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1. Introduction

We will begin by introducing some notation before proceeding. We will write Λ ∈ Rk,l if Λ is a k× l
real matrix, Λ ∈ Rs

k if Λ ∈ Rk,k and is symmetric, Λ ∈ R≽k if Λ ∈ Rs
k and is positive semi-definite. We

will use r(Λ), C (Λ), Λ′ and Λ+ as symbols to present the rank, the column space, the transpose and the
Moore-Penrose generalized inverse of Λ ∈ Rk,l, respectively. Λ⊥ = Ik − ΛΛ

+ stands for the orthogonal
projector, where Ik ∈ R

s
k is the identity matrix of order k. The symbols i+(Λ) and i−(Λ) represent

positive and negative inertias of Λ ∈ Rs
k, respectively, while i±(Λ) and i∓(Λ) are used to denote both

the positive and the negative inertias of Λ ∈ Rs
k jointly. The inequality Λ1 − Λ2 ≽ 0 or Λ1 ≽ Λ2

means Λ1 − Λ2 ∈ R
≽
k in the Löwner partial ordering for Λ1,Λ2 ∈ R

s
k. Similarly, when stating the other

inequalities between Λ1,Λ2 ∈ R
s
k, Λ1 − Λ2 ≻ 0 (Λ1 ≻ Λ2), Λ1 − Λ2 ≺ 0 (Λ1 ≺ Λ2), Λ1 − Λ2 ≼ 0

(Λ1 ≼ Λ2) are used if the difference Λ1 − Λ2 is positive definite, negative definite and negative semi-
definite matrices, respectively. We will write E(λ) for the expectation vector and D(λ) = cov(λ, λ) for
the dispersion matrix of a random vector λ ∈ Rk,1, where cov(λ, λ) denotes the covariance matrix of λ.

A linear mixed model (LMM) is a variant of linear regression model that combines fixed and
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random effects in the same analysis, allowing for more flexibility in model fitting. In some statistical
problems, besides the sample information of LMMs, there may exist additional information, usually
produced as prior information for the models. This prior information can be expressed as either a
linear stochastic restriction or a linear exact restriction on unknown parameters, and it is usually
added to the assumptions of models. Linear exact restrictions occur when there is a specific linear
hypothesis being tested or when exact knowledge is available among certain parameters. On the other
hand, linear stochastic restrictions arise when prior information is derived from previous investigations
or established long-term relationships with relevant studies; see, e.g., [1, 2].

An LMM with a linear stochastic restriction, also known as a stochastically restricted LMM
(SRLMM), can be given as follows:

y = Xα + Zγ + ε with Sα + e = s, (1.1)

E
[
γ
ε

]
= 0, D

[
γ
ε

]
= σ2Λ1, E(e) = 0, D(e) = σ2Λ3,

cov
{[
γ
ε

]
, e

}
= σ2Λ2, i.e., D


γ
ε
e

 = σ2
[
Λ1 Λ2

Λ′2 Λ3

]
:= σ2Λ,

(1.2)

where y ∈ Rn,1 is a vector of responses, X ∈ Rn,k, Z ∈ Rn,p, S ∈ Rm,k are known matrices of arbitrary
ranks and s ∈ Rm,1 is a known vector, α ∈ Rk,1 is a parameter vector of fixed effects, γ ∈ Rp,1 is a vector
of random effects, ε ∈ Rn,1 and e ∈ Rm,1 are vectors of random errors, Λ ∈ R≽n+p+m of arbitrary ranks
and its entries Λi are known, i = 1, 2, 3 and σ2 is a positive unknown parameter.

In the present study, we consider the SRLMM in (1.1). We derive the best linear unbiased predictors
(BLUPs) of a unified form of all unknown parameters in the SRLMM utilizing some quadratic matrix
optimization methods, which include block matrix inertias and ranks. Furthermore, we discuss some
of the BLUPs’ basic characteristics. We specifically address the comparison problem between any
predictor and the BLUP for all unknown parameters in a unified form under the SRLMM in the sense
of the mean squared error matrix (MSEM) criterion. It is well-known that the MSEM of any predictor
or estimator λ̃ of λ in a linear regression model is defined as the matrix

MSEM(̃λ) = E(̃λ − λ)(̃λ − λ)′. (1.3)

To compare two given predictors or estimators λ̃1 and λ̃2, the difference

∆(̃λ1, λ̃2) = MSEM(̃λ1) −MSEM(̃λ2) (1.4)

is written. In this case, λ̃2 is said to be superior to λ̃1 with respect to the MSEM criterion iff
∆(̃λ1, λ̃2) ≽ 0 holds. Using the methodology of block matrix inertias and ranks, a number of equalities
and inequalities for the comparisons of MSEMs of two predictors, with one being the BLUP, of a
unified form of all unknown parameters are established by considering the difference in (1.4). Such
comparisons allow us to evaluate whether two predictors, one of which is BLUP, of the same unknown
parameter vector are more effective than each other. We also derive comparison results for special cases
of a unified form of all unknown parameters under the SRLMM. Furthermore, the results are reduced
to both a constrained linear mixed model (CLMM), i.e., an LMM with a linear exact restriction, and an
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unconstrained LMM (ULMM). We use a numerical example to explain the theoretical results. There
have been numerous previous and recent studies in the literature that focus on an exact restriction
on unknown parameters under LMMs and linear models from different perspectives; see, e.g., [3–14]
and the references therein. There has also been considerable attention on stochastic restriction on
unknown parameters in a linear regression model from different approaches; see, e.g., [1,2,15–18],
among others. We may also refer to [19–28], among others, for the corresponding studies in which
similar approaches were conducted for the comparisons of predictors or estimators by utilizing the
methodology of block matrix inertias and ranks. It is worth noting that studies on stochastic or exact
restrictions are not limited to the context of linear models and in the field of statistics. The stochastic or
exact restrictions on linear or nonlinear equations have been widely investigated from various aspects
in a variety of fields, including biostatistics, educational measurement, sociology, finance, biology,
chemistry, mechanics and economics, see, e.g., [29–34].

The development of various potential predictors (or, also potential estimators) of unknown
parameter vectors in linear regression models is one of the main goals of theoretical and practical
studies. In order to define predictors of unknown parameter vectors in the model, various types of
optimality criteria have been utilized in mathematics. The unbiasedness of predictors of unknown
parameter vectors according to the parameter spaces in the model is one of the crucial characteristics
among others. When there are numerous unbiased predictors for the same parameter space, finding the
one with the smallest dispersion matrix becomes significant. The BLUP, by its definition, corresponds
to these two requirements. Thus, due to the minimizing property of the BLUP’s dispersion matrix,
the BLUP has a significant role to play in statistical inference theory and is frequently used as the
foundation for evaluating the effectiveness of various predictors. As stated in the next section, the
dispersion matrix of the BLUP is equal to its MSEM. In this situation, in the context of the SRLMM,
comparing any predictor with the BLUP for a unified form of all unknown parameters using the MSEM
criterion allows us to determine the optimality of the compared predictor. As it is known, one of the
main criteria for determining the superiority of two different predictors of the unknown parameter
vectors in the model is the MSEM criterion, which is widely used to measure predictors accurately.

The expressions, which are obtained from the comparison issues of the predictors, include various
complicated matrix operations, including the use of Moore-Penrose generalized inverses. Some of the
methods to simplify expressions composed by matrices and their Moore-Penrose generalized inverses
are based on conventional operations on matrices, as well as some known equalities for inverses or
Moore-Penrose generalized inverses of matrices. These methods’ efficacy is quite limited, and the
related processes are quite tedious. However, the methodology of block matrix inertias and ranks offers
an effective approach to simplify such complex matrix expressions. It allows for the representation
of results as simple inertia and rank equalities. The theory of matrix inertias and ranks has been
developed as an efficient methodology for the simplification of such complex matrix expressions. In
linear algebra, the inertia and rank of a matrix are fundamental quantities that are straightforward to
understand and calculate. Using the theory of inertias and ranks of the matrix, various inequalities and
equalities between the MSEMs of predictors correspond to the comparison of quantities derived from
inertias and ranks of matrices.

The paper presents novel theoretical techniques and innovative approaches for comparing any
predictor and the BLUP of the same general vector of unknown parameters under the SRLMM. The
comparisons are based on the MSEM criterion, and the methodology of block matrix inertias and ranks
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is employed to establish exact formulas for these comparisons. It is important to note that we do not
make any distributional assumptions for the random vectors in the models, except for assuming the
existence of first and second moments. Additionally, no restrictions are imposed on the ranks of given
matrices. Furthermore, there are no specific requirements concerning the patterns of the submatrices
of Λ in (1.2). In statistical practice, if we meet the cases where Λ is unknown, then the estimators
of submatrices of Λ can be used. Alternatively, if Λ is given with some parametric forms and some
specific patterns, then the estimators obtained from the observed data can be substituted. These are
other types of inference work, which we do not consider in this article.

Lastly, we list a few lemmas that are essential for the subsequent sections of the paper, contributing
to the overall theoretical framework developed for comparing predictors under the SRLMM.

Lemma 1.1 ( [35]). Let Λ1, Λ2 ∈ Rk,l, or, let Λ1, Λ2 ∈ R
s
k. Then,

r(Λ1 − Λ2) = 0⇔ Λ1 = Λ2.

i−(Λ1 − Λ2) = k ⇔ Λ1 ≺ Λ2 and i+(Λ1 − Λ2) = k ⇔ Λ1 ≻ Λ2.

i−(Λ1 − Λ2) = 0⇔ Λ1 ≽ Λ2 and i+(Λ1 − Λ2) = 0⇔ Λ1 ≼ Λ2.

Lemma 1.2 ( [35]). Let Λ1 ∈ R
s
k, Λ2 ∈ Rk,l, Λ3 ∈ R

s
l and a ∈ R. Then,

r(Λ1) = i+(Λ1) + i−(Λ1). (1.5)

i±(aΛ1) = i±(Λ1) if a > 0 and i±(aΛ1) = i∓(Λ1) if a < 0. (1.6)

i±
[
Λ1 Λ2

Λ′2 Λ3

]
= i±

[
Λ1 −Λ2

−Λ′2 Λ3

]
= i∓

[
−Λ1 Λ2

Λ′2 −Λ3

]
. (1.7)

i±
[
Λ1 0
0 Λ3

]
= i±(Λ1) + i±(Λ3) and i+

[
0 Λ2

Λ′2 0

]
= i−

[
0 Λ2

Λ′2 0

]
= r(Λ2). (1.8)

i±
[
Λ1 Λ2

Λ′2 0

]
= r(Λ2) + i±(Λ⊥2Λ1Λ

⊥
2 ). (1.9)

i+
[
Λ1 Λ2

Λ′2 0

]
= r

[
Λ1, Λ2

]
and i−

[
Λ1 Λ2

Λ′2 0

]
= r(Λ2) if Λ1 ≽ 0. (1.10)

i±
[
Λ1 Λ2

Λ′2 Λ3

]
= i±(Λ1) + i±(Λ3 − Λ

′
2Λ
+
1Λ2) if C (Λ2) ⊆ C (Λ1). (1.11)

Lemma 1.3 ( [36]). Let Λ1 ∈ Rk,l and Λ2 ∈ Rm,l be given matrices, and let H ∈ R≽k . Suppose that
there exists X ∈ Rm,k such that XΛ1 = Λ2. Then the maximal positive inertia of XHX′ − YHY′ s.t. all
solutions of YΛ1 = Λ2 is

max
YΛ1=Λ2

i+(XHX′ − YHY′) = r
[
XH
Λ′1

]
− r(Λ1) = r(XHΛ⊥1 ).

Hence, a solution X of XΛ1 = Λ2 exists such that XHX′ ≼ YHY′ holds for all solutions of YΛ1 =

Λ2 ⇔ both the equations XΛ1 = Λ2 and XHΛ⊥1 = 0 are satisfied by X.
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2. BLUPs under SRLMMs

Let us consider the SRLMM in (1.1). By unifying two given equation parts in (1.1), we obtain

S : ys = Xsα + Zsγ + εs = Xsα +
[
Zs, In+m

] [γ
εs

]
,

ys =

[
y
s

]
, Xs =

[
X
S

]
, Zs =

[
Z
0

]
, εs =

[
ε
e

]
.

(2.1)

Through the unifying operation that we use in (2.1), which is a common procedure for approaching
two or more equations, the SRLMM in (1.1) is converted to the implicitly linear stochastically restricted
LMM in (2.1). We can take into consideration the following general vector to produce conclusions on
predictors of all unknown vectors under S:

λ = Kα + Lγ +Mεs = Kα +
[
L, M

] [γ
εs

]
= Kα +

[
L, M1, M2

] 
γ
ε
e

 , (2.2)

where K ∈ Rt,k, L ∈ Rt,p, M1 ∈ Rt,n and M2 ∈ Rt,m with M =
[
M1, M2

]
are given matrices of arbitrary

ranks. Then, from (1.2), (2.1) and (2.2),

E(ys) = Xsα, D(ys) = σ2
[
Zs, In+m

]
Λ

[
Zs, In+m

]′
:= σ2ΦΛΦ′,

E(λ) = Kα, D(λ) = σ2
[
L, M

]
Λ

[
L, M

]′
:= σ2ΥΛΥ′,

cov(λ, ys) = σ2
[
L, M

]
Λ

[
Zs, In+m

]′
:= σ2ΥΛΦ′,

(2.3)

where Φ =
[
Zs, In+m

]
and Υ =

[
L, M

]
. Further, in this study, the model S is assumed to be

consistent, i.e., ys ∈ C
[
Xs, ΦΛΦ

′
]

holds with probability 1; see, e.g., [37].
We introduce the following definition of the predictability of λ and its subcases; see, e.g., [38, 39].

Later, the definition of BLUP of λ under S is given; see, e.g., [40, 41].

Definition 2.1. Let consider S in (2.1) and λ in (2.2). Then,

1) If a matrix F ∈ Rt,(n+m) exists with E(Fys − λ) = 0, then λ is defined to be predictable, that is, λ is
predictable⇔ C (K′) ⊆ C (X′s)⇔ Kα is estimable.

2) Xsα + Zsγ + εs is always predictable and Xsα is always estimable.
3) α is estimable⇔ r(Xs) = k.
4) γ, ε and e are always predictable.

Definition 2.2. Suppose that λ in (2.2) is predictable under S in (2.1). Fys is said to be the BLUP of
λ, represented by Fys = λ̃BLUP, if there exists Fys such that

D(Fys − λ) = min s.t. E(Fys − λ) = 0

holds in the Löwner partial ordering. If L = 0 and M = 0 in λ, Fys is the well-known the best linear
unbiased estimator (BLUE) of Kα, represented by K̂αBLUE.

According to the definition of the MSEM given in (1.3), we can give the following lemma, see; [42,
43].
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Lemma 2.1. Let λ̃ be a predictor for a general vector of all unknown vectors λ in an LMM. Then,

MSEM(̃λ) = D(̃λ) + D(λ) − cov(̃λ, λ) − cov(λ, λ̃) + [bias(̃λ)][bias(̃λ)]′, (2.4)

where bias(̃λ) = E(̃λ − λ). If λ̂ is an estimator for a general vector of all unknown parameters λ in an
LMM, then,

MSEM(̂λ) = D(̂λ) + [bias(̂λ)][bias(̂λ)]′,

where bias(̂λ) = E(̂λ) − λ.
The fundamental BLUP equation and associated properties are summarized in the following lemma;

see [25], for different approaches; see also, [37,41,44].

Lemma 2.2. Suppose that λ in (2.2) is predictable under S in (2.1). Consider any two unbiased linear
predictors Fys and Gys for λ. Then,

max
E(Gys−λ)=0

i+ (D(Fys − λ) − D(Gys − λ)) = r
[F, −It

] [ΦΛΦ′ ΦΛΥ′
ΥΛΦ′ ΥΛΥ′

] [
Xs

K

]⊥ (2.5)

is the maximal positive inertia of D(Fys − λ) − D(Gys − λ) s.t. GXs = K. Hence, D(Fys − λ) =
min s.t. E(Fys − λ) = 0⇔ Fys = λ̃BLUP

⇔ F
[
Xs, ΦΛΦ

′X⊥s
]
=

[
K, ΥΛΦ′X⊥s

]
. (2.6)

This equation in (2.6) is consistent and the BLUP of λ under S can be written as follows by considering
the general solution of this equation:

λ̃BLUP = Fys =
([

K, ΥΛΦ′X⊥s
]

J+ + UJ⊥
)

ys, (2.7)

where J =
[
Xs, ΦΛΦ

′X⊥s
]

and U ∈ Rt,(n+m) is an arbitrary matrix. Further,

D(̃λBLUP) = σ2
[
K, ΥΛΦ′X⊥s

]
J+ΦΛΦ′

([
K, ΥΛΦ′X⊥s

]
J+

)′
, (2.8)

cov(̃λBLUP, λ) = σ2
[
K, ΥΛΦ′X⊥s

]
J+ΦΛΥ′, (2.9)

D(λ − λ̃BLUP) =σ2
([

K, ΥΛΦ′X⊥s
]

J+Φ − Υ
)
Λ

([
K, ΥΛΦ′X⊥s

]
J+Φ − Υ

)′
, (2.10)

and the MSEM of λ̃BLUP is
MSEM(̃λBLUP) = D(λ − λ̃BLUP). (2.11)

In particular,

1) C (J) = R(n+m),1 ⇔ F is unique and S is consistent⇔ λ̃BLUP is unique.
2) The following equalities hold:

r(J) = r
[
Xs, ΦΛΦ

′
]

and C (J) = C
[
Xs, ΦΛΦ

′
]
. (2.12)
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Proof of Lemma 2.2. For an unbiased linear predictor Fys of λ in S,

E(Fys − λ) = 0⇔ FXs = K, i.e.,
[
F, −It

] [Xs

K

]
= 0,

D(Fys − λ) = σ2
[
F, −It

] [Φ
Υ

]
Λ

[
Φ

Υ

]′ [
F, −It

]′
:= f (F)

(2.13)

are written. For the other unbiased predictor Gys of λ, the similar expressions can be written as in (2.13)
by putting G instead of F. Finding solution F of the consistent equation FXs = K such that

f (F) ≼ f (G) s.t. GXs = K (2.14)

corresponds to find the BLUP of λ under S. According to Lemma 1.3, (2.14) is a typical constrained
quadratic matrix-valued function optimization problem in the Löwner partial ordering. Applying
Lemma 1.3 to (2.14), (2.5) is obtained. Using Lemma 1.3, we obtain the fundamental BLUP equation
of λ in (2.6). The consistency of the equation in (2.6) is seen from the following column space
inclusions:

C (K′) ⊆ C (X′s) and C (ΦΛΥ′) ⊆ C (ΦΛ) = C (ΦΛΦ′). (2.15)

The well-known general solution of (2.6) s.t. F can be written in the parametric form as in (2.7).
(2.8) and (2.9) are directly seen from (2.3) and (2.7). D(λ − λ̃BLUP) is written as

D(λ − λ̃BLUP) = D(̃λBLUP) + D(λ) − cov(̃λBLUP, λ) − cov(λ, λ̃BLUP). (2.16)

By setting the equalities in (2.3), (2.8) and (2.9) into (2.16), (2.10) is obtained. (2.4) and (2.16)
give (2.11) since bias(̃λBLUP) = 0. Item 1 follows from (2.7). The expressions in (2.12) are well-known
results; see [45, Lemma 2.1 (a)]. □

We note that the fundamental equations of BLUPs and BLUEs for unknown vectors in λ and their
related results can be derived from 2.2, by special choices of the matrices K, L and M.

3. Comparisons under SRLMM

The results of the relationships between the MSEM of any predictor for λ and the MSEM of the
BLUP of λ under S are collected in the theorem given below.

Theorem 3.1. Suppose that λ in (2.2) is predictable under S in (2.1). Let λ̃ be any predictor (unbiased
or biased) for λ under S. Denote

∆(̃λ, λ̃BLUP) = MSEM(̃λ) −MSEM(̃λBLUP)

and

E =


ΦΛΦ′ ΦΛΥ′ Xs

ΥΛΦ′ ΥΛΥ′ − σ−2 MSEM(̃λ) K
X′s K′ 0

 =

σ−2 D(ys) σ−2 cov(ys, λ) Xs

σ−2 cov(λ, ys) σ−2
(
D(λ) −MSEM(̃λ)

)
K

X′s K′ 0

 .
AIMS Mathematics Volume 8, Issue 10, 24401–24417.
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Then,
i+(MSEM(̃λ) −MSEM(̃λBLUP)) = i−(E) − r(Xs), (3.1)

i−(MSEM(̃λ) −MSEM(̃λBLUP)) = i+(E) − r
[
Xs, ΦΛΦ

′
]
, (3.2)

r(MSEM(̃λ) −MSEM(̃λBLUP)) = r(E) − r(Xs) − r
[
Xs, ΦΛΦ

′
]
. (3.3)

In consequence,

1) ∆(̃λ, λ̃BLUP) ≽ 0, i.e., MSEM(̃λ) ≽ MSEM(̃λBLUP)⇔ i+(E) = r
[
Xs, ΦΛΦ

′
]
.

2) ∆(̃λ, λ̃BLUP) ≻ 0, i.e., MSEM(̃λ) ≻ MSEM(̃λBLUP)⇔ i−(E) = r(Xs) + t.
3) ∆(̃λ, λ̃BLUP) ≼ 0, i.e., MSEM(̃λ) ≼ MSEM(̃λBLUP)⇔ i−(E) = r(Xs).
4) ∆(̃λ, λ̃BLUP) ≺ 0, i.e., MSEM(̃λ) ≺ MSEM(̃λBLUP)⇔ i+(E) = r

[
Xs, ΦΛΦ

′
]
+ t.

5) ∆(̃λ, λ̃BLUP) = 0, i.e., MSEM(̃λ) = MSEM(̃λBLUP)⇔ r(E) = r
[
Xs, ΦΛΦ

′
]
+ r(Xs).

Proof. Let say C = MSEM(̃λ) and apply (1.11) to the difference between MSEM(̃λ) and MSEM(̃λBLUP)
in (2.11). Then, we obtain

i±
(
∆(̃λ, λ̃BLUP)

)
= i±

(
MSEM(̃λ) −MSEM(̃λBLUP)

)
= i±

(
C − D(λ − λ̃BLUP)

)
= i±

(
C − σ2 (

DJ+Φ − Υ
)
Λ

(
DJ+Φ − Υ

)′)
= i±

[
Λ ΛΦ′(J+)′D′ − ΛΥ′

DJ+ΦΛ − ΥΛ σ−2C

]
− i±(Λ)

= i±
([
Λ −ΛΥ′

−ΥΛ σ−2C

]
+

[
ΛΦ′ 0

0 D

] [
0 J
J′ 0

]+ [
ΦΛ 0

0 D′

])
− i±(Λ), (3.4)

where D =
[
K, ΥΛΦ′X⊥s

]
and J =

[
Xs, ΦΛΦ

′X⊥s
]
. By using column space equalities and inclusions

in (2.12) and (2.15), reapplying (1.11) to (3.4) and also using (1.6) and (1.8) with the elementary block
matrix operations, the expression in (3.4) is equivalently written as

i±


0 −J ΦΛ 0
−J′ 0 0 D′
ΛΦ′ 0 Λ −ΛΥ′

0 D −ΥΛ σ−2C

 − i∓
[
0 J
J′ 0

]
− i±(Λ) = i±


−ΦΛΦ′ −J ΦΛΥ′

−J′ 0 D′
ΥΛΦ′ D σ−2C − ΥΛΥ′

 − r(J). (3.5)

By setting D and J into (3.5) and also using (1.7)–(1.9) and (2.12) with the elementary block matrix
operations,

i±


−ΦΛΦ′ −Xs −ΦΛΦ

′X⊥s ΦΛΥ′

−X′s 0 0 K′
−X⊥sΦΛΦ

′ 0 0 X⊥sΦΛΥ
′

ΥΛΦ′ K ΥΛΦ′X⊥s σ−2C − ΥΛΥ′

 − r
[
Xs, ΦΛΦ

′
]

= i±


−ΦΛΦ′ −Xs ΦΛΥ′

−X′s 0 K′
ΥΛΦ′ K σ−2C − ΥΛΥ′

 + i±
(
X⊥sΦΛΦ

′X⊥s
)
− r

[
Xs, ΦΛΦ

′
]
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= i∓


ΦΛΦ′ ΦΛΥ′ Xs

ΥΛΦ′ ΥΛΥ′ − σ−2C K
X′s K′ 0

 + i±
[
ΦΛΦ′ Xs

X′s 0

]
− r(Xs) − r

[
Xs, ΦΛΦ

′
]

(3.6)

is obtained. From (1.10),

i+
[
ΦΛΦ′ Xs

X′s 0

]
= r

[
Xs, ΦΛΦ

′
]

and i−
[
ΦΛΦ′ Xs

X′s 0

]
= r(Xs) (3.7)

are written and then, after setting C = MSEM(̃λ) in the first matrix in (3.6), (3.1) and (3.2) are obtained
from (3.6) and (3.7). According to (1.5), adding the equalities in (3.1) and (3.2) yields (3.3). Applying
Lemma 1.1 to (3.1)–(3.3) yields 1–5. □

Corollary 3.1. Let S and λ be as given in (2.1) and (2.2), respectively. Suppose that γ̃, ε̃ and ẽ are
predictors for γ, ε and e, respectively. Let say µ = Xsα and µ̂ be any estimator for µ under S. Denote

E1 =


ΦΛΦ′ 0 Xs

0 −σ−2 MSEM(̂µ) Xs

X′s X′s 0

 ,
E2 =


ΦΛΦ′ ΦΛĬ′p Xs

ĬpΛΦ
′ ĬpΛĬ′p − σ−2 MSEM(γ̃) 0

X′s 0 0

 ,
E3 =


ΦΛΦ′ ΦΛĬ′n Xs

ĬnΛΦ
′ ĬnΛĬ′n − σ−2 MSEM(̃ε) 0

X′s 0 0

 ,
E4 =


ΦΛΦ′ ΦΛĬ′m Xs

ĬmΛΦ
′ ĬmΛĬ′m − σ−2 MSEM(̃e) 0

X′s 0 0

 ,
where Ĭp =

[
Ip, 0, 0

]
, Ĭn =

[
0, In, 0

]
and Ĭm =

[
0, 0, Im

]
. Then,

1) MSEM(̂µ) ≽ MSEM(̂µBLUE)⇔ i+(E1) = r
[
Xs, ΦΛΦ

′
]
.

2) MSEM(̂µ) ≻ MSEM(̂µBLUE)⇔ i−(E1) = r(Xs) + n + m.
3) MSEM(̂µ) ≼ MSEM(̂µBLUE)⇔ i−(E1) = r(Xs).
4) MSEM(̂µ) ≺ MSEM(̂µBLUE)⇔ i+(E1) = r

[
Xs, ΦΛΦ

′
]
+ n + m.

5) MSEM(̂µ) = MSEM(̂µBLUE)⇔ r(E1) = r
[
Xs, ΦΛΦ

′
]
+ r(Xs).

6) MSEM(γ̃) ≽ MSEM(γ̃BLUP)⇔ i+(E2) = r
[
Xs, ΦΛΦ

′
]
.

7) MSEM(γ̃) ≻ MSEM(γ̃BLUP)⇔ i−(E2) = r(Xs) + p.
8) MSEM(γ̃) ≼ MSEM(γ̃BLUP)⇔ i−(E2) = r(Xs).
9) MSEM(γ̃) ≺ MSEM(γ̃BLUP)⇔ i+(E2) = r

[
Xs, ΦΛΦ

′
]
+ p.

10) MSEM(γ̃) = MSEM(γ̃BLUP)⇔ r(E2) = r
[
Xs, ΦΛΦ

′
]
+ r(Xs).

11) MSEM(̃ε) ≽ MSEM(̃εBLUP)⇔ i+(E3) = r
[
Xs, ΦΛΦ

′
]
.

AIMS Mathematics Volume 8, Issue 10, 24401–24417.



24410

12) MSEM(̃ε) ≻ MSEM(̃εBLUP)⇔ i−(E3) = r(Xs) + n.
13) MSEM(̃ε) ≼ MSEM(̃εBLUP)⇔ i−(E3) = r(Xs).
14) MSEM(̃ε) ≺ MSEM(̃εBLUP)⇔ i+(E3) = r

[
Xs, ΦΛΦ

′
]
+ n.

15) MSEM(̃ε) = MSEM(̃εBLUP)⇔ r(E3) = r
[
Xs, ΦΛΦ

′
]
+ r(Xs).

16) MSEM(̃e) ≽ MSEM(̃eBLUP)⇔ i+(E4) = r
[
Xs, ΦΛΦ

′
]
.

17) MSEM(̃e) ≻ MSEM(̃eBLUP)⇔ i−(E4) = r(Xs) + m.
18) MSEM(̃e) ≼ MSEM(̃eBLUP)⇔ i−(E4) = r(Xs).
19) MSEM(̃e) ≺ MSEM(̃eBLUP)⇔ i+(E4) = r

[
Xs, ΦΛΦ

′
]
+ m.

20) MSEM(̃e) = MSEM(̃eBLUP)⇔ r(E4) = r
[
Xs, ΦΛΦ

′
]
+ r(Xs).

4. Comparisons under CLMMs and ULMMs

Now, let us consider the LMM in (1.1) with an exact restriction Sα = s. Then, the model S in (2.1)
corresponds the following CLMM:

R : ys = Xsα + Zsγ + εr = Xsα +
[
Zs, In+m

] [γ
εr

]
, (4.1)

where ys, Xs and Zs are given as in (2.1) and εr =

[
ε
0

]
. λ in (2.2) corresponds the vector

r = Kα + Lγ +Mεr = Kα +
[
L, M

] [γ
εr

]
= Kα +

[
L, M1, M2

] 
γ
ε
0

 . (4.2)

In this case, the assumptions under R are written as

D(ys) = σ2ΦΛrΦ
′, D(r) = σ2ΥΛrΥ

′, cov(r, ys) = σ2ΥΛrΦ
′,

where Λr =

[
Λ1 0
0 0

]
.

In the theorem given below, the results on the relationships between the MSEM of any predictor for
r and the MSEM of the BLUP of r under R are collected. These results are obtained from Theorem 3.1.

Theorem 4.1. Suppose that r in (4.2) is predictable under R in (4.1). Let r̃ be any predictor (unbiased
or biased) for r under R. Denote

Er =


ΦΛrΦ

′ ΦΛrΥ
′ Xs

ΥΛrΦ
′ ΥΛrΥ

′ − σ−2 MSEM(̃r) K
X′s K′ 0

 =

σ−2 D(ys) σ−2 cov(ys, r) Xs

σ−2 cov(r, ys) σ−2 (
D(r) −MSEM(̃r)

)
K

X′s K′ 0

 .
Then, the following results hold.

1) MSEM(̃r) ≽ MSEM(̃rBLUP)⇔ i+(Er) = r
[
Xs, ΦΛrΦ

′
]
.

2) MSEM(̃r) ≻ MSEM(̃rBLUP)⇔ i−(Er) = r(Xs) + t.
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3) MSEM(̃r) ≼ MSEM(̃rBLUP)⇔ i−(Er) = r(Xs).
4) MSEM(̃r) ≺ MSEM(̃rBLUP)⇔ i+(Er) = r

[
Xs, ΦΛrΦ

′
]
+ t.

5) MSEM(̃r) = MSEM(̃rBLUP)⇔ r(Er) = r
[
Xs, ΦΛrΦ

′
]
+ r(Xs).

Now, let us consider the LMM in (1.1) without any restrictions on parameters and show this model
U, i.e.,

U : y = Xα + Zγ + ε = Xα +
[
Z, In

] [γ
ε

]
, (4.3)

and λ in (2.2) corresponds the vector

u = Kα + Lγ +M1ε = Kα +
[
L, M1

] [γ
ε

]
. (4.4)

In this case,

D(y) = σ2
[
Z, In

]
Λ1

[
Z, In

]′
,

D(u) = σ2
[
L, M1

]
Λ1

[
L, M1

]′
,

cov(u, y) = σ2
[
L, M1

]
Λ1

[
Z, In

]′
.

Theorem 4.2. Suppose that u in (4.4) is predictable underU in (4.3). Let ũ be any predictor (unbiased
or biased) for u underU. Denote

Eu =


Φ1Λ1Φ

′
1 Φ1Λ1Υ

′
1 X

Υ1Λ1Φ
′
1 Υ1Λ1Υ

′
1 − σ

−2 MSEM(̃u) K
X′ K′ 0

 =

σ−2 D(y) σ−2 cov(y,u) X
σ−2 cov(u, y) σ−2 (

D(u) −MSEM(̃u)
)

K
X′ K′ 0

 ,
where Φ1 =

[
Z, In

]
and Υ1 =

[
L, M1

]
. Then, the following results hold.

1) MSEM(̃u) ≽ MSEM(̃uBLUP)⇔ i+(Eu) = r
[
X, Φ1Λ1Φ

′
1

]
.

2) MSEM(̃u) ≻ MSEM(̃uBLUP)⇔ i−(Eu) = r(X) + t.
3) MSEM(̃u) ≼ MSEM(̃uBLUP)⇔ i−(Eu) = r(X).
4) MSEM(̃u) ≺ MSEM(̃uBLUP)⇔ i+(Eu) = r

[
X, Φ1Λ1Φ

′
1

]
+ t.

5) MSEM(̃u) = MSEM(̃uBLUP)⇔ r(Eu) = r
[
X, Φ1Λ1Φ

′
1

]
+ r(X).

As is well-known, two types of commonly used estimators under a general linear model are the
BLUEs and the ordinary least squares estimators (OLSEs). Both of these estimators have a variety
of simple and remarkable properties. Therefore, they have attracted statisticians’ attention throughout
the historical development of regression theory, and numerous results regarding the BLUEs and the
OLSEs have been established. Since these estimators are defined by different optimality criteria and
thereby their expressions and properties are not necessarily the same, it is natural to seek possible
connections between them. As a subject area within the regression analysis, the relationships between
the BLUEs and OLSEs have been widely considered in the statistical literature and various identifying
conditions for their equivalence or comparisons have been obtained. Based on these explanations, to
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further clarify the results obtained above, since both the BLUE and the OLSE of Xsα, denoted as
X̂sαOLSE, are well-known estimators, we present the following result on the relationship between them.

Let us consider the LMM in (1.1) by setting Z = 0 with an exact restriction Sα = s. Then, the
model S in (2.1) corresponds the following linear model:

L : ys = Xsα + εr, (4.5)

where ys and Xs are given as in (2.1) and εr is given as in (4.1). By taking λ = Xsα in (2.2), the matrix
E in Theorem 3.1 corresponds

El =


Λr 0 Xs

0 −σ−2 MSEM(X̂sαOLSE) Xs

X′s X′s 0

 , (4.6)

where Λr =

[
Λ11 0
0 0

]
and D(ε) = Λ11. Then,

i+(El) = i+


Λr 0 Xs

0 −XsX+sΛrXsX+s Xs

X′s X′s 0

 = r
[
Λr 0 Xs

0 −XsX+sΛrXsX+s Xs

]
= r

[
Λr, Xs

]
always holds, i.e., MSEM(X̂sαOLSE) ≽ MSEM(X̂sαBLUE). This inequality is already a well-known
result in statistical theory.

We now use Example 4.1.8 from Section 4.1 of [46] to illustrate our theoretical findings in response
to the referees’ advice. Consider the linear model y = Xα + ε with

X =


1 1 0 1 0
1 0 1 1 0
1 1 0 0 1
1 0 1 0 1

 and α =


µ

β1

β2

τ1

τ2


,

where 1 ∈ R10,1 and 0 ∈ R10,1. Let consider

D(ε) = Λ11 =


311′ 211′ 211′ 11′
211′ 311′ 11′ 211′
211′ 11′ 311′ 211′
11′ 211′ 211′ 311′


as in [2]. This designed set-up is typical in agricultural experiments where several treatments are
applied to various blocks of land. The experiment is often conducted to assess the differential impact of
the treatments. Here, the parameter µ represents a general effect that is present in all the observations,
and the parameters β1 and β2 represent the respective effects of two blocks, and the parameters τ1 and
τ2 represent the respective effects of two treatments. Suppose that

τ1 − τ2 = 0, i.e., Sα = 0,
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where S =
[
0, 0, 0, 1, −1

]
. This restriction may be a known fact from the theory or experiment

view.
Direct calculations will show that

MSEM(X̂sαOLSE) =


2.9111′ 1.9111′ 2.0811′ 1.0811′ 0.821
1.9111′ 2.9111′ 1.0811′ 2.0811′ 0.821
2.0811′ 1.0811′ 2.9111′ 1.9111′ −0.821
1.0811′ 2.0811′ 1.9111′ 2.9111′ −0.821
0.821′ 0.821′ −0.821′ −0.821′ 1.65


and

MSEM(X̂sαBLUE) =


2.511′ 1.511′ 2.511′ 1.511′ 5.97 × 10−151
1.511′ 2.511′ 1.511′ 2.511′ 4.02 × 10−151
2.511′ 1.511′ 2.511′ 1.511′ 5.97 × 10−151
1.511′ 2.511′ 1.511′ 2.511′ 4.02 × 10−151

5.97 × 10−151′ 4.02 × 10−151′ 5.97 × 10−151′ 4.02 × 10−151′ 1.19 × 10−28


,

when we consider above matrices for the model L in (4.5). Now it is easy to see that
2.9111′ 1.9111′ 2.0811′ 1.0811′ 0.821
1.9111′ 2.9111′ 1.0811′ 2.0811′ 0.821
2.0811′ 1.0811′ 2.9111′ 1.9111′ −0.821
1.0811′ 2.0811′ 1.9111′ 2.9111′ −0.821
0.821′ 0.821′ −0.821′ −0.821′ 1.65


≽


2.511′ 1.511′ 2.511′ 1.511′ 5.97 × 10−151
1.511′ 2.511′ 1.511′ 2.511′ 4.02 × 10−151
2.511′ 1.511′ 2.511′ 1.511′ 5.97 × 10−151
1.511′ 2.511′ 1.511′ 2.511′ 4.02 × 10−151

5.97 × 10−151′ 4.02 × 10−151′ 5.97 × 10−151′ 4.02 × 10−151′ 1.19 × 10−28


,

i.e.,
MSEM(X̂sαOLSE) ≽ MSEM(X̂sαBLUE).

Using the numpy library in Python and setting the above findings in the matrix El in (4.6), we find
the eigenvalues of matrix El as 1.44, 20.98, 20.98, 80.99, -80.99, -20.98, -19.36 and -1.25. Thus,
we can see that the number of positive eigenvalues of El is 4 and the number of negative eigenvalues
of El is 4, i.e., i+(El) = 4 and i−(El) = 4. It is easily seen from (1.5) that r(El) = 8. Also, we
obtain r

[
Xs, Λr

]
= 4 and r(Xs) = 3. Therefore, i+(El) = r

[
Xs, Λr

]
= 4 ⇔ MSEM(X̂sαBLUE) ≼

MSEM(X̂sαOLSE) holds. Since r(Xs) = 3, i.e., i−(El) , r(Xs), MSEM(X̂sαOLSE) ≼ MSEM(X̂sαBLUE)
is not provided.

5. Conclusions

The findings of this study, according to the MSEM criterion, provide a broad perspective on the
SRLMMs in the context of predictor comparability problems using the methodology of block matrix
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inertias and ranks. We establish the comparison results after converting an explicitly SRLMM to an
implicitly linear stochastically restricted LMM. We also reduce our results to models CLMMs and
ULMMs.

We derive the formulas of comparisons of any predictor and the BLUP for the same general vector
of all unknown vectors under SRLMM by considering the MSEM sense. Thus, the performance of
a new biased or unbiased predictor according to the dispersion matrices of BLUP can be examined
with various inequalities and equalities derived among MSEMs based on inertias and ranks. These
kinds of inequalities or equalities for comparisons have a useful and strong statistical explanation in
the theory of linear statistical models and applications. The comparisons of MSEMs to determine the
effectiveness of any predictor according to BLUP are explained by the comparisons of some quantities
that come from inertias and ranks.

As a result, we can say that our contribution to issues involving inference and prediction under
an LMM with a linear stochastic restriction on unknown parameters in the literature is to serve as a
theoretically comprehensive and significant search for the comparison results between any predictors
and BLUPs.
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26. N. Güler, M. E. Büyükkaya, M. Yiğit, Comparison of covariance matrices of predictors in
seemingly unrelated regression models, Indian J. Pure Appl. Math., 53 (2022), 801–809.
https://doi.org/10.1007/s13226-021-00174-w

27. Y. Tian, Some equalities and inequalities for covariance matrices of estimators under linear model,
Stat. Papers, 58 (2017), 467–484. https://doi.org/10.1007/s00362-015-0707-x

28. Y. Tian, W. Guo, On comparison of dispersion matrices of estimators under a constrained linear
model, Stat. Methods Appl., 25 (2016), 623–649. https://doi.org/10.1007/s10260-016-0350-2

29. M. A. E. Abdelrahman, M. A. Sohaly, S. I. Ammar, Y. F. Alharbi, The deterministic and
stochastic solutions for the nonlinear Phi-4 equation, Int. J. Nonlin. Sci. Num., 23 (2022), 823–
832. https://doi.org/10.1515/ijnsns-2022-2272

30. H. G. Abdelwahed, A. F. Alsarhana, E. K. El-Shewy, M. A. E. Abdelrahman, The stochastic
structural modulations in collapsing Maccari’s model solitons, Fractal Fract., 7 (2023), 290.
https://doi.org/10.3390/fractalfract7040290

31. Y. F. Alharbi, E. K. El-Shewy, M. A. E. Abdelrahman, New and effective solitary applications in
Schrödinger equation via Brownian motion process with physical coefficients of fiber optics, AIMS
Mathematics, 8 (2023), 4126–4140. https://doi.org/10.3934/math.2023205

32. F. Mirzaee, S. Rezaei, N. Samadyar, Solving one-dimensional nonlinear stochastic Sine-
Gordon equation with a new meshfree technique, Int. J. Numer. Model. El., 34 (2021), e2856.
https://doi.org/10.1002/jnm.2856

33. F. Mirzaee, N. Samadyar, Combination of finite difference method and meshless method based on
radial basis functions to solve fractional stochastic advection-diffusion equations, Eng. Comput.,
36 (2020), 1673–1686. https://doi.org/10.1007/s00366-019-00789-y

34. E. K. El-Shewy, Y. F. Alharbi, M. A. E. Abdelrahman, On the dynamical stochastic
electrostatic noise fluctuations in Zakharov model, Chaos Soliton. Fract., 170 (2023), 113324.
https://doi.org/10.1016/j.chaos.2023.113324

35. Y. Tian, Equalities and inequalities for inertias of Hermitian matrices with applications, Linear
Algebra Appl., 433 (2010), 263–296. https://doi.org/10.1016/j.laa.2010.02.018

AIMS Mathematics Volume 8, Issue 10, 24401–24417.

http://dx.doi.org/https://doi.org/10.1007/s40995-019-00785-3
http://dx.doi.org/https://doi.org/10.1080/03610926.2019.1599950
http://dx.doi.org/https://doi.org/10.21136/AM.2021.0366-20
http://dx.doi.org/https://doi.org/10.21136/AM.2021.0366-20
http://dx.doi.org/https://doi.org/10.1080/03610926.2021.1967397
http://dx.doi.org/https://doi.org/10.1007/s13226-021-00174-w
http://dx.doi.org/https://doi.org/10.1007/s00362-015-0707-x
http://dx.doi.org/https://doi.org/10.1007/s10260-016-0350-2
http://dx.doi.org/https://doi.org/10.1515/ijnsns-2022-2272
http://dx.doi.org/https://doi.org/10.3390/fractalfract7040290
http://dx.doi.org/https://doi.org/10.3934/math.2023205
http://dx.doi.org/https://doi.org/10.1002/jnm.2856
http://dx.doi.org/https://doi.org/10.1007/s00366-019-00789-y
http://dx.doi.org/https://doi.org/10.1016/j.chaos.2023.113324
http://dx.doi.org/https://doi.org/10.1016/j.laa.2010.02.018


24417

36. Y. Tian, Solving optimization problems on ranks and inertias of some constrained nonlinear matrix
functions via an algebraic linearization method, Nonlinear Anal. Theor., 75 (2012), 717–734.
https://doi.org/10.1016/j.na.2011.09.003

37. C. R. Rao, Representations of best linear unbiased estimators in the Gauss-Markoff model with a
singular dispersion matrix, J. Multivariate Anal., 3 (1973), 276–292. https://doi.org/10.1016/0047-
259X(73)90042-0

38. I. S. Alalouf, G. P. H. Styan, Characterizations of estimability in the general linear model, Ann.
Statist., 7 (1979), 194–200. https://doi.org/10.1214/aos/1176344564

39. C. Lu, S. Gan, Y. Tian, Some remarks on general linear model with new regressors, Stat. Probabil.
Lett., 97 (2015), 16–24. https://doi.org/10.1016/j.spl.2014.10.015

40. A. S. Goldberger, Best linear unbiased prediction in the generalized linear regression model, J. Am.
Stat. Assoc., 57 (1962), 369–375. https://doi.org/10.2307/2281645

41. S. Puntanen, G. P. H. Styan, J. Isotalo, Matrix tricks for linear statistical models: Our personal top
twenty, 1 Eds., Heidelberg: Springer Berlin, 2011. https://doi.org/10.1007/978-3-642-10473-2

42. C. R. Rao, Shalabh, H. Toutenburg, C. Heumann, Linear models and generalizations: Least
squares and alternatives, 3 Eds., Heidelberg: Springer Berlin, 2008. https://doi.org/10.1007/978-
3-540-74227-2

43. H. Yang, H. Ye, K. Xue, A further study ofpredictions in linear mixed models, Commun. Stat.
Theor. M., 43 (2014), 4241–4252. https://doi.org/10.1080/03610926.2012.725497

44. H. Drygas, The coordinate-free approach to Gauss-Markov estimation, 1 Eds., Heidelberg:
Springer Berlin, 1970. https://doi.org/10.1007/978-3-642-65148-9

45. Y. Tian, On properties of BLUEs under general linear regression models, J. Stat. Plan. Infer., 143
(2013), 771–782. https://doi.org/10.1016/j.jspi.2012.10.005

46. D. Sengupta, S. R. Jammalamadaka, Linear models: An integrated approach, Singapore: World
Scientific Press, 2003. https://doi.org/10.1142/4674

© 2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 8, Issue 10, 24401–24417.

http://dx.doi.org/https://doi.org/10.1016/j.na.2011.09.003
http://dx.doi.org/https://doi.org/10.1016/0047-259X(73)90042-0
http://dx.doi.org/https://doi.org/10.1016/0047-259X(73)90042-0
http://dx.doi.org/https://doi.org/10.1214/aos/1176344564
http://dx.doi.org/https://doi.org/10.1016/j.spl.2014.10.015
http://dx.doi.org/https://doi.org/10.2307/2281645
http://dx.doi.org/https://doi.org/10.1007/978-3-642-10473-2
http://dx.doi.org/https://doi.org/10.1007/978-3-540-74227-2
http://dx.doi.org/https://doi.org/10.1007/978-3-540-74227-2
http://dx.doi.org/https://doi.org/10.1080/03610926.2012.725497
http://dx.doi.org/https://doi.org/10.1007/978-3-642-65148-9
http://dx.doi.org/https://doi.org/10.1016/j.jspi.2012.10.005
http://dx.doi.org/https://doi.org/10.1142/4674
http://creativecommons.org/licenses/by/4.0

	Introduction
	BLUPs under SRLMMs
	Comparisons under SRLMM
	Comparisons under CLMMs and ULMMs
	Conclusions

