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Abstract: The algebraic structure of skew cyclic codes over M2(F2), using the F4-cyclic algebra, is
studied in this work. We determine that a skew cyclic code with a polynomial of minimum degree d(x)
is a free code generated by d(x). According to our findings, skew cyclic codes of odd and even lengths
are cyclic and 2-quasi-cyclic over M2(F2), respectively. We provide the self-dual skew condition of
Hermitian dual codes of skew cyclic codes. The generator polynomials of Euclidean dual codes are
obtained. Furthermore, a spanning set of a double skew cyclic code over M2(F2) is considered in this
paper.
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1. Introduction

Error-correcting codes have been a widely studied topic for the past six decades. Among all linear
codes, cyclic codes have received significant attention. Boucher et al. [9] generalized the concept of
cyclic codes over finite fields to skew cyclic codes. Siap et al. [25] extended their results to skew cyclic
codes of arbitrary length. For the last twenty years, scholars have focused on error-correcting codes
over finite rings.

There exist a host of studies on skew cyclic codes and double skew cyclic codes over finite
commutative rings. Boucher et al. [10] and Jitman et al. [17] considered skew constacyclic codes
over Galois rings and finite chain rings, respectively. Abualrub et al. [1] built θ-cyclic codes over
F2 + vF2. Gao [13] investigated the algebraic structure of skew cyclic codes over Fp + vFp. Gursoy
et al. [15] accomplished the construction of skew cyclic codes over Fq + vFq. The algebraic properties
of skew cyclic codes over the finite semi-local ring Fpm + vFpm were studied by M. Ashraf [3]. Shi
et al. [22, 23] established skew cyclic codes over Fq + vFq + v2Fq and Fq + vFq + · · · + vm−1Fq.
Bagheri et al. [6] studied skew cyclic codes of length ps over Fpm + uFpm and obtained some
torsion codes of skew cyclic codes. Shi et al. [24] proved the structure of skew cyclic codes over
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a finite non-chain ring. Recently, Prakash [21] studied the structure of skew cyclic codes over
Fq[u, v,w]/〈u2 − 1, v2 − 1,w2 − 1, uv− vu, vw−wv,wu− uw〉. Gao et al. [14] studied weight distribution
of double cyclic codes over Galois rings. Aydogdu et al. [4] characterized the algebraic structure of
double skew cyclic codes over Fq.

Since Wood [26] proved that the finite Frobenius rings can serve as the alphabets of coding theory,
many papers on cyclic codes over matrix rings have been published (see [2,7,11,16,18–20]). However,
there are few papers investigating skew and double skew cyclic codes over matrix rings. In this study,
we use the F4-cyclic algebra given in [5] to build the algebraic structure of skew cyclic codes over
M2(F2). Additionally, we discuss the dual codes of skew cyclic codes and double skew cyclic codes
over M2(F2).

This article is organized as follows: Section 2 provides some basic facts, and considers the algebraic
structure of skew cyclic codes over M2(F2). We prove that a skew cyclic code C with a polynomial
of minimum degree d(x) is a free submodule generated by d(x). We discuss Euclidean and Hermitian
dual codes of θ-cyclic codes in Section 3. In Section 4, the spanning sets of double skew cyclic codes
over M2(F2) are obtained, and Section 5 concludes this paper.

2. Skew cyclic codes over R

Let R be a finite ring with identity 1 , 0. A left (resp. right) R-module M is denoted by RM (resp.
MR). The socle of a module M is defined as the sum of its minimal submodules, denoted by Soc(M).
The ring R is called a Frobenius ring if Soc(RR) (resp. Soc(RR)) is a principal left (resp. right) ideal.
The ring R is called a local ring if R has a unique left (resp. right) maximal ideal (or equivalently, if
R/rad(R) is a division ring). A ring R is called a left (resp. right) chain ring if the set of all left (resp.
right) ideals of R is linearly ordered under the set inclusion. Lemma 2.1 describes the equivalence
conditions between chain rings, principal ideal rings and local rings (cf. [12, Theorem 2.1]).

Lemma 2.1. For any finite ring R, the following conditions are equivalent:

(i) R is a local principal ideal ring;

(ii) R is a local ring and the unique maximal ideal M of R is principal;

(iii) R is a chain ring whose ideal are 〈ri〉, 0 ≤ i ≤ N(r), where N(r) is the nilpotency index of r.

Moreover, if R is a finite chain ring with the unique maximal ideal 〈r〉 and the nilpotency index of r
is z, then the cardinality of 〈ri〉 is |R/〈r〉|z−i for i = 0, 1, · · · , z − 1.

We denote the 2×2 matrix ring over finite field F2 by M2(F2). By [5], we have M2(F2) is isomorphic
to the F4-cyclic algebra R = F4 ⊕ eF4 with e2 = 1 under the map δ,

δ :
(
0 1
1 0

)
7→ e, δ :

(
0 1
1 1

)
7→ ω,

where F4 = F2[ω] and ω2 + ω + 1 = 0. Note that (e + 1)2 = 0, then e + 1 is a nilpotent element of
order 2. The multiplication in R is given by re = eσ(r) for any r ∈ R, where σ(r) = r2 is the Frobenius
map on F4 and the addition is usual.
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The set of the unit elements of R is {1, ω, 1 + ω, e, eω, e(1 + ω)}. It is easy to know that the ring R
has the unique maximal ideal 〈e + 1〉. Since the n× n matrix ring Mn(R) over a Frobenius ring R is also
Frobenius, then R is a finite local Frobenius ring.

Define a map θ : R → R by θ(a + eb) = σ(a) + eσ(b), a, b ∈ F4. One can verify that θ is an
automorphism of R with order 2. The set F4,θ = {0, 1, e, 1 + e} is the fixed commutative subring of R
by θ. Define the skew polynomial ring

R[x, θ] =
{
rnxn + rn−1xn−1 + · · · + r1x + r0|ri ∈ R, n ∈ N

}
with the usual polynomial addition, and the multiplication is defined by the rule r1xi ·r2x j = r1θ

i(r2)xi+ j,
i, j ∈ N. Then for every a + eb ∈ R,

xi(a + eb) =

(a + eb)xi, if i is even,
(a2 + eb2)xi, if i is odd.

Note that R[x, θ] is non-commutative for multiplication, therefore, the submodules we discussed in
this paper are always left. It should be noted also that R[x, θ] is not a unique factorization ring, for
instance, x2 = x · x = ex · ex, x3 = x · x · x = x · ex · ex. In addition, the right division can be defined.

Lemma 2.2. Let f (x), g(x) ∈ R[x, θ], where the leading coefficient of g(x) is invertible. Then there
exist unique q(x), r(x) ∈ R[x, θ] such that

f (x) = q(x)g(x) + r(x),

where r(x) = 0 or deg(r(x)) < deg(g(x)). The polynomials q(x) and r(x) are called the right quotient
and right remainder, respectively. The polynomial g(x) is called a right divisor of f (x) if g(x)| f (x).

Proof. The proof is similar to that of Lemma 2.3 of [13]. �

Proposition 2.3. The center Z(R[x, θ]) of R[x, θ] is F4,θ[x2].

Proof. This proof is similar to that of [13, Theorem 1]. We give the proof briefly. Since |〈θ〉| = 2, then
x2i · r = (θ2)i(r)x2i = rx2i with any r ∈ R. Thus x2i ∈ Z(R[x, θ]). It implies that f (x) =

∑s
j=0 r jx2 j ∈

Z(R[x, θ]), where r j ∈ F4,θ. Conversely, for any fz ∈ Z(R[x, θ]) and r ∈ R, if r fz = fzr and x fz = fzx,
then the coefficients of fz are all in F4,θ and fz ∈ R[x2, θ]. Therefore fz ∈ F4,θ[x2]. �

Corollary 2.4. We have that xn + 1 ∈ Z(R[x, θ]) if and only if n is even.

Let Rn be the set of all n-tuples over R. Then a code C of length n over R is a nonempty subset of
Rn. If C is a left (resp. right) R-submodule of Rn, then C is called a left (resp. right) linear code of
length n over R. Every element c = (c0, c1, · · · , cn−1) in C is called a codeword.

Define the Gray map ϕ(a + eb) = (b, a + b) from R to F2
4 following the method in [8]. This map ϕ is

a linear bijection and can be extended to a map from Rn onto F2n
4 by concatenating the images of each

component. For any element a + eb ∈ R, Lee weight of a + eb is defined as

wL(a + eb) = wHam(b) + wHam(a + b),
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where wHam(∗) stands for Hamming weight over finite fields. If x = (x0, x1, · · · , xn−1) ∈ Rn, then Lee
weight of x is defined as

wL(x) = wL(x0) + wL(x1) + · · · + wL(xn−1).

If C is a linear code of length n over R, then Hamming and Lee distance of C are defined as
dHam = min{wHam(x)|x ∈ C} and dL = min{wL(x)|x ∈ C}, respectively. Analogously to [19, Theorem 7],
we get the following result. It is a proposition of the image of the linear code C over R under the Gray
map ϕ.

Proposition 2.5. Let C be a linear code over R of length n with sizeM and minimum Lee distance dL.
Then ϕ(C) is a linear code over F4 of length 2n with sizeM and minimum Hamming distance dHam.

We discuss the algebraic structure of skew cyclic codes over R below. Let n be a positive integer.
The set Rn = R[x, θ]/〈xn − 1〉 is a ring if n is even. When n is odd, the set Rn is a left R[x, θ]-module
under the multiplication defined by

f1(x)( f2(x) + (xn − 1)) = f1(x) f2(x) + (xn − 1).

Denote by T the standard shift operator on a linear code C, i.e., T (c) = (cn−1, c0, · · · , cn−2) for any
codeword c = (c0, c1, · · · , cn−1) ∈ C. A linear code C over R is cyclic if any cyclic shift of a codeword
c ∈ C is also a codeword, i.e., T (c) ∈ C. A linear code over R is called quasi-cyclic of index ` (or
`-quasi-cyclic) if and only if it is invariant under T `. If ` = 1, then it is a cyclic code. A linear code C
of length n is called a skew cyclic code if and only if

θ(c) = (θ(cn−1), θ(c0), · · · , θ(cn−2)) ∈ C,

for any codeword c = (c0, c1, · · · , cn−1) ∈ C.
In a set of polynomials, a polynomial is called the polynomial of minimum degree if and only if it

is not a polynomial of lower degree by removing any of its terms. Let d(x) = xn−m +
∑n−m−1

i=0 dixi be a
monic right divisor of xn − 1. Then a m × n generator matrix G of the skew cyclic code C = 〈d(x)〉 is
given by

G =



d0 d1 · · · dn−m−1 1 0 · · · 0 0
0 θ(d0) · · · θ(dn−m−2) θ(dn−m−1) 1 · · · 0 0
0 0 · · · θ2(dn−m−3) θ2(dn−m−2) θ2(dn−m−1) · · · 0 0
...

... · · ·
...

...
... · · ·

...
...

0 0 · · · θm−2(d0) θm−2(d1) θm−2(d3) · · · 1 0
0 0 · · · 0 θm−1(d0) θm−1(d1) · · · θm−1(dn−m−1) 1


.

Proposition 2.6 shows that skew cyclic codes with a polynomial of minimum degree over R are
free codes. Proposition 2.9 gives a sufficient and necessary condition for a skew cyclic code over R to
become a cyclic code. Propositions 2.7 and 2.8 describe the relationship between skew cyclic codes of
length n and cyclic codes, quasi-cyclic codes, respectively.

Proposition 2.6. Let n be a positive integer and C be a skew cyclic code of length n over R with a
polynomial of minimum degree d(x), where the leading coefficient of d(x) is a unit. Then C is a free
R[x, θ]-submodule of Rn such that C = 〈d(x)〉, where d(x) is a right divisor of xn−1. Moreover, the code
C has a basis B = {d(x), xd(x), · · · , xn−deg(d(x))−1d(x)} and the number of codewords in C is |R|n−deg(d(x)).
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Proof. By Lemma 2.2, any polynomial in C is divisible by d(x). It implies that d(x)|xn − 1 and C =

〈d(x)〉. For the second statement, let xn − 1 = q(x)d(x) for some q(x) ∈ R[x, θ]. Since the leading
coefficient of d(x) is a unit, then the leading coefficient of q(x) is also invertible. Let m be the degree
of q(x), then the degree of d(x) is n − m. Let q(x) =

∑m
i=0 qixi, where qm is invertible. Therefore∑m

i=0 qixid(x) = 0 in Rn. It follows that x jd(x) with j ≥ m can be linearly presented by the elements of
the set B = {d(x), xd(x), · · · , xm−1d(x)}.

Let
∑m−1

i=0 ai · xid(x) = 0, where ai ∈ R, i = 0, 1, · · · ,m − 1. Thus a(x)d(x) = 0, where a(x) =∑m−1
i=0 aixi. The polynomial a(x)d(x) can be represented to a(x)d(x) = ζ(x)(xn − 1) for some ζ(x) ∈
R[x, θ]. The degree of a(x)d(x) is n − 1, while the degree of ζ(x)(xn − 1) is greater than or equal to n if
ζ(x) , 0. This is a contradiction. Therefore, we have ζ(x) = a(x) = 0, i.e. ai = 0 for i = 0, 1, · · · ,m−1.
The set B = {d(x), xd(x), · · · , xm−1d(x)} is R-linearly independent. Consequently B is a basis of C and
|C| = |R|n−deg(d(x)). This completes the proof. �

Proposition 2.7. If C is a skew cyclic code of odd length over R, then C is a cyclic code over R.

Proof. Let n be odd and C be a skew cyclic code of length n over R. There exist two integers s, t such
that 2s + nt = 1. Thus, we have 2s = 1 − nt. If c(x) =

∑n−1
i=0 cixi is any codeword in C, then

x2sc(x) = x1−ntc(x) =

n−1∑
i=0

cixi+1−nt.

Since xn = 1, then

x2sc(x) =

n−1∑
i=0

xi+1 = xc(x) ∈ C.

It follows that (cn−1, c0, · · · , cn−2) ∈ C for any codeword (c0, c1, · · · , cn−1) in C. �

Proposition 2.8. If C is a skew cyclic code of even length over R, then C is a quasi-cyclic code of
index 2.

Proof. Let C be a skew cyclic code of length 2t over R and c = (c0,0, c0,1, c1,0, · · · , ct−1,0, ct−1,1) ∈ C.
Since θ(c) ∈ C and θ2 = 1, it follows that θ2(c) = (ct−1,0, ct−1,1, c0,0, c0,1, · · · , ct−2,0, ct−2,1) ∈ C. By the
definition of quasi-cyclic codes, the code C is a 2-quasi-cyclic code of length 2t. �

Proposition 2.9. Let C be a skew cyclic code generated by d(x) of even length n over R, where d(x) is
a monic right divisor of xn − 1. Then C is a cyclic code over R if and only if d(x) is fixed by θ.

Proof. Let d(x) = xl + dl−1xl−1 + · · · + d1x + d0, where θ(di) = di, i = 0, 1, 2, · · · , l − 1. Then xd(x) =

d(x)x ∈ C. It follows that the code C = 〈d(x)〉 is cyclic over R.
Conversely, if C is a cyclic code of even length n over R, then C is a left ideal of Rn and an ideal of

R[x]/〈xn − 1〉. Therefore, d(x)x is a codeword in C. Since C is linear, we have d(x)x − xd(x) ∈ C. It
implies that

∑l−1
i=0(di − θ(di))xi+1 is a left multiple of d(x) such that d(x)x − xd(x) = rd(x) with r ∈ R.

Note that the constant term of d(x)x− xd(x) is 0, then d(x)x− xd(x) must be 0. It shows that θ(di) = di,
i = 0, 1, · · · , l − 1. The proof is done. �

Example 2.10. There are two examples:
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(1) Let C be a skew cyclic code of length 4 over R generated by the following matrix,(
e e + 1 1 0
0 e e + 1 1

)
.

The generated polynomial of C is d(x) = x2 + (e + 1)x + e. Note that d(x) is a commutative right
divisor of x4 − 1, and all coefficients of d(x) are fixed by θ. By Proposition 2.9, the code C is
cyclic.

(2) Let C1 be a skew cyclic code of length 4 generated by the following matrix,
ω 1 0 0
0 ω + 1 1 0
0 0 ω 1

 .
The generated polynomial of C1 is d1(x) = x+ω, and it is a right divisor of x4−1. The coefficients
of d1(x) are not all fixed by θ. By Propositions 2.8 and 2.9, the code C1 is not cyclic but 2-quasi-
cyclic.

3. Duals of skew cyclic codes over R

This section investigates the dual codes of skew cyclic codes over the ring R. For any x =

(x0, x1, · · · , xn−1) and y = (y0, y1, · · · , yn−1) ∈ Rn, the Euclidean inner product on Rn is defined by
〈x, y〉 =

∑n−1
i=0 xiyi. If the order of the automorphism θ is 2, then the Hermitian inner product of any

x, y ∈ Rn is defined by 〈x, y〉H =
∑n−1

i=0 xiθ(yi).
The elements x, y ∈ Rn are called Euclidean or Hermitian orthogonal if 〈x, y〉 = 0 or 〈x, y〉H = 0,

respectively. Let C be a skew cyclic code over R. Then its Euclidean dual code C⊥ is defined as
C⊥ = {y ∈ Rn|〈y, x〉 = 0 for all x ∈ C}. The Hermitian dual code C⊥H of C is defined as C⊥H = {z ∈
Rn|〈z, x〉H = 0 for all x ∈ C}. A code C is called Euclidean or Hermitian self-dual if C = C⊥ or C = C⊥H,
respectively.

Jitman et al. [17] described the algebraic structure of skew constacyclic codes over finite chain
rings, and provided the generators of Euclidean and Hermitian dual codes of such codes. The ring
R = F4 ⊕ eF4 can be alternatively represented as F4 ⊕ uF4 with u2 = (e + 1)2 = 0. This indicates that R
is a finite chain ring under the change of basis.

In this section, Proposition 3.2 delineates a sufficient and necessary condition for Hermitian dual
code of a skew cyclic code with length n over R. Proposition 3.3 is the self-dual skew condition of
Hermitian dual code. Propositions 3.2 and 3.3 can be seen as corollaries of Theorems 3.7 and 3.8
of [17], respectively. The main work of this section is to depict the structure of Euclidean dual codes
of skew cyclic codes over R. Proposition 3.6 illustrates that the Euclidean dual codes of skew cyclic
codes of even length generated by a monic polynomial over R are also free and gives their generator
polynomials.

By Lemmas 3.1 and 3.5 of [17], we acquire the following statement.

Lemma 3.1. Let C be a linear code of length n over R.

(i) For any integer n, the code C is a skew cyclic code if and only if C⊥ is skew cyclic.
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(ii) For even integer n, the code C is a skew cyclic code if and only if C⊥H is skew cyclic.

From [17], the ring automorphism ρ on R[x, θ] is given as

ρ(
t∑

i=0

rixi) =

t∑
i=0

θ(ri)xi.

By Theorems 3.7 and 3.8 of [17], we have the following results.

Proposition 3.2. Let n be even. If d(x) is a monic right divisor of xn − 1 and d̂(x) = xn−1
d(x) , then C is a

free skew cyclic code generated by d(x) if and only if C⊥H is a skew cyclic code generated by

d⊥(x) = ρ(xdeg(d̂(x))φ(d̂(x))),

where φ : R[x, θ]→ R[x, θ]S−1 is the anti-monomorphism of rings defined by

φ(
t∑

i=0

rixi) =

t∑
i=0

x−iri

with S = {xi|i ∈ N}.

Proposition 3.3. Let n = 2k. If d(x) = xk +
∑k−1

i=0 dixi is a right divisor of xn − 1, then the skew cyclic
code C = 〈d(x)〉 is a Hermitian self-dual code if and only if

(xk +

k−1∑
i=0

dixi)(θ−k−1(d−1
0 )) +

k−1∑
i=1

θi−k−1
(
(d−1

0 dk−i)xi + xk
)

= xn − 1.

This is called the self-dual skew condition.

Next, we discuss the algebraic properties of Euclidean dual codes of skew cyclic codes over R.

Lemma 3.4. Let d(x), q(x) ∈ R[x, θ], where the leading coefficient of q(x) is a unit. If d(x)q(x) ∈
Z(R[x, θ]) is a monic polynomial, then d(x)q(x) = q(x)d(x).

Proof. It is easy to prove by q(x)(d(x)q(x)) = (d(x)q(x))q(x) and Lemma 2.2. �

Lemma 3.5. Let n be even and xn − 1 = q(x)d(x), where the leading coefficient of q(x) is a unit. If
C = 〈d(x)〉 is a skew cyclic code of length n over R, then c(x) ∈ Rn is in C if and only if c(x)q(x) = 0 in
Rn.

Proof. Let c(x) ∈ C. Then c(x) = r(x)d(x) for some r(x) ∈ R[x, θ]. Since xn−1 = q(x)d(x) ∈ Z(R[x, θ]),
we have q(x)d(x) = d(x)q(x). Hence c(x)q(x) = r(x)d(x)q(x) = r(x)q(x)d(x) = 0 in Rn.

Conversely, if c(x)q(x) = 0 in Rn for some c(x) ∈ R[x, θ], then there exists r(x) ∈ R[x, θ] such that
c(x)q(x) = r(x)(xn − 1) = r(x)q(x)d(x) = r(x)d(x)q(x), i.e., c(x) = r(x)d(x) ∈ C. �

Proposition 3.6. Let C = 〈d(x)〉 be a skew cyclic code of even length n over R, where d(x) is a monic
right divisor of xn − 1. Let xn − 1 = q(x)d(x), q(x) = xm +

∑m−1
j=0 q jx j and d(x) = xn−m +

∑n−m−1
i=0 dixi.

Then C⊥ is generated by the polynomial q∗(x) = 1 +
∑m

i=0 θ
i(qm−i)xi.
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Proof. Let c(x) =
∑n−1

i=0 cixi be a codeword in C. Then c(x)q(x) = 0 in Rn by Lemma 3.5. The
coefficients of xm, xm+1, · · · , xn−1 are all zeros in c(x)q(x). Therefore, we have

c0 + c1θ(qm−1) + c2θ
2(qm−2) + · · · cmθ

m(q0) = 0,
c1 + c2θ

2(qm−1) + c3θ
3(qm−2) + · · · cm+1θ

m+1(q0) = 0,
c2 + c3θ

3(qm−1) + c4θ
4(qm−2) + · · · cm+2θ

m+2(q0) = 0,
...

cn−m−1 + cn−mθ
n−m(qm−1) + cn−m−1θ

n−m(qm−2) + · · · cn−1θ
n−1(q0) = 0.

We set

Q∗ =



1 θ(qm−1) θ2(qm−2) . . . θm−1(q1) θm(q0) . . . 0
0 1 θ2(qm−1) . . . θm−1(q2) θm(q1) . . . 0
0 0 1 . . . θm−1(q3) θm(q2) . . . 0
...

...
...

...
...

...
...

...

0 0 0 . . . 1 θn−m(qm−1) . . . θn−1(q0)


.

It is easy to know that each row vector of Q∗ is orthogonal to every codeword in C. Thus, all the
row vectors of Q∗ are in C⊥. Since C is a Frobenius ring and deg(d(x)) = n − m, then |C||C⊥| = |R|n,
|C| = |R|m and |C⊥| = |R|n−m. Note that the rows of Q∗ are linearly independent. Consequently, the
cardinality of the row spanning of Q∗ is |R|n−m. It follows that Q∗ is a generator matrix of C⊥. Observe
that Q∗ is a circular matrix, then the corresponding polynomial q∗(x) = 1+

∑m
i=0 θ

i(qm−i)xi is a generator
polynomial of C⊥. The proof is done. �

Example 3.7. Let C1 = 〈d1(x)〉 be a skew cyclic code of length 4 over R. With the same notation as
in Example 2.10, by Proposition 3.6, we have that the generated polynomial of dual code C⊥1 of C1 is
q∗1(x) = ωx3 + x2 + ωx. The generated matrix of C⊥1 is(

0 ω 1 ω
)
.

4. Double skew cyclic codes over R

Both double cyclic codes and double skew cyclic codes are good linear codes because of their
specific closure properties under the standard shift and addition operations. Double cyclic codes can
be extended to double skew cyclic codes. We investigate double skew cyclic codes over R in this
section.

A code C of length n is called double skew linear code if any codeword in C is partitioned into two
blocks of lengths n1 and n2 such that the set of the first blocks of n1 symbols and the set of second
blocks of n2 symbols form skew linear codes of lengths n1 and n2 over R, respectively.

For any r ∈ R and c = (u0, u1, · · · , un1−1, v0, v1, · · · , vn2−1) ∈ Rn1+n2 , we define

rc = (ru0, ru1, · · · , run1−1, rv0, rv1, · · · , rvn2−1).
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It implies that Rn1+n2 is an R-module under the multiplication and a double skew linear code is an
R-submodule of Rn1+n2 .

A double linear code C of length n = n1 + n2 over R is called double cyclic code if

(u0, u1, · · · , un1−1, v0, v1, · · · , vn2−1) ∈ C

implies
(un1−1, u0, · · · , un1−2, vn2−1, v0, · · · , vn2−2) ∈ C.

A double skew linear code C of length n1 + n2 over R is called a double skew cyclic code if and only if

(θ(un1−1), θ(u0), · · · , θ(un1−2), θ(vn2−1), θ(v0), · · · , θ(vn2−2)) ∈ C

for any codeword
c = (u0, u1, · · · , un1−1, v0, v1, · · · , vn2−1) ∈ C.

We denote the codeword c = (u0, u1, · · · , un1−1, v0, v1, · · · , vn2−1) ∈ C by c(x) = (c1(x)|c2(x)), where

c1(x) =

n1−1∑
i=0

uixi ∈ R[x, θ]/〈xn1 − 1〉

and

c2(x) =

n2−1∑
j=0

v jx j ∈ R[x, θ]/〈xn2 − 1〉.

It gives a bijection between Rn1+n2 and Rn1,n2 = R[x, θ]/〈xn1 − 1〉 × R[x, θ]/〈xn2 − 1〉. Define the
multiplication of any r(x) ∈ R[x, θ] and (c1(x)|c2(x)) ∈ Rn1,n2 as

r(x)(c1(x)|c2(x)) = (r(x)c1(x)|r(x)c2(x)).

Under the multiplication, we have that Rn1,n2 is a left R[x, θ]-module. If c(x) = (c1(x)|c2(x)) is a
codeword in C, then xc(x) is the standard skew cyclic shift of c.

Propositions 4.1 to 4.3 depict the structural properties of double skew cyclic codes of length n1 + n2

over R.

Proposition 4.1. A code C is a double skew cyclic code over R if and only if C is a R[x, θ]-submodule
of Rn1,n2 .

Proof. Let C be a double skew cyclic code and c = (c1(x)|c2(x)) ∈ C. Notice that xc(x) ∈ C and C
is linear, then r(x)c(x) ∈ C for any r(x) ∈ R[x, θ]. Therefore C is a left R[x, θ]-submodule of the left
module Rn1,n2 . The converse is trivial. �

Proposition 4.2. A double skew cyclic code of length n1 + n2 is a double cyclic code if n1 and n2 are
both odd.

Proof. The proof follows by Proposition 2.7. �
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Proposition 4.3. Let xn1 − 1 = q1(x)d1(x) and xn2 − 1 = q2(x)d2(x), where d1(x) and d2(x) are two
monic polynomials. If C1 = 〈d1(x)〉 and C2 = 〈d2(x)〉 are two free skew cyclic codes of length n1

and n2 over R, respectively, then the code C generated by d(x) = (d1(x)|d2(x)) is a double skew cyclic
code. Furthermore, A = {d(x), xd(x), · · · , xl−1d(x)} is a spanning set of C, where l = deg(q(x)) and
q(x) = lcm{q1(x), q2(x)} =

∑l
i=0 qixi.

Proof. By the definition of double skew cyclic codes, it is clear that C = 〈d(x)〉 is a double skew
cyclic code. The first statement follows. For the second statement, since q(x) is the least common
multiple of q1(x) and q2(x), we have q(x)d(x) = q(x)(d1(x)|d2(x)) = 0 and x jd(x) with j ≥ l can be
linearly represented by the elements of the set A = {d(x), xd(x), · · · , xl−1d(x)}. Now let c(x) ∈ C
be any non-zero codeword in C. Then c(x) = a(x)d(x) for some a(x) ∈ R[x, θ]. If deg(a(x)) ≥ l,
then a(x) = p(x)q(x) + r(x) by Lemma 2.2, where r(x) = 0 or deg(r(x)) < deg(q(x)). It follows that
c(x) = a(x)d(x) = r(x)d(x). Since r(x) = 0 or deg(r(x)) ≤ l − 1, then any non-zero codeword in C is a
linear combination of the elements inA. The proof is done. �

5. Conclusions

In this paper, we examine the structure of skew cyclic codes over M2(F2). All skew cyclic codes of
length n over M2(F2) can be identified as left R[x, θ]-submodules of left module Rn = R[x, θ]/〈xn − 1〉.
Our results show that a skew cyclic code C with a polynomial of minimum degree d(x) is a free
submodule 〈d(x)〉. We prove that a skew cyclic code of odd or even length over M2(F2) is a cyclic or
2-quasi-cyclic code. We give the self-dual skew condition of the Hermitian dual code and the generator
of Euclidean dual code of a skew cyclic code, respectively. Furthermore, a spanning set of a double
skew cyclic code over M2(F2) is obtained.
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24. M. Shi, T. Yao, P. Solè, Skew cyclic codes over a non-chain ring, Chin. J. Electron., 26 (2017),
544–547. https://doi.org/10.1049/cje.2017.03.008

25. I. Siap, T. Abualrub, N. Aydin, P. Seneviratne, Skew cyclic codes of arbitrary length, Int. J. Inf.
Coding Theory, 2 (2011), 10–20. https://doi.org/10.1504/IJICOT.2011.044674

26. J. A. Wood, Code equivalence characterizes finite Frobenius rings, Proc. Amer. Math. Soc., 136
(2008), 699–706. https://doi.org/10.1090/S0002-9939-07-09164-2

© 2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 8, Issue 10, 24434–24445.

http://dx.doi.org/https://doi.org/10.1142/S1793830921501135
http://dx.doi.org/https://doi.org/10.1587/transfun.E98.A.1845
http://dx.doi.org/https://doi.org/10.1049/cje.2017.03.008
http://dx.doi.org/https://doi.org/10.1504/IJICOT.2011.044674
http://dx.doi.org/https://doi.org/10.1090/S0002-9939-07-09164-2
http://creativecommons.org/licenses/by/4.0

	Introduction
	Skew cyclic codes over R
	Duals of skew cyclic codes over R
	Double skew cyclic codes over R
	Conclusions

