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Abstract: The complex dynamics of a slow-fast predator-prey interaction with herd behavior are
examined in this work. We investigate the presence and stability of fixed points. By employing the
bifurcation theory, it is shown that the model undergoes both a period-doubling and a Neimark-Sacker
bifurcation at the interior fixed point. Under the influence of period-doubling and Neimark-Sacker
bifurcations, chaos is controlled using the hybrid control approach. Moreover, numerical simulations
are carried out to highlight the model’s complexity and show how well they agree with analytical
findings. Employing the slow-fast factor as the bifurcation parameter shows that the model goes
through a Neimark-Sacker bifurcation for greater values of the slow-fast factor at the interior fixed
point. This makes sense because if the slow-fast factor is large, the growth rates of the predator and its
prey will be about identical, automatically causing the interior fixed point to become unstable owing
to the predator’s slow growth.
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1. Introduction

Differential equations are crucial in understanding and explaining the dynamic behavior of complex
systems in a variety of scientific areas. Differential equations are extensively used in ecology to
simulate population dynamics, predator-prey interactions and the interactions between species in
ecosystems [1, 2]. Differential equations are used in economics to simulate economic development,

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.20231247


24447

investment and consumption patterns [3, 4]. The Navier-Stokes equations regulate fluid motion in
fluid mechanics, allowing the study of fluid flow patterns, turbulence and the behavior of gases
and liquids [5–7]. Differential equations are used in a variety of domains, including engineering,
epidemiology, neurology and climate research. In mathematical ecology, studying the dynamics
between predators and prey is one of the most significant research subjects. It is also one of the most
fundamental interspecies relationships in ecology and the foundation of the complex food chain. The
Lotka-Volterra models are the most well-known predator-prey models. These models are polynomial
differential equations of degree two, initially proposed by Alfred J. Lotka [8] and Vito Volterra [9].
Since then, several researchers have made developments while considering a wide range of biological
phenomena.

We consider a Gauss-type predator-prey interaction when the prey exhibits group defense, which is
represented by the following set of ordinary differential equations [10]: dx

dt = rx(1 − x
k ) − p(x)y,

dy
dt = −dy + cp(x)y,

(1.1)

where x, y, r, k, d and c are the population density of prey, the population density of predator, the growth
rate of prey, the prey’s carrying capacity, the predator’s death rate and the efficiency of the predator in
converting the consumed prey into the predator’s offspring, respectively. The functional response p(x)
represents the instantaneous rate of prey depletion per predation.

In population dynamics, the functional response is an important feature of all predator-prey
interactions. It illustrates the link between the predator’s consumption rate and the density of prey.
It represents the quantity of prey that is ingested by individual predators. Holling [11] proposed
three distinct forms of functional responses in 1965. After that, researchers like Crowley-Martin [12]
and Beddington-DeAngelis [13, 14] proposed different functional responses. Later, other researchers
investigated predator-prey interactions, including various kinds of functional responses [15–21].

Some prey populations display herd behavior, meaning predator-prey interaction happens along the
prey population’s boundaries. The Holling-type functional response cannot adequately describe this
form of interaction. In fact, a class of prey population shows herd behavior. Hence, a predator’s rate
of prey capture differs from standard models. For instance, a fish’s capture rate of zooplankton in the
ocean is greater than its capture rate of phytoplankton. Phytoplankton exhibits herding behavior in this
environment.

Ajraldi et al. [22] investigated the following model:dR(t)
dt = rR(t)(1 − R(t)

k ) − a
√

R(t)F(t),
dF(t)

dt = −m̃F(t) + aẽ
√

R(t)F(t).
(1.2)

They considered the prey population’s square root to examine the prey population’s herd behavior
such that the predator interacts with the prey throughout the herd’s outer corridor. It has been shown
that the sustained limit cycles are possible and the solution behavior near the origin is more subtle and
interesting than the classical predator-prey models. The square root functional response predator-prey
model has been investigated and discussed by several scientists [23–26]. After incorporating the square
root functional response, the model (1.1) transforms to:

AIMS Mathematics Volume 8, Issue 10, 24446–24472.



24448

 dx
dt = rx(1 − x

k ) − a
√

xy,
dy
dt = −dy + b

√
xy,

(1.3)

where a represents the predator’s search efficiency and b = ac.
According to the species’ traits, the prey population often increases considerably more quickly than

the predator’s; hares and lynx are well-known examples where hares reproduce much more rapidly
than lynx [27]. This inspired the researchers to add a small time-scale parameter 0 < ϵ < 1 to the
fundamental model. The parameter ϵ may be interpreted as the ratio between the predator’s linear
mortality rate and the prey’s linear growth rate [28, 29]. The assumption that ϵ < 1 means that
one generation of predators may come into contact with several generations of prey. As a result,
the following may be written for the slow-fast version of the model (1.3): dx

dt = rx(1 − x
k ) − a

√
xy,

dy
dt = ϵ(−dy + b

√
xy).

(1.4)

Due to the square root term, the Jacobian of the above model (1.4) possesses a singularity. We
utilize the transformations x(t) = u2(t) and y(t) = v(t) to understand it better. After applying the
transformation, the system (1.4) transforms to du

dt =
ru
2 (1 − u2

k ) − av
2 ,

dv
dt = ϵ(−dv + buv).

(1.5)

It is worth noting that many biological models are governed by continuous and discrete models.
Several researchers have made significant contributions to discrete models in recent years [30–33].
This is due to the fact that discrete models are considerably more effective than continuous models
at nonoverlapping generations. It has been demonstrated that discrete-time models have the benefit
of making it easier to acquire numerical solutions. In addition, substantial research has shown
that discrete-time models display more complicated dynamical behaviors than continuous-time
models [34–39]. So, our primary motivation in this study is to consider the discrete-time counterpart
of the predator-prey model (1.5). The model to be analyzed in this work is then obtained using the
forward Euler technique on the model (1.5) as follows:un+1 = un +

h
2

(
run(1 − u2

n
k ) − avn

)
,

vn+1 = vn + ϵhvn(−d + bun),
(1.6)

where h is the step size.
The present investigation’s primary findings and deductions are as follows:

• We investigate the presence and topological categorization of fixed points.
• The results of our study indicate that the mathematical system represented by Eq (1.6) undergoes

both period-doubling (PD) and Neimark-Sacker (NS) bifurcations.
• The present study investigates the conditions for the existence and direction of NS and PD

bifurcation at the positive fixed point.
• In order to rein in the unpredictability of the system (1.6), a hybrid approach to control is used.
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We suggest readers to [40–43] for some interesting studies on the investigation of stability,
bifurcation and chaos control over predator-prey interactions. The remainder of the paper is structured
as follows:

In Section 2, we first examine the existence and stability of fixed points. Then, in Section 3, we
demonstrate how, under appropriate conditions for parameter values, the model (1.6) may experience
PD and NS bifurcation. In Section 4, we study a hybrid control strategy for dealing with chaos.
In Section 5, numerical simulations illustrate the viability of the key theoretical findings. Section 6
contains conclusions based on our findings.

2. Fixed points’ existence and topological classification

We solve the following system of equations to obtain the fixed points (ū, v̄) of the model (1.6):ū = ū + h
2

(
rū(1 − (ū)2

k ) − av̄
)
,

v̄ = v̄ + ϵhv̄(−d + bū).
(2.1)

The three fixed points obtained are as follows:

E0 = (0, 0), E1 = (
√

k, 0), E2 =

(d
b
,

d(−d2 + b2k)r
ab3k

)
.

E0, E1 are boundary fixed points. The model (1.6) possesses a unique interior fixed point, E2,
exclusively when the carrying capacity of prey satisfies the condition k > d2

b2 .
The Jacobian matrix J of the model (1.6) computed at fixed point (ū, v̄) is provided by

J(ū, v̄) =
[
1 + rh(k−3(ū)2)

2k −ah
2

bhϵv̄ 1 − dhϵ + bhϵū

]
.

We use the following two results for topological classification of the fixed points of the model (1.6):

Lemma 2.1. [44] Let Υ(ξ) = ξ2 + A1ξ + A0 be the characteristic polynomial of J(x̄, ȳ) and ξ1,2 satisfy
Υ(ξ) = 0, then the fixed point (x̄, ȳ) is a

(1) sink (locally asymptotically stable (LAS)) if |ξ1,2| < 1,

(2) source if |ξ1,2| > 1,

(3) saddle point (SP) if |ξ1| < 1 and |ξ2| > 1 (or |ξ1| > 1 and |ξ2| < 1),

(4) non-hyperbolic point (NHP) if either |ξ1| = 1 or |ξ2| = 1.

Lemma 2.2. [44] Let Υ(ξ) = ξ2 + A1ξ + A0. Assume that Υ(1) > 0. If ξ1, ξ2 satisfies Υ(ξ) = 0, then

(1) |ξ1,2| < 1 if Υ(−1) > 0 and A0 < 1,

(2) |ξ1| < 1 and |ξ2| > 1 (or |ξ1| > 1 and |ξ2| < 1) if Υ(−1) < 0,
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(3) |ξ1,2| > 1 if Υ(−1) > 0 and A0 > 1,

(4) ξ1 = −1 and |ξ2| , 1 if Υ(−1) = 0 and A1 , 0, 2,

(5) ξ1,2 are complex and |ξ1,2| = 1 if A2
1 − 4A0 < 0 and A0 = 1.

2.1. Topological classification of E0

Consider

Γ0 =

{
(r, h, k, a, b, d, ϵ) ∈ R7

+

∣∣∣∣∣ 0 < ϵ < 1
}
.

The following result is obtained by applying the Lemma 2.1:

Proposition 2.3. In Γ0, the trivial fixed point E0 of the model (1.6) is a

(1) SP if 0 < ϵ < 2
dh ,

(2) source if ϵ > 2
dh ,

(3) NHP if ϵ = 2
dh .

Proof. The Jacobian matrix at E0 is provided by

J(0, 0) =
[
1 + hr

2 −ah
2

0 1 − dhϵ

]
.

The eigenvalues of J(0, 0) are ξ1 = 1 + hr
2 and ξ2 = 1 − dhϵ.

□

Remark 2.4. The analysis of the fixed point E0 reveals that it is never stable. This lack of stability
has a significant ecological implication: The predator and prey populations cannot go to extinction
simultaneously at this fixed point. Instead, the populations may exhibit oscillatory behavior or other
forms of non-extinction dynamics.

2.2. Topological classification of E1 = (
√

k, 0)

Next, considering the same set Γ0, we obtain the following result by applying the Lemma 2.1:

Proposition 2.5. In Γ0, the boundary fixed point E1 of the model (1.6) is a

(1) sink if r < 2
h and b

√
k < d < b

√
k + 2

hϵ ,

(2) SP if any one of the following is true:

AIMS Mathematics Volume 8, Issue 10, 24446–24472.



24451

(a) r > 2
h and b

√
k < d < b

√
k + 2

hϵ ,
(b) r < 2

h and either d < b
√

k or d > b
√

k + 2
hϵ ,

(3) source if r > 2
h and any one of the following is true:

(a) d < b
√

k,
(b) d > b

√
k + 2

hϵ ,

(4) NHP if any one of the following is true:
(a) h = 2

r ,
(b) d = b

√
k,

(c) d = b
√

k + 2
hϵ .

Proof. Simple calculations yields

J(
√

k, 0) =
[
1 − hr −ah

2
0 1 − dhϵ + bh

√
kϵ

]
.

The eigenvalues of J(0, 0) are ξ1 = 1 − hr and ξ2 = 1 − dhϵ + bh
√

kϵ.
□

Remark 2.6. The boundary fixed point E1 = (k, 0) refers to a situation in the predator-prey model,
where the prey population is at its carrying capacity, meaning it has reached the maximum number
of individuals that the environment can support. The predator population, on the other hand, is at
zero, signifying that the predators have gone extinct. The stability of the boundary fixed point E1

has significant ecological implications, namely that the predator population can go to extinction and
remain extinct as long as the system operates under the conditions that stabilize this fixed point.

2.3. Topological classification of E2 =

(
d
b ,

d(−d2+b2k)r
ab3k

)
We consider the following set:

Γ2 =

{
(r, h, k, a, b, d, ϵ) ∈ R7

+

∣∣∣∣∣ 0 < ϵ < 1, k >
d2

b2

}
.

The Jacobian matrix at E2 is provided by

J(E2) =
1 + rh

2 (1 − 3d2

b2k ) −ah
2

dhrϵ(−d2+b2k)
ab2k 1

 . (2.2)

The characteristic polynomial of J(E2) is provided by

Υ(ξ) = ξ2 +

(
−2 +

rh
2

(−1 +
3d2

b2k
)
)
ξ +

1
2

(
2 + rh + dh2rϵ −

d2hr(3 + dhϵ)
b2k

)
. (2.3)

By simple computations, we obtain
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Υ(0) =
1
2

(
2 + rh + dh2rϵ −

d2hr(3 + dhϵ)
b2k

)
,

Υ(−1) =
1
2

(
8 + 2hr + dh2rϵ −

d2hr(6 + dhϵ)
b2k

)
,

Υ(1) =
dh2(−d2 + b2k)rϵ

2b2k
.

It is obvious that Υ(1) > 0 in Γ2. We obtain the following result by applying Lemmas 2.1 and 2.2:

Proposition 2.7. In Γ2, the fixed point E2 is a

(1) sink if k < 3d2

b2 , h < −3d2+b2k
d3ϵ−b2dkϵ , and

r <
8b2k

6d2h − 2b2hk + d3h2ϵ − b2dh2kϵ
,

(2) SP if k < 3d2

b2 , h < −6d2+2b2k
d3ϵ−b2dkϵ , and

r >
8b2k

6d2h − 2b2hk + d3h2ϵ − b2dh2kϵ
,

(3) source if any one of the following is true:

(a) k ≥ 3d2

b2 ,

(b) k < 3d2

b2 and any one of the following is true:

(i) h ≥ −6d2+2b2k
d3ϵ−b2dkϵ ,

(ii) −3d2+b2k
d3ϵ−b2dkϵ < h < −6d2+2b2k

d3ϵ−b2dkϵ and r < 8b2k
6d2h−2b2hk+d3h2ϵ−b2dh2kϵ ,

(4) NHP if k < 3d2

b2 and any one of the following is true:

(a) h < −6d2+2b2k
d3ϵ−b2dkϵ and

r =
8b2k

6d2h − 2b2hk + d3h2ϵ − b2dh2kϵ
,

(b) r < 8b2dkϵ(−d2+b2k)
(3d2−b2k)2 and h = 3d2−b2k

dϵ(−d2+b2k) .

Remark 2.8. The positive fixed point E2 refers to a situation in the predator-prey model where both
the predator and prey populations have non-zero positive values. This implies that both species coexist
at non-trivial population levels. The stability of the fixed point E2 suggests that the predator and prey
populations can coexist and persist in the ecosystem under the specified parametric conditions.
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3. Bifurcation analysis

This section discusses the PD and NS bifurcations at the interior fixed point E2 =

(
d
b ,

d(−d2+b2k)r
ab3k

)
of the model (1.6). We establish the conditions of existence for the PD and NS bifurcations using the
center manifold theorem and bifurcation theory [38, 45–47].

Initially, we explored the PD bifurcation at E2. To study the PD bifurcation, consider the following
set:

ΓPD =

{
(r, h, k, a, b, d, ϵ) ∈ R7

+

∣∣∣∣∣ 0 < ϵ < 1, h <
−6d2 + 2b2k
d3ϵ − b2dkϵ

,

k <
3d2

b2 , r = r1 :=
8b2k

6d2h − 2b2hk + d3h2ϵ − b2dh2kϵ

}
.

Suppose that (r, h, k, a, b, d, ϵ) ∈ ΓPD, and γ be minimal change in r1. Given a perturbation of
model (1.6) as follows: un+1 = un +

h
2

(
(r1 + γ)un(1 − u2

n
k ) − avn

)
,

vn+1 = vn + ϵhvn(−d + bun),
(3.1)

where γ is a parameter that accounts for minimal changes. In order to translate the fixed point(
d
b ,

d(−d2+b2k)(r1+γ)
ab3k

)
to (0, 0), we define translation map as follows:

an = un −
d
b
, bn = vn −

d(−d2 + b2k)(r1 + γ)
ab3k

.

As a result of this translation map, the system (3.1) transforms to[
an+1

bn+1

]
=

[
m11 m12

m21 1

] [
an

bn

]
+

[
F(an, bn, γ)
G(an, bn, γ)

]
, (3.2)

where

m11 =
6d2 − 2b2k − d3hϵ + b2dhkϵ
−6d2 + 2b2k − d3hϵ + b2dhkϵ

, m12 = −
1
2

ah,

m21 = −
8d

(
d2 − b2k

)
ϵ

a
(
6d2 − 2b2k + d3hϵ − b2dhkϵ

) ,
F(an, bn, γ) = c1γan + c2γa2

n + c3a2
n + c4a3

n + O((|an| + |bn| + |γ|)4),
G(an, bn, γ) = d1γan + d2anbn + O((|an| + |bn| + |γ|)4),

c1 =
1
2

h
(
1 −

3d2

b2k

)
, c2 = −

3dh
2bk
, c3 =

12bd
−6d2 + 2b2k − d3hϵ + b2dhkϵ

,
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c4 =
4b2

−6d2 + 2b2k − d3hϵ + b2dhkϵ
, d1 =

dh
(
−d2 + b2k

)
ϵ

ab2k
, d2 = bhϵ.

For r1 =
8b2k

6d2h−2b2hk+d3h2ϵ−b2dh2kϵ , the eigenvalues of J(E2) are ξ1 = −1 and

ξ2 =
6d2 − 2b2k + 3d3hϵ − 3b2dhkϵ

6d2 − 2b2k + d3hϵ − b2dhkϵ
.

Let

T =
6ad2−2ab2k+ad3hϵ−ab2dhkϵ

4dϵ(d2−b2k) −ah
4

1 1

 .
Under the following transformation [

an

bn

]
= T

[
en

fn

]
, (3.3)

the system (3.2) transforms to [
en+1

fn+1

]
=

[
−1 0
0 ξ2

] [
en

fn

]
+

[
F(en, fn, γ)
G(en, fn, γ)

]
, (3.4)

where

F(en, fn, γ) = D1 f 3
n + D2e3

n + D3en f 2
n + D4en fn + D5 fnγ + D6enγ + D7e2

nγ + D8e2
n fn

+ D9en fnγ + D10e2
n + D11 f 2

n + O((|en| + | fn| + |γ|)4),
G(en, fn, γ) = E1en f 2

n + E2 f 3
n + E3e3

n + E4 fnγ + E5en fnγ + E6enγ + E7e2
nγ + E8e2

n fn

+ E9en fn + E10e2
n + E11 f 2

n + O((|en| + | fn| + |γ|)4),

D1 =
3a2b2h2

24d2 − 8b2k + 8d3hϵ − 8b2dhkϵ
,

D2 =
a2b2dh3

(
−d2 + b2k

)
ϵ

8
(
6d2 − 2b2k + d3hϵ − b2dhkϵ

) (
3d2 − b2k + d3hϵ − b2dhkϵ

) ,

D3 =
a2b2

(
6d2 − 2b2k + d3hϵ − b2dhkϵ

)2

8d2 (
d2 − b2k

)2 ϵ2
(
3d2 − b2k + d3hϵ − b2dhkϵ

) ,D4 =
3ad2h3

(
−d2 + b2k

)
ϵ

8bk
(
−3d2 + b2k − d3hϵ + b2dhkϵ

) ,

D5 = −
d2h3

(
d2 − b2k

)2
ϵ2

8b2k
(
−3d2 + b2k − d3hϵ + b2dhkϵ

) ,D6 =
3adh2

(
6d2 − 2b2k + d3hϵ − b2dhkϵ

)
8bk

(
−3d2 + b2k − d3hϵ + b2dhkϵ

) ,
AIMS Mathematics Volume 8, Issue 10, 24446–24472.
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D7 =
dh2

(
d2 − b2k

)
ϵ
(
6d2 − 2b2k + d3hϵ − b2dhkϵ

)
8b2k

(
−3d2 + b2k − d3hϵ + b2dhkϵ

) ,

D8 =
3a2b2h

(
−6d2 + 2b2k − d3hϵ + b2dhkϵ

)
8d

(
d2 − b2k

)
ϵ
(
3d2 − b2k + d3hϵ − b2dhkϵ

) ,

D9 =
abh

(
6d4 + 2b4k2 + 3d5hϵ − 4b2d3hkϵ + b4dhk2ϵ

)
4d

(
d2 − b2k

) (
3d2 − b2k + d3hϵ − b2dhkϵ

) ,

D10 =
ab

(
−6d2 + 2b2k − d3hϵ + b2dhkϵ

) (
−6d2hϵ + 2b2hkϵ − d3h2ϵ2 + d

(
−12 + b2h2kϵ2

))
8d

(
d2 − b2) ϵ (3d2 − b2k + d3hϵ − b2dhkϵ

) ,

D11 = −
abdh2(−d2 + b2k)ϵ(−6d2hϵ + 2b2hkϵ − d3h2ϵ2 + d(−12 + b2h2kϵ2))

8(6d2 − 2b2k + d3hϵ − b2dhkϵ)(3d2 − b2k + d3hϵ − b2dhkϵ)
,

E1 = −
a2b2dh3

(
−d2 + b2k

)
ϵ

8
(
6d2 − 2b2k + d3hϵ − b2dhkϵ

) (
3d2 − b2k + d3hϵ − b2dhkϵ

) ,
E2 = −

a2b2
(
6d2 − 2b2k + d3hϵ − b2dhkϵ

)2

8d2 (
d2 − b2k

)2 ϵ2
(
3d2 − b2k + d3hϵ − b2dhkϵ

) , E3 =
3a2b2h2

8
(
−3d2 + b2k − d3hϵ + b2dhkϵ

) ,
E4 =

3ad2h3
(
d2 − b2k

)
ϵ

8bk
(
−3d2 + b2k − d3hϵ + b2dhkϵ

) , E5 =
abh

(
−12d − 3d2hϵ + b2hkϵ

)
4
(
−3d2 + b2k − d3hϵ + b2dhkϵ

) ,
E6 = −

dh2
(
d2 − b2k

)
ϵ
(
6d2 − 2b2k + d3hϵ − b2dhkϵ

)
8b2k

(
−3d2 + b2k − d3hϵ + b2dhkϵ

) , E7 =
h
(
6d2 − 2b2k + d3hϵ − b2dhkϵ

)2

8b2k
(
−3d2 + b2k − d3hϵ + b2dhkϵ

) ,
E8 = −

3a2b2h
(
−6d2 + 2b2k − d3hϵ + b2dhkϵ

)
8d

(
d2 − b2k

)
ϵ
(
3d2 − b2k + d3hϵ − b2dhkϵ

) , E9 =
3adh2

(
−6d2 + 2b2k − d3hϵ + b2dhkϵ

)
8bk

(
−3d2 + b2k − d3hϵ + b2dhkϵ

) ,

E10 =
ab

(
−6d2 + 2b2k − d3hϵ + b2dhkϵ

) (
12 − d2h2ϵ2 + b2h2kϵ2

)
8
(
d2 − b2k

)
ϵ
(
3d2 − b2k + d3hϵ − b2dhkϵ

) ,

E11 = −
abdh2

(
−d2 + b2k

)
ϵ
(
−6d2hϵ + 2b2hkϵ − d3h2ϵ2 + d

(
−12 + b2h2kϵ2

))
8
(
6d2 − 2b2k + d3hϵ − b2dhkϵ

) (
3d2 − b2k + d3hϵ − b2dhkϵ

) .

The local center manifold WC of system (3.4) at the origin can be obtained using the center manifold
theorem as shown below:

WC =

{
(en, fn, γ) ∈ R3

∣∣∣∣∣ fn = c1e2
n + c2enγ + c3γ

2 + O((|en| + |γ|)3)
}
,

AIMS Mathematics Volume 8, Issue 10, 24446–24472.



24456

where

c1 =
E10

1 − ξ2
, c2 = −

E6

1 + ξ2
, c3 = 0.

Thus, the center manifold-restricted system (3.4) is given by

F̃ : en+1 = −en + D2e3
n + D6enγ + D7e2

nγ + D10e2
n + D4

(
−

E6enγ

1 + ξ2
+

E10e2
n

1 − ξ2

)
en. (3.5)

For PD bifurcation in map (3.5), the values of the two expressions below must not be zero.

l1 = F̃γF̃enen + 2F̃enγ

∣∣∣∣∣
(0,0)
, l2 =

1
2

(F̃enen)
2 +

1
3

F̃enenen

∣∣∣∣∣
(0,0)
.

From simple computations, we obtain

l1 = 2D6 =
h
(
6d2 − 2b2k + d3hϵ − b2dhkϵ

)2

4b2k
(
−3d2 + b2k − d3hϵ + b2dhkϵ

) , (3.6)

and

l2 = −
a2b2

(
6d2 − 2b2k + d3hϵ − b2dhkϵ

)2 (
8 + 6d2h2ϵ2 − 2b2h2kϵ2 − d3h3ϵ3 + dhϵ

(
36 + b2h2kϵ2

))
32d2 (

d2 − b2k
)2 ϵ2

(
3d2 − b2k + d3hϵ − b2dhkϵ

) .

(3.7)

The following result is drawn from the calculations above:

Theorem 3.1. Suppose that (r, h, k, a, b, d, ϵ) ∈ ΓPD. The model (1.6) undergoes PD bifurcation at the
positive fixed point E2 if l1, l2 defined in (3.6) and (3.7) are nonzero and r varies in a close neighborhood
of r1 =

8b2k
6d2h−2b2hk+d3h2ϵ−b2dh2kϵ . Furthermore, if l2 > 0 (respectively l2 < 0), then the period-2 orbits that

bifurcate from E2 are stable (respectively, unstable).

Next, we studied NS bifurcation about the positive fixed point E2 =

(
d
b ,

d(−d2+b2k)r
ab3k

)
of the model (1.6).

To study the NS bifurcation, consider the following set:

ΓNS =

{
(r, h, k, a, b, d, ϵ) ∈ R7

+

∣∣∣∣∣ 0 < ϵ < 1, r <
8b2dkϵ(−d2 + b2k)

(3d2 − b2k)2 ,

k <
3d2

b2 , h = h1 :=
3d2 − b2k

dϵ(−d2 + b2k)

}
.

Suppose that (r, h, k, a, b, d, ϵ) ∈ ΓNS , and δ be minimal change in h, We take into account the
following change to the model (1.6):un+1 = un +

(h1+δ)
2

(
run(1 − u2

n
k ) − avn

)
,

vn+1 = vn + ϵ(h1 + δ)vn(−d + bun).
(3.8)
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In order to shift the fixed point
(

d
b ,

d(−d2+b2k)r
ab3k

)
to (0, 0), we define the translation map as follows:

an = un −
d
b
, bn = vn −

d(−d2 + b2k)r
ab3k

.

As a result of this translation map, the system (3.8) transforms to[
an+1

bn+1

]
=

[
l11 l12

l21 1

] [
an

bn

]
+

[
F(an, bn)
G(an, bn)

]
, (3.9)

where

l11 = 1 +
1
2

(
r −

3d2r
b2k

) (
δ +
−3d2 + b2k
d3ϵ − b2dkϵ

)
,

l12 = −
1
2

a
(
δ +
−3d2 + b2k
d3ϵ − b2dkϵ

)
,

l21 =
r
(
3d2 − b2k − d3δϵ + b2dkδϵ

)
ab2k

,

F(an, bn) = −
3dr

(
δ + −3d2+b2k

d3ϵ−b2dkϵ

)
2bk

a2
n −

r
(
δ + −3d2+b2k

d3ϵ−b2dkϵ

)
2k

a3
n + O((|an| + |bn| + |δ|)4),

G(an, bn) = bϵ
(
δ +
−3d2 + b2k
d3ϵ − b2dkϵ

)
anbn + O((|an| + |bn| + |δ|)4).

Let
ξ2 − α(δ)ξ + β(δ) = 0, (3.10)

be the characteristic equation of the Jacobian matrix for system (3.9) at the point (0, 0), where

α(δ) = −
9d4r − 6b2d2kr + b4k2r − 3d5rδϵ + 4b2d3k(1 + rδ)ϵ − b4dk2(4 + rδ)ϵ

2b2dk
(
−d2 + b2k

)
ϵ

,

β(δ) =
1
2

(
2 +

d2rδ(3 − dδϵ)
b2k

+ rδ(−1 + dδϵ)
)
.

The Eq (3.10) roots are complex that have the property |ξ1,2| = 1, which are given by

ξ1,2 =
α(δ) ± i

√
4β(δ) − α2(δ)
2

.

By computations, we obtain

|ξ1| = |ξ2| =
√
β(δ)

and (
d|ξ1|
dδ

)
δ=0
=

(
d|ξ2|
dδ

)
δ=0
=

r
4

(
−1 +

3d2

b2k

)
> 0.
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Moreover, it is required that ξp
1 , ξ

p
2 , 1 for p ∈ {1, 2, 3, 4} at δ = 0, which is equivalent to α(0) <

{−2, 0, 1, 2}. By simple calculations, it is obtained that

α(0) = 2 −
r(3d2 − b2k)2

2b2dkϵ(b2k − d2)
.

Clearly, α(0) , 2. Since r < 8b2dkϵ(−d2+b2k)
(3d2−b2k)2 in ΓNS , therefore α(0) > −2. We only require that

α(0) , 0, 1, which leads to the following:

r ,
4b2dkϵ(−d2 + b2k)

(−3d2 + b2k)2 ,
2b2dkϵ(−d2 + b2k)

(−3d2 + b2k)2 .

Subsequently, the transformation employed to convert the linear part of Eq (3.9) into canonical form
at δ = 0 is as follows: [

an

bn

]
=

 3ad2−ab2k
2d3ϵ−2b2dkϵ 0
(−3d2+b2k)2

r

4b2dk(−d2+b2k)ϵ k22


[
en

fn

]
, (3.11)

where

k22 = −
1
2

√
4 −

(
9d4r − 6b2d2kr + b4k2r + 4b2d3kϵ − 4b4dk2ϵ

)2

4b4d2k2 (
d2 − b2k

)2 ϵ2
.

When (3.9) is transformed by (3.11), the resulting system is[
en+1

fn+1

]
=

[
µ −ν

ν µ

] [
en

fn

]
+

[
F(en, fn)
G(en, fn)

]
, (3.12)

where

µ =
9d4r − 6b2d2kr + b4k2r + 4b2d3kϵ − 4b4dk2ϵ

4b2d3kϵ − 4b4dk2ϵ
,

ν =

(
−3d2 + b2k

) √
r
(
−9d4r + 6b2d2kr − b4k2r − 8b2d3kϵ + 8b4dk2ϵ

)
4(b2dk

(
d2 − b2k

)
ϵ)

,

F(en, fn) = −
a2

(
−3d2 + b2k

)3
re3

n

8k
(
d3ϵ − b2dkϵ

)3 +
3ad

(
−3d2 + b2k

)2
re2

n

4bk
(
d3ϵ − b2dkϵ

)2 + O((|en| + | fn|)4),

G(en, fn) = −
ab

(
−3d2 + b2k

)2
ϵen fn

2
(
d3ϵ − b2dkϵ

)2 +
a2

(
−3d2 + b2k

)5
r2e3

n

32b2d4k2 (
d2 − b2k

)4 ϵ4ν

+
a
(
−3d2 + b2k

)4
re2

n

(
3dr + 2b2kϵ

)
16b3d3k2 (

−d2 + b2k
)3 ϵ3ν

+ O((|en| + | fn|)4).

The following number, L, explains how the invariant curve appears in a model going through NS
bifurcation:
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L =
([
−Re

(
(1 − 2ξ1)ξ2

2

1 − ξ1
η20η11

)
−

1
2
|η11|

2 − |η02|
2 + Re(ξ2η21)

])
δ=0
,

where

η20 =
1
8

[
Fenen − F fn fn + 2Gen fn + i(Genen −G fn fn − 2Fen fn)

]
,

η11 =
1
4

[
Fenen + F fn fn + i(Genen +G fn fn)

]
,

η02 =
1
8

[
Fenen − F fn fn − 2Gen fn + i(Genen −G fn fn + 2Fen fn)

]
,

η21 =
1

16

[
Fenenen + Fen fn fn +Genen fn +G fn fn fn + i(Genenen +Gen fn fn − Fenen fn − F fn fn fn)

]
.

Based on the analytical approach discussed earlier, we can formulate the following theorem as a
result:

Theorem 3.2. Assume that (r, h, k, a, b, d, ϵ) ∈ ΓNS . When the parameter h differs in a small
neighborhood of h1 =

3d2−b2k
dϵ(−d2+b2k) , the model (1.6) goes through NS bifurcation at E2 if L , 0 and

r ,
4b2dkϵ(−d2 + b2k)

(−3d2 + b2k)2 ,
2b2dkϵ(−d2 + b2k)

(−3d2 + b2k)2 .

Furthermore, in the case of L being negative, an attracting invariant curve emerges from E2 when
h exceeds h1, while in the case of L being positive, a distancing invariant curve emerges from E2 when
h is less than h1.

4. Chaos control

Chaos control techniques are widely utilized in numerous fields of applied research and engineering.
In the context of dynamical models, it is preferable to optimize the model based on specific
performance criteria while simultaneously minimizing the occurrence of chaotic behavior. In the field
of mathematical biology, bifurcations and unstable fluctuations have conventionally been regarded as
unfavorable phenomena due to their hindrance to the growth of a biological population, and thus,
should be avoided at any expense. The feasibility of devising a controller capable of modifying
the bifurcation properties of a specific nonlinear dynamical system in order to mitigate the chaotic
behavior arising from PD and NS bifurcations is worth exploring. Consequently, specific dynamical
characteristics that are sought after can be achieved. The hybrid control method [48] is employed to
regulate chaos in the model (1.6) via both types of bifurcation effects. We consider the controlled
model shown below: 

un+1 = ρ
(
un +

h
2

(
run(1 − u2

n
k ) − avn

))
+ (1 − ρ)un,

vn+1 = ρ
(
vn + ϵhvn(−d + bun)

)
+ (1 − ρ)vn,

(4.1)

where ρ ∈ (0, 1). Upon considering the set Γ2, it can be observed that the fixed points of the
controlled model represented by system (4.1) coincide with those of the uncontrolled model denoted

by system (1.6). The Jacobian matrix of (4.1) at E2 =

(
d
b ,

d(−d2+b2k)r
ab3k

)
is provided by
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J(E2) =
[

j11 j12

j21 1

]
,

where

j11 = 1 +
1
2

h
(
1 −

3d2

b2k

)
rρ, j12 = −

1
2

ahρ,

j21 =
dh

(
−d2 + b2k

)
rϵρ

ab2k
.

Let

Υ(ξ) = ξ2 + B1ξ + B0, (4.2)

be the characteristic polynomial of J(E3), where

B1 = −2 +
1
2

h
(
−1 +

3d2

b2k

)
rρ,

B0 =
1
2

(
2 + hrρ + dh2rϵρ2 −

d2hrρ(3 + dhϵρ)
b2k

)
.

By simple computations, we obtain

Υ(1) =
dh2

(
−d2 + b2k

)
rϵρ2

2b2k
,

Υ(−1) =
1
2

(
8 + 2hrρ + dh2rϵρ2 −

d2hrρ(6 + dhϵρ)
b2k

)
,

Υ(0) =
1
2

(
2 + hrρ + dh2rϵρ2 −

d2hrρ(3 + dhϵρ)
b2k

)
.

It is evident that the value of Υ(1) is greater than zero. According to Lemma 2.2, the fixed point E2

of the model (1.6) exhibits local asymptotic stability under the conditions that Υ(1) > 0, Υ(−1) > 0
and Υ(0) < 1. Thus, we obtain the following result:

Theorem 4.1. Consider the set Γ2. If ρ ∈ (0, 1), then the fixed point E2 of the controlled model (4.1) is
LAS if k < 3d2

b2 , h < −3d2+b2k
d3ϵρ−b2dkϵρ , and

r <
8b2k

hρ
(
6d2 − 2b2k + d3hϵρ − b2dhkϵρ

) .
5. Numerical simulation

This section provides some numerical simulations to verify our theoretical results.
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5.1. NS bifurcation analysis by varying h

We consider the following parameters set:

r = 1.5, h = 1.5, k = 0.95, a = 1, b = 0.9, d = 0.6, ϵ = 0.8

with the initial conditions (u0, v0) = (0.6, 0.5) for the model (1.6). At this set, the positive fixed point
is E2 = (0.666667, 0.532164) and the Jacobian matrix at E2 is provided by

J(0.666667, 0.532164) =
[
0.546053 −0.75
0.574737 1

]
.

The eigenvalues of J(0.666667, 0.532164) are ξ1,2 = 0.773026 ± 0.616065i with |ξ1,2| < 1.
It indicates that E2 is LAS. Due to NS bifurcation, the fixed point E2 might destabilize when
the bifurcation parameter h grows. At h = 3d2−b2k

dϵ(−d2+b2k) ≈ 1.57967, the fixed point is E2 ≈

(0.666667, 0.532164) and the Jacobian matrix J(E2) is provided by

J(0.666667, 0.532164) =
[
0.521942 −0.789835
0.605263 1

]
.

The eigenvalues of J(0.666667, 0.532164) are ξ1,2 = 0.760971±0.648786i with |ξ1,2| = 1. It verifies
the existence of NS bifurcation at E2 in the model (1.6). Figure 1a,1b depicts bifurcation diagrams for
h ∈ [1.5, 2.65].

The fixed point E2 is a sink for these parameters’ values if h < 1.57967. Figure 2a–2f depicts phase
portraits of the model (1.6) for some values of h. The figures depict that the fixed point E2 is a sink for
h < 1.57967 but losses stability at h ≈ 1.57967, where the model (1.6) undergoes NS bifurcation. For
h ≥ 1.57967, there is a smooth invariant curve whose radius increases as h increases. By increasing
h, the invariant curve disappears abruptly, and a periodic orbit appears; however, the invariant curve
reappears in place of the periodic orbit. Large values of h result in the apparition of a strange chaotic
attractor. Maximum Lyapunov exponent (MLE) graph of model (1.6) is depicted in Figure 1c.

Next, for the controlled model (4.1), we consider the following parameters set:

r = 1.5, k = 0.95, a = 1, b = 0.9, d = 0.6, ϵ = 0.8

with the initial conditions (u0, v0) = (0.6, 0.5). We selected the same parameter set we used for NS
bifurcation analysis. First, we select the control parameter as ρ = 0.9. For this control parameter value,
the model (4.1) experiences NS bifurcation for h ≥ 1.75519. The NS bifurcation has been delayed in
the controlled model (4.1). See Figure 3.

Next, we select the control parameter as ρ = 0.7. For this control parameter value, the model (4.1)
experiences NS bifurcation for h ≥ 2.25667. It means that the small values of the control parameter ρ
result in more delay in the NS bifurcation in the model. See Figure 4.
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(a) (b)

(c)

Figure 1. Bifurcation diagrams and MLE graph of (1.6) for r = 1.5, k = 0.95, a = 1, b =
0.9, d = 0.6, ϵ = 0.8, u0 = 0.6, v0 = 0.5, h ∈ [1.5, 2.65].

AIMS Mathematics Volume 8, Issue 10, 24446–24472.



24463

(a) (b)

(c) (d)

(e) (f)

Figure 2. Phase portraits of (1.6) for r = 1.5, k = 0.95, a = 1, b = 0.9, d = 0.6, ϵ = 0.8, u0 =

0.6, v0 = 0.5, h ∈ {1.57, 1.58, 1.6, 2.18, 2.2, 2.69}.
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(a) (b)

Figure 3. Bifurcation diagrams of (4.1) for r = 1.5, k = 0.95, a = 1, b = 0.9, d = 0.6, ϵ =
0.8, ρ = 0.9, u0 = 0.6, v0 = 0.5, h ∈ [1.5, 2.65].

(a) (b)

Figure 4. Bifurcation diagrams of (4.1) for r = 1.5, k = 0.95, a = 1, b = 0.9, d = 0.6, ϵ =
0.8, ρ = 0.7, u0 = 0.6, v0 = 0.5, h ∈ [1.5, 2.65].

AIMS Mathematics Volume 8, Issue 10, 24446–24472.



24465

(a) (b)

(c) (d)

(e)

Figure 5. Bifurcation diagrams of (1.6), (4.1) and MLE graph of (1.6) for ρ = 0.90, a =
1, b = 0.9, d = 0.6, r = 1.5, h = 3.5, k = 0.95, u0 = 0.6, v0 = 0.5, and ϵ ∈ [0.28, 0.48].
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5.2. NS Bifurcation analysis by varying ϵ

We examine NS bifurcation at E2 using ϵ as a bifurcation parameter, varying ϵ in the range 0.28 <
ϵ < 0.48 and setting a = 1, b = 0.9, d = 0.6, r = 1.5, h = 3.5, k = 0.95, u0 = 0.6, v0 = 0.5. The
characteristic polynomial is Υ(ξ) = ξ2−0.940789ξ−0.0592105+2.93355ϵ. By simultaneously solving
Υ(1) > 0,Υ(−1) > 0 and Υ(0) < 1, it is seen that 0 < ϵ < 0.361068. As a result, if 0 < ϵ < 0.361068,
the fixed point E2 is LAS. The bifurcation value is calculated to be ϵ = 0.361068, and the interior fixed
point of model (1.6) is calculated to be E2 = (0.666667, 0.532164). ξ1,2 = 0.470395 ± 0.882456i with
|ξ1,2| = 1 are the eigenvalues of J(E2). It validates the NS bifurcation of the model (1.6) at E2 when ϵ
reaches 0.361068.

Figure 5a,5b displays the bifurcation diagrams of the model (1.6). MLE graph of model (1.6) is
depicted in Figure 5e. The bifurcation diagrams demonstrate that the fixed point E2, which is stable
for 0 < ϵ < 0.361068, becomes unstable owing to the emergence of NS bifurcation at ϵ = 0.361068.
We analyze the same parameter values and initial values for the controlled model (4.1) with ρ = 0.9.
If 0 < ϵ < 0.401186, the fixed point E2 is stable for these values. The controlled model’s bifurcation
diagrams show that the NS bifurcation has been postponed. See Figure 5c,5d. When ϵ crosses over
0.401186, the controlled model undergoes NS bifurcation. By employing small control parameter
values of ρ, the NS bifurcation may be postponed over a greater range of ϵ.

5.3. PD bifurcation analysis by varying h

Consider:

r = 3.6, k = 0.93, a = 3.5, b = 0.8, d = 0.7, ϵ = 0.85

with the initial conditions (u0, v0) = (0.9, 0.2) for the model (1.6). The positive fixed point of (1.6)
is E2 = (0.875, 0.159073). The eigenvalues of J(E2) for h ≈ 0.777616 are λ1 = −1, λ2 = 0.942768,
confirming that the model (1.6) goes through PD bifurcation at E2 as the bifurcation parameter h crosses
0.777616. See Figure 6a,6c. We consider the same parameter values for the controlled model (4.1)
with ρ = 0.95. The controlled model’s bifurcation diagram reveals that the PD bifurcation has been
postponed. See Figure 6b. When h crosses through 0.818543, the controlled model suffers from PD
bifurcation. By employing small control parameter values ρ, the PD bifurcation can be postponed over
a longer range of h.

Remark 5.1. To the best of our knowledge, the dynamic behavior of a continuous-time predator-prey
model with a square root functional response and slow-fast effect has not been investigated. The
equivalent continuous-time predator-prey model (1.2) to our model (1.6) is investigated in [22]. Their
investigation shows that the model (1.2) has two boundary fixed points and a positive fixed point.
Moreover, it is shown that model (1.2) undergoes transcritical and NS bifurcation at the positive fixed
point. In this paper, we investigate that model (1.6) has two boundary fixed points and a positive fixed.
Moreover, we proved that the model (1.6) experiences PD and NS bifurcation at the positive fixed
point. Our investigation reveals that the discrete model (1.6) has richer dynamics than the continuous
model (1.2).
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(a) (b)

(c)

Figure 6. Bifurcation diagram of un for model (1.6), (4.1) and MLE graph of (1.6) by taking
ρ = 0.95, r = 3.6, k = 0.93, a = 3.5, b = 0.8, d = 0.7, ϵ = 0.85, u0 = 0.9, v0 = 0.2, h ∈
[0.75, 0.85].
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6. Conclusions

We present and explore a discrete slow-fast predator-prey model with herd behavior. The model
has three fixed points: two boundary fixed points always existing and one interior fixed point that
exists only if the prey carrying capacity is large enough. It is determined that the trivial fixed point
is unstable. Within the appropriate parameter range, it is found that the boundary fixed point (

√
k, 0)

is stable. If the prey growth rate is sufficiently low and the predator death rate is within a specific
interval, then the boundary fixed point (

√
k, 0) is stable, indicating that the predator population will go

to extinction due to a lack of food source. Moreover, the topological classification of the interior
fixed point is presented. It is shown that both prey and predator populations experience PD and
NS bifurcation around the interior fixed point. Using bifurcation theory and the center manifold
theorem, the parametric conditions for the direction and presence of both kinds of bifurcations were
derived. The occurrence of both PD bifurcation and NS bifurcation at the positive fixed point indicates
that the predator-prey model is undergoing significant changes in its population dynamics under
certain parameter conditions. The transitions from stable equilibrium to oscillatory behavior can
have profound ecological implications, potentially leading to complex population dynamics, altered
ecosystem structure and impacts on the stability of the entire ecological community. Understanding
these bifurcations is crucial for predicting and managing the ecological consequences of changes in the
predator-prey system. A hybrid control method is used to control the chaotic behavior of model (1.6).
Furthermore, some numerical simulations are provided to demonstrate the theoretical results. The
chaotic attractor depicted in Figure 2f ensures chaos in the model. Consequently, both forms of
bifurcations may be controlled over a maximum control parameter range.

Furthermore, using slow-fast factor ϵ as the bifurcation parameter, it is demonstrated that the model
undergoes NS bifurcation at the interior fixed point for larger values of slow-fast factor. Biologically,
if the slow-fast factor ϵ is small, the predator’s death rate will be much lower than the prey’s growth
rate. As a result, the predator will have enough food, resulting in the stability of the interior fixed point.
This is reasonable because the predator can sustain itself while not growing too large to wipe out the
prey due to its slow growth. Furthermore, if the slow-fast factor ϵ is large, the predator’s death rate
and the prey’s growth rate are roughly equal. The slow growth of predators will inevitably lead to the
instability of the interior fixed point.
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