and nonexistence of positive solutions of (1.1) by employing
variational methods together with a variant version of the mountain pass theorem, which can be found
in [25].

We arrange this paper as follows. In Section 2, we provide preliminaries and display our main
results. We prove our main results at length in Section 3.

2. Preliminaries and main results

Let the set of all bivariate sequences be denoted by

S = {x = {x(i, j)} : x(i, j) ∈ R, (i, j) ∈ Z × Z} .

For any x, y ∈ S , ı, ȷ ∈ R, define ıx + ȷy = {ıx(i, j) + ȷy(i, j)}. Then, S is a vector space. Define the
subset X, an mn-dimensional Hilbert space, of S as

X = {x ∈ S : x(i, 0) = x(i, n + 1) = 0 for i ∈ [0,m + 1],
x(0, j) = x(m + 1, j) = 0 for j ∈ [0, n + 1]}.

For any x, y ∈ X, endow with the inner product ⟨·, ·⟩ on E as

⟨x, y⟩ =
n∑

j=1

m+1∑
i=1

(∆1x(i − 1, j) · ∆1y(i − 1, j)) +
m∑

i=1

n+1∑
j=1

(∆2x(i, j − 1) · ∆2y(i, j − 1)), (2.1)

which implies that the norm ∥ · ∥ induced by (2.1) is

∥x∥ =
√
⟨x, x⟩ =

 n∑
j=1

m+1∑
i=1

|∆1x(i − 1, j)|2 +
m∑

i=1

n+1∑
j=1

|∆2x(i, j − 1)|2


1/2

, ∀x ∈ X.

For later use, we denote an mn-dimensional Hilbert space E, which is equipped with usual norm | · | and
inner product (·, ·), respectively. Then, E is isomorphic to X. Throughout this paper, x ∈ X is regarded
as an extension of x ∈ E when it is necessary. In what follows, for 1 ≤ s < +∞, let

Ls ≜

x ∈ S : ∥x∥Ls =

 m∑
i=1

n∑
j=1

|x(i, j)|s


1
s

< +∞


and

∥x∥L∞ = sup
(i, j)∈[1,m]×[1,n]

|x(i, j)| < +∞.

Then,
∥x∥Ls ≤ ηs∥x∥, ∀x ∈ X, (2.2)
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where ηs is the best constant for the embedded of X in Ls.
For convenience, we give some notations. Denote the well-known discrete Laplacian acting on a

function x(i, j) : [0, 1 + m] × [0, 1 + n] by Ξx(i, j) = ∆2
1x(i − 1, j) + ∆2

2x(i, j − 1). From [26], we get
that the distinct Dirichlet eigenvalues of the invertible operator −Ξ on [1,m] × [1, n] can be expressed
as 0 < λ1 < λ2 ≤ λ3 ≤ · · · ≤ λmn. Specifically,

λ1∥x∥22 ≤ ∥x∥
2 ≤ λmn∥x∥22. (2.3)

Consider the following eigenvalue problem: − ∥x∥2Ξ = µx3(i, j), [i, j] ∈ [1,m] × [1, n]
x(i, 0) = x(i, n + 1) = x(0, j) = x(m + 1, j) = 0, i ∈ [0,m + 1], j ∈ [0, n + 1].

(2.4)

Denote the minimum eigenvalue and the maximum eigenvalue of (2.4) by µ1 and µmax, respectively.
In the same manner as [22], we get that (2.4) has finitely many eigenvalues which all belong to
[λ2

1,mnλ2
mn]. Clearly, µ1 > 0.

Write F((i, j), x) =
∫ x

0
f ((i, j), τ)dτ. Consider the functional J : E → R as the following:

J(x) =
a
2

 n∑
j=1

m+1∑
i=1

|∆1x(i − 1, j)|2 +
m∑

i=1

n+1∑
j=1

|∆2x(i, j − 1)|2


+
b
4

 n∑
j=1

m+1∑
i=1

|∆1x(i − 1, j)|2 +
m∑

i=1

n+1∑
j=1

|∆2x(i, j − 1)|2


2

−

m∑
i=1

n∑
j=1

F((i, j), x(i, j))

=
a
2
∥x∥2 +

b
4
∥x∥4 −

m∑
i=1

n∑
j=1

F((i, j), x(i, j)),

(2.5)

then the continuity of f guarantees that J ∈ C1(E,R).
Denote

Φ(x) =
a
2

 n∑
j=1

m+1∑
i=1

|∆1x(i − 1, j)|2 +
m∑

i=1

n+1∑
j=1

|∆2x(i, j − 1)|2


+
b
4

 n∑
j=1

m+1∑
i=1

|∆1x(i − 1, j)|2 +
m∑

i=1

n+1∑
j=1

|∆2x(i, j − 1)|2


2

and

Ψ(x) =
m∑

i=1

n∑
j=1

F((i, j), x(i, j)),

then J(x) = Φ(x) − Ψ(x). For each x, z ∈ E, we have

⟨Ψ′(x), z⟩ = lim
τ→0

Ψ(x + τz) − Ψ(x)
τ

=

m∑
i=1

n∑
j=1

( f ((i, j), x(i, j)) · z(i, j)). (2.6)
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Moreover, using Dirichlet boundary conditions, there holds

⟨Φ′(x), z⟩ = lim
τ→0

Φ(x + τz) − Φ(x)
τ

=a

 n∑
j=1

m+1∑
i=1

(∆1x(i − 1, j) · ∆1z(i − 1, j)) +
m∑

i=1

n+1∑
j=1

(∆2x(i, j − 1) · ∆2z(i − 1, j))


+ b

 n∑
j=1

m+1∑
i=1

|∆1x(i − 1, j)|2 +
m∑

i=1

n+1∑
j=1

|∆2x(i, j − 1)|2
 · n∑

j=1

m+1∑
i=1

(∆1x(i − 1, j) · ∆1z(i − 1, j)) +
m∑

i=1

n+1∑
j=1

(∆2x(i, j − 1) · ∆2z(i − 1, j))


=a

 n∑
j=1

m∑
i=1

(∆1x(i − 1, j) · ∆1z(i − 1, j)) −
n∑

j=1

∆1x(i, j) · z(m, j)

+

m∑
i=1

n∑
j=1

(∆2x(i, j − 1) · ∆2z(i − 1, j)) −
m∑

i=1

∆2x(i, j) · z(i, n)


+ b

 n∑
j=1

m+1∑
i=1

|∆1x(i − 1, j)|2 +
m∑

i=1

n+1∑
j=1

|∆2x(i, j − 1)|2
 · n∑

j=1

m∑
i=1

(∆1x(i − 1, j) · ∆1z(i − 1, j)) −
n∑

j=1

∆1x(i, j) · z(m, j)

+

m∑
i=1

n∑
j=1

(∆2x(i, j − 1) · ∆2z(i − 1, j)) −
m∑

i=1

∆2x(i, j) · z(i, n)


= −

a + b

 n∑
j=1

m+1∑
i=1

|∆1x(i − 1, j)|2 +
m∑

i=1

n+1∑
j=1

|∆2x(i, j − 1)|2

 · n∑

j=1

m∑
i=1

(∆1x(i − 1, j) · ∆1z(i − 1, j)) +
m∑

i=1

n∑
j=1

(∆2x(i, j − 1) · ∆2z(i − 1, j))

 .

(2.7)

Recall the definition of ⟨·, ·⟩ and joint (2.6) with (2.7), it follows that

⟨J′(x), z⟩ =⟨Ψ′(x) − Φ′(x), z⟩

=(a + b∥x∥2)
( n∑

j=1

m∑
i=1

(∆1x(i − 1, j) · ∆1z(i − 1, j))

+

m∑
i=1

n∑
j=1

(∆2x(i, j − 1) · ∆2z(i − 1, j))
)
−

m∑
i=1

n∑
j=1

( f ((i, j), x(i, j)) · z(i, j)).

(2.8)

Accordingly, ⟨J′(x), z⟩ = 0 is equivalent to
n∑

j=1

m∑
i=1

(
(∆1x(i − 1, j) · ∆1z(i − 1, j)) + (∆2x(i, j − 1) · ∆2z(i −

1, j)) − ( f ((i, j), x(i, j)) · z(i, j))
)
= 0. Since z is arbitrary, the critical point of J is just the solution
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of (1.1) with Dirichlet boundary conditions (1.2). Namely, to seek solutions of (1.1) with Dirichlet
boundary conditions (1.2), it is equivalent to look for critical points of the functional J on E. Further,
the assumption (H1) and the strong maximum principle guarantee that nontrivial critical points of J
on E are actually positive solutions of (1.1) with Dirichlet boundary conditions (1.2).

Throughout this paper, we denote a universal constant by c unless specified otherwise. To seek
critical points of the functional (2.5), we recall the concept of the Cerami condition at level c ((C)c

for short), which is a weak version of the Palais-Smale condition ((PS ) for short) and introduced by
Cerami [27], as well as a variant version of the mountain pass theorem, which plays an important role
in proofs of our main results.

Definition 2.1. Let J(x) ∈ C1(E,R). If any sequence {xκ} ⊂ E satisfying

{J(xκ)} → c and (1 + ∥xκ∥)∥J′(xκ)∥ → 0, as κ → +∞

possesses a convergent subsequence in E, then J satisfies (C)c. For all c ∈ R, if J(x) satisfies (C)c, then
J(x) is called satisfying the (C).

Proposition 2.1. [25] Let J ∈ C1(E,R). Assume that

max{J(0), J(x1)} ≤ α < β ≤ inf
∥x∥=ρ

J(x)

for some α < β, ρ > 0 and x1 ∈ E with ∥x1∥ > β. Then there is a sequence {xκ} of E satisfying

J(xκ)→ c ≥ β > 0 and (1 + ∥xκ∥)∥J′(xκ)∥ → 0, as κ → ∞, (2.9)

where
c = inf

γ∈Γ
max
0≤τ≤1

J (γ(τ)) and Γ = {γ ∈ C([0, 1], E) : γ(0) = 0, γ(1) = x1}.

Further, if (C)c is satisfied, then J has a critical value c.

Assume that
(H3) for any (i, j) ∈ [1,m] × [1, n],

lim
x→0

f ((i, j), x)
ax

= p(i, j), lim
x→+∞

f ((i, j), x)
x3 = q(i, j) . 0,

where 0 ≤ p(i, j), q(i, j) ≤ +∞ and ∥p∥L∞ < λ1.

Remark 2.1. The assumption (H3) means that the nonlinearity f possesses asymptotic behavior at
zero and infinity. Usually, the asymptotically 4-linear condition

lim
x→0

f (i, j), x
ax

= λ, lim
x→+∞

f (i, j), x
bx3 = µ, (2.10)

or the following classic 4-superlinear condition of Ambrosetti and Rabinowitz (AR)

∃ν > 4 : νF((i, j), x) ≤ x f ((i, j), x), |x| large, (2.11)

is crucial to certify the mountain pass geometry and prove the boundedness of Cerami or Palais-Smale
sequences in E. Clearly, our assumption (H3) is weaker than (2.10) and indicates that (2.11) does
not hold any more. Further, q(i, j) ≡ +∞ in (H3) indicates that f is 4-superlinear at infinity, which is
weaker than (2.11).
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Set

Λ = inf

∥x∥4 : x ∈ X,
m∑

i=1

n∑
j=1

q(i, j)x4(i, j) = 1

 . (2.12)

Remark 2.2. By (2.12), we have that Λ is positive.
First, Λ is attainable. Let a minimizing sequence of Λ be denoted by {xl} ⊂ E, then {xl} is bounded

and satisfies
m∑

i=1

n∑
j=1

q(i, j)x4
l (i, j) = 1. Choose a subsequence of {xl}, still denoted by {xl}. Then there

exists x̄1 ∈ E such that xl → x̄1. Hence,

m∑
i=1

n∑
j=1

q(i, j)x4
l (i, j)→

m∑
i=1

n∑
j=1

q(i, j)x̄4
1(i, j), as l→ +∞,

and
m∑

i=1

n∑
j=1

q(i, j)x̄4
1(i, j) = 1.

Therefore,

Λ ≤

 n∑
j=1

m+1∑
i=1

|∆1 x̄1(i − 1, j)|2 +
m∑

i=1

n+1∑
j=1

|∆2 x̄1(i, j − 1)|2


2

≤ Λ,

which leads to

Λ =

 n∑
j=1

m+1∑
i=1

|∆1 x̄1(i − 1, j)|2 +
m∑

i=1

n+1∑
j=1

|∆2 x̄1(i, j − 1)|2


2

= ∥x̄1∥
4.

Namely, Λ is attainable.
Further, x̄1(i, j) > 0 for all (i, j) ∈ [1,m] × [1, n]. In fact, if ∥q∥L∞ < +∞ and q(i, j) ≥ (.)0,

then Λ > 0 and there exists x̄1 ∈ E such that ∥x̄1∥
4 = 1 and

m∑
i=1

n∑
j=1

q(i, j)x̄4
1(i, j) = 1. Moreover,

x̄1(i, j) > 0 for all (i, j) ∈ [1,m] × [1, n]. Furthermore, assume x̄1(i, j) ≥ 0 on (i, j) ∈ [1,m] × [1, n].
Otherwise, we can replace x̄1 by |x̄1|. So, the strong maximum principle implies that x̄1(i, j) > 0 for all
(i, j) ∈ [1,m] × [1, n].

Now we display our main results as following:

Theorem 2.2. Assume f ((i, j), x) satisfies (H1)–(H3). Then:
(i) If Λ ≥ 1

b , there is no any positive solution of (1.1) with Dirichlet boundary conditions (1.2);
(ii) If Λ < 1

b , there is at least one positive solution of (1.1) with Dirichlet boundary conditions (1.2).

Corollary 2.3. Assume (H1)–(H3) hold with q(i, j) ≡ ℓ > 0. Then:
(i) If ℓ ≤ bµ1, (1.1) with Dirichlet boundary conditions (1.2) admits no any positive solution;
(ii) If bµ1 < ℓ < +∞, (1.1) with Dirichlet boundary conditions (1.2) possesses at least one positive
solution.

Proof. Note that q(i, j) ≡ ℓ > 0 ensures that Λ = µ1
ℓ

. Then, Theorem 2.2 guarantees conclusions in
Corollary 2.3 are true. □
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Remark 2.3. Owing to (ii) of Corollary 2.3, (1.1) with Dirichlet boundary conditions (1.2) admits at
least one positive solution if q(i, j) ≡ bµı, ı ≥ 2.

Theorem 2.4. Assume q(i, j) ≡ ∞ and f ((i, j), x) satisfies (H1)–(H3). If 4 < k < 6 such that

lim
x→+∞

f ((i, j), x)
xk−1 = 0, (i, j) ∈ [1,m] × [1, n].

Then, there exists at least one positive solution for (1.1) with Dirichlet boundary conditions (1.2).

Remark 2.4. It is necessary to point out that it is not difficult to find many functions satisfying our
conditions in Theorems 2.2 and 2.4, but (2.11) is not satisfied.

Example 2.1. Given M > 0, for any (i, j) ∈ [1,m] × [1, n], set

f ((i, j), x) =


0, −∞ < x ≤ 0;
x3, 0 < x ≤ M;
Mx3, M < x < +∞.

By simple calculation, we have that f ((i, j), x) satisfies (H1)–(H3) with p(i, j) ≡ 0, q(i, j) ≡ M and

F((i, j), x) =
1
4

Mx4 −
1

20
M5, x > M.

If (2.11) is met, then there exists ν > 4 such that

Mx4
(
ν

4
−

M4

20x4

)
≤ Mx4, for large x,

which means that ν ≤ 4. And it is a contradiction.

Example 2.2. For any (i, j) ∈ [1,m] × [1, n], set

f ((i, j), x) =

0, −∞ < x ≤ 0;
x3 ln x, 0 < x < +∞;

(2.13)

(2.13) means that p(i, j) ≡ 0, q(i, j) ≡ +∞ and (H1)–(H3) are satisfied. Meanwhile,

F((i, j), x) =
1
4

x4 ln x −
1

16
x4 +

1
16

e4, x > e,

which indicates that

x4 ln x
(
ν

4
−

ν

16 ln x

)
+
νe4

16
≤ x4 ln x, for large x

holds for ν > 4 impossible. Subsequently, (2.11) is not satisfied.

Theorem 2.5. Suppose (H1) holds and q(i, j) = +∞. Moreover:
(H4) There exist some positive constant C and 4 < k < 6 satisfying

| f ((i, j), x)| ≤ C(|x|k−1 + 1), ∀(i, j) ∈ [1,m] × [1, n], x ∈ R;

(H5) Let G((i, j), x) = x f ((i, j), x) − 4F((i, j), x), there exists θ ≥ 1 such that

θG((i, j), x) ≥ G((i, j), ωx), ∀(i, j) ∈ [1,m] × [1, n], x ∈ R and 0 ≤ ω ≤ 1;

(H6) There exists δ > 0 such that F((i, j), x) ≤ a
2λ1x2 holds for |x| < δ.

Then, problem (1.1) with Dirichlet boundary conditions (1.2) admits at least one positive solution.
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Remark 2.5. In some sense, Theorem 2.5 extends Theorem 2.2 in two ways. On the one hand, (H5) is
equivalent to (H2) when θ = 1 and gives some general when θ > 1. For example, set

f ((i, j), x) = 4x3 ln(1 + x4) + 2 sin x, ∀(i, j) ∈ [1,m] × [1, n],

direct computation yields that f satisfies (H5) but does not satisfy (H2). On the other hand, (H6) is
weaker than (H3). For example, set

f ((i, j), x) =

0, −∞ < x ≤ 0;
4x3 ln(1 + x4) + 2x ln x, x > 0.

Then, f satisfies both (H5) and (H6), but neither (H2) nor (H3).

3. Proofs of main results

Proof of Theorem 2.2. We give the proof of (i) by contradiction. As to the proof of (ii), we complete
it by Proposition 2.1 in 2 steps: First, we are to verify that there exists a sequence {xκ}κ∈N ⊂ E such
that (2.9) in Proposition 2.1 is true. Second, we show the functional J satisfies the (C)c in E. Since E
is finite dimensional, we only need to prove {xκ} is bounded.

(i) Suppose that x ∈ E is positive and solves (1.1) with Dirichlet boundary conditions (1.2), by (2.8),
it follows that

(a + b∥x∥2)∥x∥2 =
m∑

i=1

n∑
j=1

( f ((i, j), x(i, j)) · x(i, j)).

Together with (H1)–(H3), we obtain

b∥x∥4 <
m∑

i=1

n∑
j=1

( f ((i, j), x(i, j)) · x(i, j)) ≤
m∑

i=1

n∑
j=1

(q(i, j) · x4(i, j)),

which implies that Λ < 1
b . This is a contradiction and Theorem 2.2(i) is verified.

(ii) We are to complete the proof by applying Proposition 2.1. Thus we begin the proof with showing
that there exist ρ, β > 0 such that J(x) ≥ β for x ∈ E with ∥x∥ = ρ, and J(τx1) → −∞, as τ → +∞.
Indeed, thanks to (H1) and (H3), for any ϵ > 0, there exists M̂ = M̂(ϵ) > 0 such that

F((i, j), x) ≤
1
2

a(∥p∥L∞ + ϵ)x2 + M̂x4, ∀(i, j) ∈ [1,m] × [1, n], x ∈ R. (3.1)

Choosing a suitable ϵ > 0 such that (∥p∥L∞ + ϵ) < λ1. Combining (3.1) with (2.2), (2.3) and (2.5), it
follows that

J(x) =
a
2
∥x∥2 +

b
4
∥x∥4 −

m∑
i=1

n∑
j=1

F((i, j), x(i, j))

≥
a
2
∥x∥2 +

b
4
∥x∥4 −

1
2

a(∥p∥L∞ + ϵ)
m∑

i=1

n∑
j=1

x2(i, j) − M̂
m∑

i=1

n∑
j=1

x4(i, j)

≥
a
2

(
1 −

(∥p∥L∞ + ϵ)
λ1

)
∥x∥2 +

b
4
∥x∥4 − M̂η4

4∥x∥
4.
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Therefore, we can select small ρ > 0 such that

J(x) ≥
a
4

(
1 −

(∥p∥L∞ + ϵ)
λ1

)
ρ2 ≜ β > 0, x ∈ E with ∥x∥ = ρ.

Since Λ < 1
b , we have

lim
τ→+∞

J(τx̄1(i, j))
τ4 = lim

τ→+∞

a∥x̄1∥
2

2τ2 +
b
4
∥x̄1∥

4
−

m∑
i=1

n∑
j=1

F((i, j), τx̄1(i, j))
τ4


=

b
4
∥x̄1∥

4
−

m∑
i=1

n∑
j=1

lim
τ→+∞

F((i, j), τx̄1(i, j))
τ4 x̄4

1(i, j)
· x̄4

1(i, j)

=
b
4
∥x̄1∥

4
−

1
4

m∑
i=1

n∑
j=1

q(i, j)x̄4
1(i, j)

=
b
4
Λ −

1
4
< 0,

which implies that J(τx̄1) → −∞ as τ → +∞ for all (i, j) ∈ [1,m] × [1, n]. Therefore, there exists
τ0 > 0 large enough such that

J(τ0 x̄1) < 0 and max{J(0), J(τ0 x̄1)} ≤ 0 < β ≤ inf
∥x∥=ρ

J(x).

Define

Γ = {γ ∈ C([0, 1], E) : γ(0) = 0, γ(1) = τ0 x̄1},

and

c = inf
γ∈Γ

max
0≤ϖ≤1

J (γ(ϖ)) .

According to Proposition 2.1, it yields that c ≥ β > 0 and there exists a sequence {xκ}κ∈N ⊂ E such that

J(xκ)→ c, (1 + ∥xκ∥)∥J′(xκ)∥ → 0, as κ → ∞. (3.2)

Let {xκ} ⊂ E. Our next task is to prove that {xκ} has a convergent subsequence, also written by
{xκ}. Since E is an mn-dimensional Hilbert space, it suffices to show the boundedness of {xκ}. Arguing
indirectly, suppose that ∥xκ∥ → +∞ as κ → +∞. Write yκ =

xκ
∥xκ∥

, which follows that ∥yκ∥ = 1.
Therefore, {yκ} possesses a subsequence, still denoted by {yκ}, satisfying yκ(i, j)→ y(i, j) as κ → ∞ for
all (i, j) ∈ [1,m] × [1, n].

We assume y = 0 and denote Ω1 ≜ {(i, j) : (i, j) ∈ [1,m] × [1, n] such that x(i, j) > 0} and
y+ = max{y, 0}. In view of (H1) and (H3), there exists M̃ > 0 such that

f ((i, j), x)
x3 ≤ M̃, (i, j) ∈ Ω1. (3.3)
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Owing to (H1), (2.8), (3.2) and (3.3), we have

b = lim
κ→+∞

m∑
i=1

n∑
j=1

f ((i, j), xκ((i, j)) · xκ((i, j)

∥xκ∥4

= lim
κ→+∞

m∑
i=1

n∑
j=1

f ((i, j), xκ((i, j))
x3
κ(i, j)/y3

κ(i, j)
· yκ(i, j)

= lim
κ→+∞

m∑
i=1

n∑
j=1

f ((i, j), xκ((i, j))
x3
κ(i, j)

· y4
κ(i, j)

= lim
κ→+∞

∑∑
(i, j)∈Ω1

f ((i, j), xκ((i, j))
x3
κ(i, j)

· (y+κ (i, j))4

≤M̃ lim
κ→+∞

m∑
i=1

n∑
j=1

(y+κ (i, j))4

=0.

Obviously, it is impossible.
We assume y , 0 and set

pκ(i, j) =


0, if xκ(i, j) ≤ 0;
f ((i, j), xκ(i, j))

x3
κ(i, j)

, if xκ(i, j) > 0.

We obtain that 0 ≤ pκ(i, j) ≤ M̃ for all (i, j) ∈ [1,m] × [1, n]. Consequently, we can assume that there
exists a function h(i, j) such that

pκ(i, j)→ h(i, j), as κ → +∞.

Now, for any z ∈ E, we have

m∑
i=1

n∑
j=1

pκ(i, j)y3
κ(i, j)z(i, j) =

m∑
i=1

n∑
j=1

pκ(i, j)(y+κ (i, j))3z(i, j)

→

m∑
i=1

n∑
j=1

h(i, j)(y+(i, j))3z(i, j).

(3.4)

Furthermore, recall yκ =
xκ
∥xκ∥

, for all z ∈ E, (2.8), (3.2) and (H1) induce that

(J′(xκ), z)
∥xκ∥3

=
a + b∥xκ∥2

∥xκ∥3
⟨xκ, z⟩ −

m∑
i=1

n∑
j=1

(
f ((i, j), xκ(i, j))
∥xκ∥3

, z(i, j)
)

=
a + b∥xκ∥2

∥xκ∥2
⟨yκ, z⟩ −

m∑
i=1

n∑
j=1

(
f ((i, j), x+κ (i, j))

∥xκ∥3
, z(i, j)

)
→ 0, as κ → ∞.

(3.5)
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Thus,
m∑

i=1

n∑
j=1

(
f ((i, j), x+κ (i, j))

∥xκ∥3
, z(i, j)

)
→ b⟨y, z⟩. (3.6)

Combining (3.4) with (3.6), we obtain that

lim
κ→+∞

 m∑
i=1

n∑
j=1

(
f ((i, j), x+κ (i, j))

∥xκ∥3
, z(i, j)

)
−

m∑
i=1

n∑
j=1

pκ(i, j)(y+κ (i, j))3z(i, j)


=b⟨y, z⟩ −

m∑
i=1

n∑
j=1

h(i, j)(y+(i, j))3z(i, j)

=0, ∀z ∈ E.

By (H3), it yields that

b⟨y, z⟩ −
m∑

i=1

n∑
j=1

q(i, j)(y+(i, j))3z(i, j) = 0. (3.7)

Set z = y−, then ∥y−∥2 = 0 and y ≡ y+ ≥ 0. Consider (3.7) with the boundary conditions (1.2), we have − b(∆2
1y(i − 1, j) + ∆2

2y(i, j − 1)) = q(i, j)(y+(i, j))3
, (i, j) ∈ [1,m] × [1, n],

y(i, 0) = y(i, n + 1) = 0, y(0, j) = y(m + 1, j) = 0, i ∈ [0,m + 1], j ∈ [0, n + 1],

and the maximum principle implies y = y+ > 0. Hence,

b⟨y, z⟩ −
m∑

i=1

n∑
j=1

q(i, j)y3(i, j)z(i, j) = 0, ∀z ∈ E.

Let z = yκ − y. Note that ∥y∥ = 1, (3.5) gives

∥y∥2⟨y, z⟩ =
1
b

m∑
i=1

n∑
j=1

q(i, j)y3(i, j)z(i, j) = 0, ∀z ∈ E,

which contradicts Λ < 1
b . Therefore, {xκ} is bounded in E and J satisfies (C)c.

Consequently, Proposition 2.1 ensures that x is a nontrivial critical point of J, which means that
there exists at least one positive solution for (1.1) with Dirichlet boundary conditions (1.2). Thus, we
have verified Theorem 2.2.
Proof of Theorem 2.4. Applying Proposition 2.1, we finish the proof of Theorem 2.4 by 3 steps.

Step 1. We show that there exist constants ρ, β > 0 such that J(x) ≥ β for x ∈ E with ∥x∥ = ρ.
Set 0 < ϵ < λ1 − ∥p∥L∞ . Since lim

x→+∞

f ((i, j),x)
xk−1 = 0 holds for all (i, j) ∈ [1,m]× [1, n], by (H1) and (H3),

there exists constant α > 0 such that

| f ((i, j), x)| ≤ a(∥p∥L∞ + ϵ)|x| + a|x|k−1, ∀(i, j) ∈ [1,m] × [1, n],

which induces that

F((i, j), x) ≤
a(∥p∥L∞ + ϵ)

2
x2 +

a
k
|x|k, ∀(i, j) ∈ [1,m] × [1, n]. (3.8)
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Then, (2.2), (2.3) and (3.8) yield that

J(x) =
a
2
∥x∥2 +

b
4
∥x∥4 −

m∑
i=1

n∑
j=1

F((i, j), x(i, j))

≥
a
2
∥x∥2 +

b
4
∥x∥4 −

1
2

a(∥p∥L∞ + ϵ)
m∑

i=1

n∑
j=1

x2(i, j) −
a
k

m∑
i=1

n∑
j=1

xk(i, j)

≥
a
2

(
1 −

(∥p∥L∞ + ϵ)
λ1

)
∥x∥2 +

b
4
∥x∥4 −

a
k
ηk

k∥x∥
k.

Note that 4 < k < 6, there exist constants ρ, β > 0 such that

J(x) ≥
a
4

(
1 −

(∥p∥L∞ + ϵ)
λ1

)
ρ2 ≜ β > 0

for x ∈ E with ∥x∥ = ρ.
Step 2. We claim that J(tψ1)→ −∞ as t → +∞, where ψ1 is the eigenfunction corresponding to µ1.
Write Ω ≜ {(i, j) : (i, j) ∈ [1,m] × [1, n]}. Then, there exists some α > 0 such that

min
(i, j)∈Ω0

ψ1(x) ≥ α > 0,

where Ω0 ≜ {(i, j) : (i, j) ∈ Ω such that ψ1(x(i, j)) > 0}. Obviously, Ω0 , ∅ and Ω0 ⊂ Ω0 ⊂⊂ Ω. Hence,
tψ1(x)→ +∞ as t → +∞ in Ω0. In view of (H1) and (H2), it follows that

0 ≤ 4F((i, j), x) ≤ f ((i, j), x)x, (i, j) ∈ Ω, ∀x ≥ 0,

and F((i, j),x)
x4 is nondecreasing in x > 0. Since q(i, j) ≡ +∞, we get

F((i, j), tψ1)
t4ψ4

1

≥
F((i, j), tα)

t4α4 → +∞ as t → +∞, (i, j) ∈ Ω0.

Hence, for any K > 0, there exists T > 0 such that

F((i, j), tα)
t4α4 ≥ K > 0, ∀t ≥ T, (i, j) ∈ Ω0.

Therefore, for t ≥ T , choose K > 0 large enough such that

J(tψ1)
t4 =

a
2
∥ψ1∥

2

t2 +
b
4
∥ψ1∥

4
−

m∑
i=1

n∑
j=1

F((i, j), tψ1(i, j))
t4

≤
a
2
∥ψ1∥

2

t2 +
b
4
∥ψ1∥

4
−

∑∑
(i, j)∈Ω0

F((i, j), tψ1(i, j))
t4ψ4

1(i, j)
ψ4

1(i, j)

≤
a

2T 2 ∥ψ1∥
2 +

b
4
∥ψ1∥

4
− K

∑∑
(i, j)∈Ω0

ψ4
1(i, j)

≤
a

2T 2 ∥ψ1∥
2 +

b
4
∥ψ1∥

4
− Kα4Ω

♯
0

<0,
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where Ω♯0 denotes the number of (i, j) and (i, j) ∈ Ω0. Therefore, J(tψ1)→ +∞ as t → +∞.
Step 3. Let

Γ = {γ ∈ C([0, 1], E) : γ(0) = 0, γ(1) = t0ψ1} and c = inf
γ∈Γ

max
0≤ϖ≤1

J (γ(ϖ)) .

Proposition 2.1 means that c ≥ β > 0 and there exists a sequence {xκ}κ∈N ⊂ E such that

J(xκ)→ c, (1 + ∥xκ∥)∥J′(xκ)∥ → 0, as κ → +∞.

In the following, we are to show that the sequence {xκ}κ∈N ⊂ E possesses a convergent subsequence,
still denoted by {xκ}. In fact, owing to the finite dimension of space E, it is necessary to verify that {xκ}
is bounded. Or else, we suppose ∥xκ∥ → +∞. Let ϱ =

√
2
[
( c

a )
1
2 + ( c

b )
1
4
]
. Set

tκ =
ϱ

∥xκ∥
, ỹκ = tκxκ =

ϱxκ
∥xκ∥

. (3.9)

Then, ∥ỹκ∥ = ϱ and {ỹκ}, {ỹκ
+
} are bounded in E, which imply that there exists ỹ ∈ E such that

ỹκ(i, j)→ ỹ(i, j), {ỹκ
+
}(i, j)→ ỹ+(i, j), for (i, j) ∈ Ω.

Denote Ω1 = {(i, j) : (i, j) ∈ Ω0 and y+(i, j) > 0}. Thus (3.9) implies that x+κ (i, j) → +∞ in Ω1.
Therefore, by q(i, j) ≡ +∞, for any M̌ > 0 and κ large enough, we have

f ((i, j), x+κ )
(x+κ )3 ≥ M̌, ∀(i, j) ∈ Ω1.

Notice that J(xκ)→ c, (2.8), (3.9) and (H1) lead to

(J′(xκ), xκ)
∥xκ∥4

=
a∥xκ∥2 + b∥xκ∥4

∥xκ∥4
−

m∑
i=1

n∑
j=1

(
f ((i, j), x+κ (i, j))xκ(i, j)

∥xκ∥4

)

=
a + b∥xκ∥2

∥xκ∥2
−

m∑
i=1

n∑
j=1

(
f ((i, j), x+κ (i, j))
ϱ4xκ(i, j)3 (ỹκ(i, j))4

)
→ 0, as κ → ∞.

Hence, there holds

b = lim
κ→+∞

m∑
i=1

n∑
j=1

(
f ((i, j), x+κ (i, j))
ϱ4xκ(i, j)3 (ỹκ(i, j))4

)

=
1
ϱ4 lim

κ→+∞

m∑
i=1

n∑
j=1

(
f ((i, j), x+κ (i, j))

x+κ (i, j)3 (ỹ+κ (i, j))
4
)

≥
1
ϱ4 lim

κ→+∞

∑∑
(i, j)∈Ω1

(
f ((i, j), x+κ (i, j))

x+κ (i, j)3 (ỹ+κ (i, j))
4
)

≥
M̌
ϱ4 lim

κ→+∞

∑∑
(i, j)∈Ω1

(ỹ+κ (i, j))
4

≥
M̌
ϱ4

∑∑
(i, j)∈Ω1

(ỹ+(i, j))
4
.

(3.10)
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Evidently, (3.10) means Ω1 ≡ ∅. Otherwise, for large M̌, (3.10) is impossible. Thus, ỹ+(i, j) = 0 for all
(i, j) ∈ [1,m] × [1, n]. Moreover, by (3.8), we get

lim
κ→+∞

m∑
i=1

n∑
j=1

F((i, j), y+κ (i, j)) = 0.

Recall ϱ =
√

2
[
( c

a )
1
2 + ( c

b )
1
4
]
. Therefore,

lim
κ→+∞

J(ỹκ) = lim
κ→+∞

a
2
∥ỹκ∥

2
+

b
4
∥ỹκ∥

4
−

m∑
i=1

n∑
j=1

F((i, j), ỹκ(i, j))


=

aϱ2

2
+

bϱ4

4

= c +
aϱ2

2
+ b

(
(
c
a

)
2
+ 4(

c
a

)
3
2
(
c
b

)
1
4
+ 6

c
a

(
c
b

)
1
2
+ 4(

c
a

)
1
2
(
c
b

)
3
4

)
= c +

aϱ2

2
+ L,

(3.11)

where L = b
(
( c

a )2 + 4( c
a )

3
2 ( c

b )
1
4 + 6 c

a ( c
b )

1
2 + 4( c

a )
1
2 ( c

b )
3
4
)
> 0.

To get a contradiction, first of all, we prove that if (H1) and (H3) hold and a sequence {xκ} ⊂ E
satisfying

J′(xκ)xκ → 0, as κ → +∞,

then {xκ} possesses a subsequence, denoted by {xκ} once more, such that

J(txκ) ≤
at2

2
∥xκ∥2 +

1 + t4

4κ
+ J(xκ), ∀t > 0, κ ≥ 1. (3.12)

Since J′(xκ)xκ → 0 as κ → +∞, for a subsequence {xκ}, we may assume that

−
1
κ
< J′(xκ)xκ = (a + b∥xκ∥2)∥xκ∥2 −

m∑
i=1

n∑
j=1

f ((i, j), xκ(i, j))xκ(i, j) <
1
κ
, ∀κ ≥ 1. (3.13)

Hence, for any t > 0 and positive integer κ, by (3.13), it follows that

J(txκ) =
at2

2
∥xκ∥2 +

bt4

4
∥xκ∥4 −

m∑
i=1

n∑
j=1

F((i, j), txκ(i, j))

≤
at2

2
∥xκ∥2 +

t4

4
[(a + b)∥xκ∥2]∥xκ∥2 −

m∑
i=1

n∑
j=1

F((i, j), txκ(i, j))

≤
at2

2
∥xκ∥2 +

t4

4

1
κ
+

m∑
i=1

n∑
j=1

f ((i, j), xκ(i, j))xκ(i, j)

 − m∑
i=1

n∑
j=1

F((i, j), txκ(i, j))

=
at2

2
∥xκ∥2 +

t4

4κ
+

m∑
i=1

n∑
j=1

(
t4

4
f ((i, j), xκ(i, j))xκ(i, j) − F((i, j), txκ(i, j))

)
.

(3.14)
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For any fixed (i, j) ∈ [1,m] × [1, n] and κ ≥ 1, set

h(t) =
t4

4
f ((i, j), xκ)xκ − F((i, j), txκ).

By (H1) and (H2), direct computation yields that

dh(t)
dt
= t3 f ((i, j), xκ)xκ − f ((i, j), txκ)xκ = t3xκ

(
f ((i, j), xκ) −

f ((i, j), txκ)
t3

)
,

and
dh(t)

dt
≥ 0, 0 < t ≤ 1;

dh(t)
dt
≤ 0, t ≥ 1.

Then,

h(t) ≤ h(1) =
1
4

f ((i, j), xκ)xκ − F((i, j), xκ), ∀t > 0.

Therefore, (3.14) implies that

J(txκ) ≤
at2

2
∥xκ∥2 +

t4

4κ
+

m∑
i=1

n∑
j=1

(
1
4

f ((i, j), xκ(i, j))xκ(i, j) − F((i, j), xκ(i, j))
)
. (3.15)

Moreover, by (3.13), we have

J(xκ) =
a
2
∥xκ∥2 +

b
4
∥xκ∥4 −

m∑
i=1

n∑
j=1

F((i, j), xκ(i, j))

=
1
4

(2a + b∥xκ∥2)∥xκ∥2 −
m∑

i=1

n∑
j=1

F((i, j), xκ(i, j))

≥
1
4

(a + b∥xκ∥2)∥xκ∥2 −
m∑

i=1

n∑
j=1

F((i, j), xκ(i, j))

≥
1
4

m∑
i=1

(
f ((i, j), xκ(i, j))xκ(i, j) −

1
κ

)
−

m∑
i=1

n∑
j=1

F((i, j), xκ(i, j)),

which ensures that
m∑

i=1

(
1
4

f ((i, j), xκ(i, j))xκ(i, j) − F((i, j), xκ(i, j))
)
≤

1
4κ
+ J(xκ). (3.16)

As a result, (3.15) and (3.16) guarantee that (3.12) holds.
In view of (3.12), we have

lim
κ→+∞

J(ỹκ) = lim
κ→+∞

J(tκxκ) ≤ lim
κ→+∞

(
at2
κ

2
∥xκ∥2 +

1 + t4
κ

4κ
+ J(xκ)

)
≤

aϱ2

2
+ lim

κ→+∞

(
1 + t4

κ

4κ
+ J(xκ)

)
= c +

aϱ2

2
.

(3.17)
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Evidently, (3.11) contradicts (3.17). Subsequently, {xκ} is bounded in E. Thus, all conditions of
Proposition 2.1 are verified and the proof of Theorem 2.4 is completed.
Proof of Theorem 2.5. In order to complete the proof by Proposition 2.1, what is first to do is to prove
that if (H1), (H4) and (H5) are satisfied and q(i, j) ≡ +∞, then J(x) satisfies (C)c. To this end, we
assume that {xκ}κ∈N ⊂ E is the (C)c sequence, that is, for c ∈ R,

J(xκ)→ c, (1 + ∥xκ∥)∥J′(xκ)∥ → 0, as κ → +∞. (3.18)

Then, for κ large enough, (2.5) and (2.8) yield that

1 + c ≥ J(xκ) −
1
4

(J′(xκ), xκ) =
a
4
∥xκ∥2 +

m∑
i=1

(
1
4

f ((i, j), xκ(i, j))xκ(i, j) − F((i, j), xκ(i, j))
)
. (3.19)

Since E is an mn-dimensional Hilbert space, it is sufficient to show that {xκ} possesses a bounded
subsequence, still denoted by {xκ}. Or else, we may assume that ∥xκ∥ → +∞ as κ → +∞. Set ŷκ =

xκ
∥xκ∥

,
then ∥ŷκ∥ = 1 and {yκ} is bounded. Thus, there exists ŷ ∈ E such that ŷκ(i, j) → ŷ(i, j) holds for all
(i, j) ∈ [1,m] × [1, n].

We suppose that ŷ , 0. Because ∥xκ∥ → +∞, we have |xκ| → +∞ as κ → +∞. For q(i, j) ≡ +∞, it
follows that

lim
κ→+∞

f ((i, j), x+κ (i, j))
(x+κ (i, j))3 = +∞, ∀(i, j) ∈ [1,m] × [1, n]. (3.20)

Meanwhile, (2.8) and (H1) induce that

⟨J′(xκ), xκ⟩ = a∥xκ∥2 + b∥xκ∥4 −
m∑

i=1

n∑
j=1

1
4

( f ((i, j), xκ(i, j)) · xκ(i, j))

= ∥xκ∥4 ·

 a
∥xκ∥2

+ b −
m∑

i=1

n∑
j=1

(
f ((i, j), x+κ (i, j))

(x+κ (i, j))3 · ŷκ
4(i, j)

) .
Together with (3.18), it follows that

⟨J′(xκ), xκ⟩
∥xκ∥4

=
a
∥xκ∥2

+ b −
m∑

i=1

n∑
j=1

f ((i, j), x+κ (i, j))
(x+κ (i, j))3 · ŷκ

4(i, j)→ 0, as κ → +∞.

Hence,

b ≥ lim inf
κ→+∞

m∑
i=1

n∑
j=1

f ((i, j), xκ(i, j))
xκ(i, j)3 · ŷκ

4(i, j) = +∞,

which is a contradiction.
We suppose that ŷ = 0. Let {ℓκ} be a sequence of real numbers such that J(ℓκxκ) = max

ℓ∈[0,1]
J(ℓxκ). For

any integer s > 0, set ŷκ
s
= ( 8s

b )1/4ŷκ. By (H4), we have

|F((i, j), x)| ≤ c|x|k + c̃|x|.

Note that ŷκ
s
→ 0 as κ → +∞ and F(·, x) is continuous in x, we achieve

lim
κ→+∞

F((i, j), ŷκ
s) = 0, ∀(i, j) ∈ [1,m] × [1, n]. (3.21)
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Since ∥xκ∥ → +∞ as κ → +∞, we obtain 0 ≤ ( 8s
b )

1/4

∥xκ∥
≤ 1 is true as κ large enough. Together with the

definitions of J(ℓκxκ) and ℓκ, it yields that

J(ℓκxκ) ≥ J

 (8s
b )1/4

∥xκ∥
xκ

 = J(ŷκ
s) =

a
2
∥ŷκ

s
∥

2
+

b
4
∥ŷκ

s
∥

4
−

m∑
i=1

n∑
j=1

F((i, j), ŷκ
s(i, j))

≥ 2s −
m∑

i=1

n∑
j=1

F((i, j), ŷκ
s(i, j)).

(3.22)

Consider s > 0 is arbitrary, (3.21) and (3.22) imply that

J(ℓκxκ)→ +∞, κ → +∞. (3.23)

For 0 ≤ ℓκ ≤ 1, (H5) means that there exists θ ≥ 1 such that θG((i, j), xκ) ≥ G((i, j), ℓκxκ). Notice that
J(0) = 0 and J(xκ)→ c, then 0 < ℓκ < 1 for κ large enough. Therefore,

⟨J′(ℓκxκ), ℓκxκ⟩ = a∥ℓκxκ∥2 + b∥ℓκxκ∥4 −
m∑

i=1

n∑
j=1

ℓκxκ · f ((i, j), ℓκxκ(i, j))

= ℓκ
dJ(ℓxκ)

dℓ
|
ℓ=ℓκ

= 0,

that is,

a∥ℓκxκ∥2 + b∥ℓκxκ∥4 =
m∑

i=1

n∑
j=1

ℓκxκ · f ((i, j), ℓκxκ(i, j)). (3.24)

Combining (3.23) with (3.24), it follows that

a
4
∥xκ∥2 +

1
4

m∑
i=1

n∑
j=1

G((i, j), xκ(i, j))

≥
a
4θ
∥ℓκxκ∥2 +

1
4θ

m∑
i=1

n∑
j=1

G((i, j), ℓκxκ(i, j))

=
1
θ

a
4
∥ℓκxκ∥2 +

m∑
i=1

n∑
j=1

(
1
4
ℓκxκ · f ((i, j), ℓκxκ(i, j)) − F((i, j), ℓκxκ(i, j))

)
=

1
θ

a
2
∥ℓκxκ∥2 +

b
4
∥ℓκxκ∥4 −

m∑
i=1

n∑
j=1

F((i, j), ℓκxκ(i, j))


=

1
θ

J(ℓκxκ)→ +∞, as κ → +∞.

Namely, as κ → +∞, there has

a
4
∥ℓκxκ∥2 +

m∑
i=1

n∑
j=1

(
1
4
ℓκxκ · f ((i, j), ℓκxκ(i, j)) − F((i, j), ℓκxκ(i, j))

)
→ +∞,
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which contradicts (3.19). Thus, {xκ} is bounded. Therefore, J(x) satisfies (C)c.
Next, we claim that there exist some ρ, β > 0 such that J(x) ≥ β for all x ∈ E with ∥x∥ = ρ.
In fact, (H5) and (H6) imply that there exists C1 > 0 such that

F((i, j), x) ≤
a
2
λ1x2 +C1|x|k, [i, j] ∈ [1,m] × [1, n], x ∈ R. (3.25)

Thus, by (2.2), (2.3), (2.5) and (3.25), it follows that

J(x) =
a
2
∥x∥2 +

b
4
∥x∥4 −

m∑
i=1

n∑
j=1

F((i, j), x(i, j))

≥
a
2
∥x∥2 +

b
4
∥x∥4 −

aλ1

2

m∑
i=1

n∑
j=1

x2(i, j) −C1

m∑
i=1

n∑
j=1

|x(i, j)|k

≥
b
4
∥x∥4 −C1η

k
k∥x∥

k,

(3.26)

where k > 4. Given a small ρ > 0, (3.26) means that

J(x) ≥ β ≜
b
4
ρ4 −C1η

k
kρ

k > 0, x ∈ E and ∥x∥ = ρ.

Last, we show there exists x̆ ∈ E with ∥x̆∥ > ρ such that J(x̆) < 0. Since q(i, j) ≡ +∞, that is,
lim

x→+∞

f ((i, j),x)
x3 ≡ +∞, for any ε > 0, there exists M̆ > 0 such that f ((i, j),x)

x3 ≥ 1
ε

holds for all x > M̆ and

(i, j) ∈ [0, 1 + m] × [0, n + 1]. Set c(ε) = M̆3

ε
, then,

f ((i, j), x) ≥
1
ε

x3 − c(ε), x ≥ 0, (i, j) ∈ [0, 1 + m] × [0, n + 1].

Therefore, for all x ≥ 0, (i, j) ∈ [0, 1 + m] × [0, n + 1] and 0 ≤ ω ≤ 1, we have

f ((i, j), ωx) ≥
1
ε
ω3x3 − c(ε).

Then,

f ((i, j), ωx)x ≥
1
ε
ω3x4 − c(ε)x, x ≥ 0. (3.27)

Integrating both sides of (3.27) on [0, 1] with respect to ω, we have

F((i, j), x) ≥
1
4ε

x4 − c(ε)x, x ≥ 0,

which ensures that
F((i, j), tφ1) ≥

1
4ε

t4φ4
1 − c(ε)tφ1, (3.28)

where φ1 is the normal eigenfunction corresponding to λ1. Dividing by t4, (3.28) means that

F((i, j), tφ1)
t4 ≥

1
4ε
φ4

1 −
c(ε)φ1

t3 .
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Thus,
m∑

i=1

n∑
j=1

F((i, j), tφ1)
t4 ≥

m∑
i=1

n∑
j=1

(
1
4ε
φ4

1 −
c(ε)φ1

t3

)
. (3.29)

Let t → +∞, (3.29) leads to

lim inf
t→+∞

m∑
i=1

n∑
j=1

F((i, j), tφ1)
t4 ≥

m∑
i=1

n∑
j=1

1
4ε
φ4

1. (3.30)

Notice that ε > 0 is arbitrary and let ε→ 0, then (3.30) indicates that

lim inf
t→+∞

m∑
i=1

n∑
j=1

F((i, j), tφ1)
t4 = +∞.

Therefore,

J(tφ1)
t4 =

a∥φ1∥
2

2t2 +
b∥φ1∥

2

4
−

m∑
i=1

n∑
j=1

F((i, j), tφ1)
t4 → −∞, as t → +∞.

Therefore, there exists t0 large enough such that J(x̆) < 0, where x̆ = t0φ1.
Define

Γ = {γ ∈ C([0, 1], E) : γ(0) = 0, γ(1) = x̆}, c = inf
γ∈Γ

max
0≤ϖ≤1

J (γ(ϖ)) ,

then c ≥ β > 0. Hence, Proposition 2.1 guarantees that J has at least a nontrivial critical point.
Therefore, the proof of Theorem 2.5 is completed.

4. Conclusions

Due to their wide applications, partial difference equations have been studied extensively. We all
know that the discrete Kirchhoff term

b(
n∑

j=1

m+1∑
i=1

|∆1x(i − 1, j)|2 +
m∑

i=1

n+1∑
j=1

|∆2x(i, j − 1)|2)(∆2
1x(i − 1, j) + ∆2

2x(i, j − 1))

makes it not only more difficult but also more interesting to study. In this paper, we investigate the
existence and nonexistence of positive solutions to a class of partial difference equations which involve
the discrete Kirchhoff term. First, we established the corresponding variational functional on a suitable
variational function space. Then, we obtained a series of results on the existence and nonexistence of
positive solutions via a variant version of the mountain pass theorem. The conditions in our obtained
results release the classical (AR) condition.
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