
AIMS Mathematics, 8(10): 24379–24400. 

DOI: 10.3934/math.20231243 

Received: 15 April 2023 

Revised: 17 July 2023 

Accepted: 25 July 2023 

Published: 15 August 2023 

http://www.aimspress.com/journal/Math 

 

Research article 

Physical phenomena of spectral relationships via quadratic third kind 

mixed integral equation with discontinuous kernel 

Sharifah E. Alhazmi1, M. A. Abdou2,* and M. Basseem3 

1 Department of Mathematics, Al-Qunfudah University College, Umm Al-Qura University, Mecca, 

Saudi Arabic 
2 Department of Mathematics, Faculty of Education, Alexandria University, Egypt 
3 Department of Mathematics, Faculty of Engineering, Sinai University, Egypt 

* Correspondence: Email: abdella_777@yahoo.com. 

Abstract: Spectral relationships explain many physical phenomena, especially in quantum physics 

and astrophysics. Therefore, in this paper, we first attempt to derive spectral relationships in position 

and time for an integral operator with a singular kernel. Second, using these relations to solve a 

mixed integral equation (MIE) of the second kind in the space 𝐿2[−1,1] × 𝐶[0, 𝑇], 𝑇 < 1. The way 

to do this is to derive a general principal theorem of the spectral relations from the term of the 

Volterra-Fredholm integral equation (V-FIE), with the help of the Chebyshev polynomials (CPs), 

and then use the results in the general MIE to discuss its solution. More than that, some special and 

important cases will be devised that help explain many phenomena in the basic sciences in general. 

Here, the FI term is considered in position, in 𝐿2[−1,1], and its kernel takes a logarithmic form 

multiplied by a general continuous function. While the VI term in time, in 𝐶[0, 𝑇], 𝑇 < 1, and its 

kernels are smooth functions. Many numerical results are considered, and the estimated error is also 

established using Maple 2022. 
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1. Introduction 

Spectral relationships have played a prominent role in general, in the interpretation of physical 

phenomena. These phenomena led researchers to formulate them in the forms of mathematical 

models. Therefore, we find that the mathematical modeling of most phenomena in various branches 

of science leads to linear and nonlinear integral equations (IEs/NIEs), integro differential equations 

(IDEs), and fractional integro differential equations (FIDEs) of different kinds. Jan [1] used the CP 

method for solving MIE in position and time, with a weakly singular kernel in position. Boykov et al. [2] 

applied a new iterative method for solving hypersingular linear and nonlinear IE in automatic control 

problems. Biazar and Ebrahimi [3] used a modified hat function to solve a class of nonlinear FVIE of the 

second kind. Seifi [4] used the collocation technique method for solving Cauchy singular IE of the 

second kind which has many applications in physics and engineering fields. While Jan [5] used 

collocation method, based on orthogonal polynomials, to solve a nonlinear MIE, Basseem and 

Alayani [6] used the Toeplitz matrix method and product Nystrom technique to solve a nonlinear 

quadratic MIE of the second kind with a singular kernel. Ghorbanpoor et al. [7] presented a crack 

problem that is formulated into a singular IE. Then, they solved it numerically using the collocation method 

scheme. Abdou and Basseem [8] used singular integral method to solve, in a complex plane, an IDE with a 

Cauchy kernel. Al-Bugami [9] solved singular Hammerstein-VIE by using the Toeplitz matrix method 

and the product Nystrom method. Abdou et al. [10] used a technique of separating method to discuss 

the solution of V-FIE with a discontinuous kernel. Alhazmi [11] used the separating variables 

method to discuss the solution of a MIE of the first kind with logarithmic and Carleman singular 

kernels. Doaa [12] used Lerch polynomials to approximate the solution of singular FIE with Cauchy 

kernel. Gao et al. [13] used spectral computation of highly oscillatory systems to solve IEs in laser 

theory. Lienert and Tumulka [14] investigated from relativistic quantum physics and computed its solution 

numerically. Matoog [15] used orthogonal polynomial method to discuss the solution of the nuclear 

IE in quantum physics problem. Hafez and Youssri [16] used spectral relationships in the form of 

Legendre-Chebyshev to discuss the numerical solution of nonlinear VIE with a continuous kernel. 

Alalyani et al. [17] computed the numerical solution of MIDE with a discontinuous kernel, using 

the orthogonal polynomial method. Also, many authors consider the semi-analytic methods. For 

example, Noeiaghdam et al. [18] used adomian decomposition for solving VIE with discontinuous 

kernel. A new technique depends on floating point arithmetic using CADNA library to find the 

optimal solution for linear and nonlinear VIE of second kind with singular kernel is applied by 

Noeiaghdam et al. [19], while Noeiaghdam and Micula [20] solved it by using Lagrange collocation 

technique with the same library. Qiao et al. [21] employed BDF2 and ADI techniques for solving 

multi-dimensional tempered FrIDE. Moreover, Wang et al. [22] used a second order finite 

difference scheme for nonlinear FrIDE in 3-dimaensions. 

In this work, especially in Section 2, the principal MIE of this paper and its conditions for 

having a unique solution are considered. In Section 3, the convergence of the solution is discussed. 

Moreover, in Section 4, the existence of a unique solution to the MIE using the Banach fixed point 

theorem is investigated. While, in Section 5, the general kernel of position is transformed, using 

suitable assumptions and methods, is transformed into a logarithmic kernel form. Then, in Section 6, 

using a separation technique, the MIE is reduced to a linear FIE of the third kind with a logarithmic 
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kernel. Then, in Section 7, a principal theorem of spectral relationships is proved, after using 

orthogonal polynomials of Chebyshev’s first kind. In Section 8, the system of the third kind of FIE 

is transformed to a linear algebraic system using the principal theorem of spectral relationships. In 

Section 9, the convergence of the system is studied. Finally, in Section 10, the numerical results are 

obtained and the error estimate is computed. Finally, a general conclusion is considered to describe 

the important results of the paper. 

2. The principal mixed integral equation and its condition 

Consider the following MIE 

𝜇1Φ(𝑥, 𝑡) − ∫ ∫ 𝑞(𝑥, 𝑦)𝑘 (|
𝑦−𝑥

𝜎
|) 𝐹(𝑡, 𝜏)Φ(𝑦, 𝜏)𝑑𝑦𝑑𝜏 − 𝜉(𝑥)

1

−1
∫ 𝐺(𝑡, 𝜏)Φ(𝑥, 𝜏)𝑑𝜏
𝑡

0

𝑡

0
= 𝑓(𝑥, 𝑡), 

(|x| ≤ 1, 𝜇1 − 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡), 𝜎𝜖(0,∞),                                            (1) 

𝑘 (|
𝑦−𝑥

𝜎
|) = ∫

𝐿(𝑢)𝑐𝑜𝑠𝑢(
𝑦−𝑥

𝜎
)

𝑢
𝑑𝑢, 𝐿(𝑢) =

𝑢+𝑚

1+𝑢

∞

0
, (𝑚 ≥ 1),𝑚: 𝑓𝑖𝑛𝑖𝑡𝑒,                              (2) 

under the dynamic condition 

∫ Φ(𝑥, 𝑡) = 𝑃(𝑡), 𝑡 ∈ [0, 𝑇], 𝑇 < 1.
1

−1
                                            (3) 

Here, the time functions 𝐹(𝑡, 𝜏) and 𝐺(𝑡, 𝜏) are continuous in the space 𝐶[0, 𝑇], 𝑇 < 1. The kernel 

term of position 𝑞(𝑥, 𝑦)  is continuous function, while 𝑘 (|
𝑦−𝑥

𝜎
|)  has a singularity in the space 

𝐿2[−1,1] . The known function 𝑓(𝑥, 𝑡)  is called free term and defined in the space 𝐿2[−1,1] ×
𝐶[0, 𝑇]  and 𝜉(𝑥)  is continuous in the space  𝐿2[−1,1] . The unknown function Φ(𝑥, 𝑡)  will be 

discussed in the space 𝐿2[−1,1] × 𝐶[0, 𝑇]. 

The physical phenomena of the dynamic condition in Eq (3) is that during the period specified 

for the determination of the unknown function Φ(𝑥, 𝑡) must be equal to the pressure P(𝑡) on the 

study area during the time 𝑡, 𝑤ℎ𝑒𝑟𝑒 𝑡 ∈ [0, 𝑇], 𝑇 < 1. 

To discuss the existence of a unique solution of Eq (1), we assume the following conditions: 

2.1. The position functions 

(a) 𝑘 (|
𝑦−𝑥

𝜎
|)  is the position kernel and in general, satisfies the discontinuity condition 

[∫ ∫ 𝑘 (|
𝑦−𝑥

𝜎
|)
2
𝑑𝑥𝑑𝑦]

1

−1

1

−1

1

2

≤ 𝐴, (𝐴 − 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡). 

(b) ( , )q x y and 𝜉(𝑥) are bounded and continuous function, where ( , ) ,q x y   |𝜉(𝑥)| ≤ 𝐷, (𝜍, 𝐷 are 

constants). 
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2.2. The time functions 

For , [0, ], 1t T T    the two functions of times ),( tF and ),( tG  belong to the class ],0[ TC  

and satisfy |𝐹(𝑡, 𝜏)| ≤ 𝛽1, |𝐺(𝑡, 𝜏)| ≤ 𝛽2, 𝛽1, 𝛽2 are constants. 

2.3. The mixed free function 

The given function ( , )f x t  with its partial derivatives is continuous in the space 𝐿2[−1,1] ×

𝐶[0, 𝑇]and its norm is defined as ‖𝑓‖ = max
0≤𝑡≤𝑇

(∫ 𝑓2(𝑥,𝑡)𝑑𝑥
1
−1 )

1
2. 

3. Convergence of the solution 

To discuss the solution behavior of Eq (1), we construct a sequence of  {Φ𝑛(𝑥, 𝑡)}
∞
0

 in which 

{Φ1(𝑥, 𝑡), Φ2(𝑥, 𝑡), … ,Φ𝑛−1(𝑥, 𝑡), Φ𝑛(𝑥, 𝑡), … }  ∈ {Φ𝑛(𝑥, 𝑡)}.  Hence, we can pick up the two 

equations Φ𝑛−1(𝑥, 𝑡), Φ𝑛(𝑥, 𝑡), to have 

𝜇1(Φ𝑛(𝑥, 𝑡) − Φ𝑛−1(𝑥, 𝑡))

= ∫ ∫ 𝑞(𝑥, 𝑦)𝑘 (|
𝑦 − 𝑥

𝜎
|) 𝐹(𝑡, 𝜏){Φ𝑛−1(𝑥, 𝑡) − Φ𝑛−2(𝑦, 𝜏)}𝑑𝑦𝑑𝜏

1

−1

𝑡

0

+ 𝜉(𝑥)∫ 𝐺(𝑡, 𝜏){Φ𝑛−1(𝑥, 𝑡) − Φ𝑛−2(𝑥, 𝜏)}𝑑𝜏
𝑡

0

, 

(Φ0(𝑥, 𝑡) =
𝑓(𝑥,𝑡)

𝜇1
).                                                                        (4) 

For this, we assume 

Ψ𝑛 = Φ𝑛 −Φ𝑛−1, Ψ0(𝑥, 𝑡) =
𝑓(𝑥,𝑡)

𝜇1
.                                                     (5) 

It is easily to establish 

Φ𝑛(x, t) = ∑ 𝛹𝑖
𝒏
𝒊=𝟎 . 

Theorem 1. (The solution convergence) 

A solution sequence {Φn} of Eq (4) is uniformly convergent under the condition 

μ1 > T[ζAβ1 + Dβ2].                                                               (6) 

Proof: By applying Cauchy Schwarz inequality, the formula (4) yields 

|𝜇1|‖Φ𝑛 −Φ𝑛−1‖ ≤ 

(|∫ ∫ 𝑞(𝑥, 𝑦)𝑘 (|
𝑦−𝑥

𝜎
|) 𝐹(𝑡, 𝜏)𝑑𝑦𝑑𝜏

1

−1

𝑡

0
| + |𝜉(𝑥) ∫ 𝐺(𝑡, 𝜏)𝑑𝜏

𝑡

0
|) ‖Φ𝑛−1 −Φ𝑛−2‖.        (7) 
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Using the conditions (1) and (2), we have 

|𝜇1|‖Φ𝑛 −Φ𝑛−1‖ ≤ 𝑇[𝜁𝐴𝛽1 + 𝐷𝛽2]‖Φ𝑛−1 −Φ𝑛−2‖. 

Therefore, 

|𝜇1|‖Ψ𝑛‖ ≤ 𝑇[𝜁𝐴𝛽1 + 𝐷𝛽2]‖Ψ𝑛−1‖.                                          (8) 

By induction, with the aid of (5), 

‖Ψ𝑛‖ ≤ 𝜌𝑛‖𝑓‖, 𝜌 =
𝑇

|𝜇1|
[𝜁𝐴𝛽1 + 𝐷𝛽2].                                       (9) 

So, Φn(𝑥, 𝑡) = ∑ 𝛹𝑖
𝑛
𝑖=0  is uniformly convergent, provided that 𝜌 < 1. 

As 𝑛 → ∞, Φn(𝑥, 𝑡) → Φ(𝑥, 𝑡), hence the solution Φ(𝑥, 𝑡) is uniformly convergent under the same 

assumption. 

4. Existence and uniqueness of the MIE (1) 

To discuss the existence of a unique solution of Eq (1), in view of Banach fixed point theorem, 

we write it in the integral operator form as 

𝝁𝟏Φ(x, t) = 𝑓(𝑥, 𝑦) + 𝛘Φ(x, t), 𝛘Φ(x, t) = 𝑲𝟏Φ+𝑲𝟐Φ,                        (10) 

where, 

𝑲𝟏Φ = ∫ ∫ 𝑞(𝑥, 𝑦)𝑘 (|
𝑦−𝑥

𝜎
|) 𝐹(𝑡, 𝜏)Φ(𝑦, 𝜏)𝑑𝑦𝑑𝜏

1

−1

𝑡

0
,                            (11) 

𝑲𝟐Φ = 𝜉(𝑥) ∫ 𝐺(𝑡, 𝜏)Φ(𝑥, 𝜏)𝑑𝜏
𝑡

0
.                                         (12) 

Theorem 2. (Existence and uniqueness) 

The MIE (1) has the existence and unique solution under the condition 

μ1 > T[ζAβ1 + Dβ2]. 

Proof: To prove this theorem, we go to prove that the integral operator (10) is bounded, continuous 

and a contraction mapping in the following two lemmas. 

Lemma 1. The integral operator χ is bounded. 

Proof: Taking the norm of Eq (10), we get 

‖χΦ(x, t)‖ ≤ [‖𝑲𝟏Φ(x, t)‖ + ‖𝑲𝟐Φ(x, t)‖],                                  (13) 

‖𝑲𝟏Φ(x, t)‖ = ‖∫ ∫ 𝑞(𝑥, 𝑦)𝑘 (|
𝑦 − 𝑥

𝜎
|) 𝐹(𝑡, 𝜏)Φ(𝑦, 𝜏)𝑑𝑦𝑑𝜏

1

−1

𝑡

0

‖. 

Using Cauchy Schwarz inequality and the previous conditions (1) and (2), one has 
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‖𝑲𝟏Φ(x, t)‖ ≤ |𝑞(𝑥, 𝑦)| [∫ ∫ 𝑘2 (|
𝑦−𝑥

𝜎
|)

1

−1
𝑑𝑥

1

−1
𝑑𝑦]

1

2 |𝐹(𝑡, 𝜏)|𝑇‖Φ‖ ≤ 𝜁𝐴𝛽1‖Φ‖𝑇,          (14) 

and 

‖𝑲𝟐Φ(x, t)‖ = ‖𝜉(𝑥) ∫ 𝐺(𝑡, 𝜏)Φ(𝑥, 𝜏)𝑑𝜏
𝑡

0
‖ ≤ 𝐷𝛽2‖Φ‖.                          (15) 

Hence, Eq (13) becomes 

‖χΦ‖ ≤ [𝜁𝐴𝛽1 + 𝐷𝛽2]‖Φ‖𝑇.                                         (16) 

Therefore, the operator 𝜒 maps the ball 𝑆𝑟 ⊂ 𝐿2 into itself where 

𝑟 =
𝛿

1−𝜌
, 𝛿 =

‖𝑓‖

𝜇1
                                                           (17) 

𝜌 =
𝑇

|𝜇1|
[𝜁𝐴𝛽1 + 𝐷𝛽2] < 1. 

The inequality (16) involves the boundedness of the operator 𝝌. 

Lemma 2. The integral operator χ is a contraction mapping in its space. 

Proof: Let the functions Φ1 and Φ2 be two solutions of Eq (1), then Eq (10) with the aid of Eqs (11) 

and (12) leads to 

‖χΦ1 − χΦ2‖ ≤
𝑇

|𝜇1|
[(𝜁𝐴𝛽1 + 𝐷𝛽2)‖Φ1 −Φ2‖].                                 (18) 

So, 𝜒 is continuous and it is a contraction mapping under the condition 𝜌 < 1. 

According to Banach fixed point theorem, since χ is bounded and a contraction mapping, then 

the Eq (1) has a unique and existing solution, concluding the proof of Theorem 2. 

5. The behavior of position kernel 

The kernel of the IE  in position or in time plays an important role in the interpretation of 

physical phenomena. Therefore, the authors must take into account how to solve the IEs according to 

its kernels. In this section, we study the phenomenon of a general singular kernel and how to convert 

this kernel into a singular logarithmic kernel as well. Thus, it is possible to search how solving the IE 

using the spectral relationships method. 

The function )(uL  of Eq (2) is continuous and positive, for ),0( u . This function is studied 

physically at two values of the variable u when it is very small or when it is very large. This is 

expressed by the following two relationships 

𝐿(𝑢) = 𝑚 − (𝑚 − 1)𝑢 + 𝑂(𝑢3), 𝑢 → 0, 

𝐿(𝑢) = 1 −
𝑚−1

𝑢
+ 𝑂(𝑢−2), 𝑢 → ∞, 1 ≤ 𝑚 ≤ 𝑀.                                (19) 
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When 1=m , in Eq (19), and 𝜎 → ∞ in Eq (1), such that the term (|
𝑦−𝑥

𝜎
|) is very small. In this 

case, the kernel of position takes a logarithmic function form (Popov [23]). 

∫
𝑐𝑜𝑠𝑢𝑧

𝑢
𝑑𝑢 = −[ln|𝑥 − 𝑦| − 𝑑], (𝑑 = ln

4𝜎

𝜋
)

∞

0
.                                     (20) 

In view of (19) and (20), the MIE yields 

𝜇1Φ(𝑥, 𝑡) + ∫ ∫ 𝑞(𝑥, 𝑦)[ln|𝑥 − 𝑦| − 𝑑]𝐹(𝑡, 𝜏)Φ(𝑦, 𝜏)𝑑𝑦𝑑𝜏 − 𝜉(𝑥)
1

−1
∫ 𝐺(𝑡, 𝜏)Φ(𝑥, 𝜏)𝑑𝜏
𝑡

0

𝑡

0
= 𝑓(𝑥, 𝑡).  (21) 

In many physical applications, the researcher may be required to study the case u → 0,m > 1. 

Hence, the following equations must be used: (Gradstein and Ryzhik [24]). 

(i) 
1

𝜋
∫ 𝑐𝑜𝑠
∞

0
νxdν = δ(x),  δ(x) is the Dirac delta function 

(ii) ∫ 𝜙(𝑦)𝛿(𝑦 − 𝑥)
𝑏

𝑎
dy = {

0,                                                   𝑥 < 𝑎,
1

2
[ℎ(𝑥 − 𝑎) + ℎ(𝑥 + 𝑎)],   𝑎 < 𝑥 < 𝑏,

0,                                                     𝑥 > 𝑏.

                      (22) 

The importance of logarithmic kernel with some applications can be found in Abdou et al. [25], 

and the relation between , m and the logarithmic kernel was obtained in the form 

{∫ ∫ ln2|𝑥 − 𝑦|𝑑𝑥𝑑𝑦
1

−1

1

−1
}

1

2
<

1

𝜎
, 𝜎 = 1 +

1

𝑚
+

1

𝑚2 +⋯+
1

𝑚𝑁.                           (23) 

Also, some different methods for solving the integral equations with logarithmic kernel have 

been discussed in (Frankel [26], Anastasias and Aral [27]). 

6. The technique of separation 

Many authors have solved integral (differential) equations of all kinds by neglecting the effect 

of time. Also, when some authors studied the effect of time their works, Laplace transform or Fourier 

transform have been used to obtain equations in position. These methods have problems when trying 

to obtain the transformation inverse. Also, the authors often find it difficult to explain the 

phenomenon of time in the problem to be solved. 

Also, one of the famous methods has been used is dividing the time into periods to obtain a 

complete system of IEs specific to the position only. In this direction we find that the MIE is 

transformed into an algebraic system for FIEs (Abdou [25]). While in this section we use the 

separation method, in the form of a new technique, to obtain the FIE with time coefficients and these 

functions are described as an integral operator in time. Thus, this technique enables the authors to 

study the behavior of the solution with the time dimension more broadly and deeper than the 

previous one. Assume the following 

Φ(𝑥, 𝑡) = 𝑀(𝑡)𝐵(𝑥), 𝑓(𝑥, 𝑡) = 𝑔(𝑥)𝑀(𝑡).                                     (24) 
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Hence, after using (24), the formula (21) yields, 

𝜇(𝑥, 𝑡)𝐵(x) +
1

𝑀(𝑡)
∫ ∫ 𝑞(𝑥, 𝑦)[ln|𝑥 − 𝑦| − 𝑑]𝐵(𝑦)𝐹(𝑡, 𝜏)𝑀(𝜏)𝑑𝑦𝑑𝜏

1

−1

𝑡

0
= 𝑔(𝑥),        (25) 

where 

𝜇(𝑥, 𝑡) = 𝜇1 − 𝜉(𝑥)𝛾(𝑡), 𝛾(𝑡) =
1

𝑀(𝑡)
∫ 𝐺(𝑡, 𝜏)M(𝜏)𝑑𝜏
𝑡

0
.                        (26)

 

The coefficient of the unknown function 𝜇 (𝑥, 𝑡) determines the type of the IE. If this coefficient 

is equal to zero, then it becomes an IE of the first kind, while if it is equal to a constant, then the 

equation is of the second kind. The equation is of the third kind, if this coefficient is a function of x. 

In view of the above, and although, 𝜇1 is a constant but through the separation method, we obtain 

directly a third kind FIE that is created from the coefficient of the VI operator. Also, we have a time 

focused view where we get a FIE with time-related coefficients that can be computed explicitly at 

any point in time. To obtain the solution of Eq (25), we use the CPs of the first kind 𝑇𝑛(𝑥) with its 

famous relations. For this, we write the unknown functions 𝐵(𝑥) and the known functions 𝑞(𝑥, 𝑦) 

and 𝑔(𝑥) as a linear combination between eigenvalues and eigenfunctions 𝑇𝑛(𝑥) in the forms 

(𝑎) 𝐵(𝑥) =
1

√1 − 𝑥2
∑𝑏𝑛𝑇𝑛(𝑥),

∞

𝑛=0

 (𝑏) 𝑞(𝑥, 𝑦) = ∑ 𝑇𝑚(𝑥)

𝑀

𝑚=0

 𝑇𝑚(𝑦), 

(𝑐) 𝑔(𝑥) = ∑ 𝑔𝑛
∞
𝑛=0  𝑇𝑛(𝑥), 𝑔0 =

1

𝜋
∫

𝑔(𝑥)𝑑𝑥

√1−𝑥2

1

−1
, 𝑔𝑛 =

2

𝜋
∫

𝑔(𝑥)𝑑𝑥

√1−𝑥2

1

−1
, 𝑛 > 0.              (27) 

In (27-a) , 0,nb n   are unknown constants with respect to position only and its values will be 

discovered it depends upon the time. The function √1 − 𝑥2  is called the weight function of 

Chebyshev polynomials of the first kind. 

It is difficult to obtain the solution of Eq (25) numerically in the form of (27-a). For this, the 

formula (27-a) can be truncated to 

𝐵𝑛(𝑥) =
1

√1−𝑥2
∑ 𝑏𝑛
𝑁
𝑛=0  𝑇𝑛(𝑥), lim

𝑁→∞
𝐵𝑁(𝑥) = 𝐵(𝑥).                            (28) 

First, we derive the spectral relationships for the 1st kind V-FIE which takes the form 

1

𝑀(𝑡)
∫ ∫ 𝑞(𝑥, 𝑦)[ln|𝑥 − 𝑦| − 𝑑]𝐹(𝑡, 𝜏)𝑀(𝜏)𝐵𝑁(𝑦)𝑑𝑦𝑑𝜏

1

−1

𝑡

0
= 𝑔(𝑥).            (29) 

Then, we use it to obtain the solution of Eq (25). 

7. Spectral relationships of integral Eq (25) 

The objective of this section is to establish a theory of spectral relationships between the 

eigenvalues and its corresponding eigenvectors of the following integral operator 
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𝐿 =
1

𝑀(𝑡)
∫ ∫ 𝑞(𝑥, 𝑦)[ln|𝑥 − 𝑦| − 𝑑]

𝑏𝑛𝑇𝑛(𝑦)

√1 − 𝑦2
𝐹(𝑡, 𝜏)𝑀(𝜏)𝑑𝑦𝑑𝜏

1

−1

𝑡

0

. 

Theorem 3. (Main Theorem of spectral relationships) 

1

𝑀(𝑡)
∫ ∫ 𝑞(𝑥, 𝑦)[ln|𝑥 − 𝑦| − 𝑑]

𝑇𝑛(𝑦)

√1 − 𝑦2
𝐹(𝑡, 𝜏)𝑀(𝜏)𝑑𝑦𝑑𝜏

1

−1

𝑡

0

= 

{
 
 
 

 
 
 
𝜋𝜆(𝑡)(ln 2 − 𝑑),                                                                                 𝑛 = 𝑚 = 0

𝜋𝜆(𝑡)∑
1

𝑚
(
1−2𝑚2

1−4𝑚2)
𝑀
𝑚=1 ,                                                                     𝑛 = 0,𝑚 ≥ 1

𝜆(𝑡)
𝜋𝑇𝑛(𝑥)

𝑛
,                                                                                            𝑚 = 0, 𝑛 ≥ 1

𝜋𝜆(𝑡)

2
[
𝑇3𝑛

4𝑛
+ (

1

4𝑛
+ ln 2 − 𝑑)𝑇𝑛] ,                                                        𝑚 = 𝑛 ≥ 1

𝜋𝜆(𝑡)

4
∑ [

𝑇2𝑚+𝑛

𝑛+𝑚
+ (

1

𝑛+𝑚
+

1

|𝑛−𝑚|
) 𝑇𝑛(𝑥) +

𝑇|𝑛−2𝑚|

|𝑛−𝑚|
]𝑀

𝑚=1 ,                𝑚 ≠ 𝑛 ≠ 0,

             (30) 

where 

𝜆(𝑡) =
1

𝑀(𝑡)
∫ 𝐹(𝑡, 𝜏)M(𝜏)𝑑𝜏
𝑡

0
.                                                       (31) 

Proof: Consider the V-FIE of the 1st kind in the form 

1

𝑀(𝑡)
∫ ∫ 𝑞(𝑥, 𝑦)[ln|𝑥 − 𝑦| − 𝑑]𝐹(𝑡, 𝜏)𝑀(𝜏)𝐵𝑁(𝑦)𝑑𝑦𝑑𝜏

1

−1

𝑡

0
= 𝑔(𝑥).                       (32) 

After using Eqs (27) and (28), we have 

𝜆(𝑡)∑ 𝑏𝑛𝑇𝑚(𝑥)
𝑀
𝑚=0 ∫

[ln|𝑥−𝑦|−𝑑]𝑇𝑚(𝑦)𝑇𝑛(𝑦)

√1−𝑦2
𝑑𝑦

1

−1
= 𝑔𝑛𝑇𝑛(𝑥).                           (33) 

Consider the following famous relations (Gradstein and Ryzhik [24]) 

(a) Algebraic relation: 𝑇𝑚(𝑥)𝑇𝑛(𝑥) =
1

2
[𝑇𝑛+𝑚(𝑥) + 𝑇|𝑛−𝑚|(𝑥)]. 

(b) Integral relation: ∫ 𝑇𝑛(𝑥)𝑑𝑥
1

−1
=

2

1−𝑛2
, 𝑛 = 0,2,4, …. 

(c) Orthogonal relation: ∫
[ln|𝑥−𝑦|]𝑇𝑛(𝑦)

√1−𝑦2
𝑑𝑦 = {

𝜋𝑙𝑛2,                 𝑛 = 0,
𝜋

𝑛
𝑇𝑛(𝑥),            𝑛 ≥ 1.

1

−1
                                             (34) 

In view of (34-c), we can establish the following: 

Case (1): When 𝑛 = 𝑚 = 0, we get 

𝜋𝜆(𝑡)(ln 2 − 𝑑)𝑏0 = 𝑔0.                                                       (35) 

Case (2): If 𝑛 = 0,𝑚 ≠ 0, then Eq (32), after using (34-c) becomes 
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𝜋

𝑚
𝜆(𝑡)𝑇𝑚

2𝑏0 = 𝑔0.                                                            (36) 

Using (34-a) then integrating from –1 to 1, by aid of (34-b), we get 

𝜋

𝑚
𝜆(𝑡) (

2

1−4𝑚2 + 2)𝑏0 = 2𝑔0.                                                (37) 

Therefore, 

𝑏0 =
𝑚(1−4𝑚2)

𝜋𝜆(𝑡)(1−2𝑚2)
𝑔0.                                                       (38) 

Case (3): If 𝑛 ≠ 0,𝑚 = 0, then with the aid of (34), the formula (32) yields, 

𝑏𝑛 =
𝑛

𝜋𝜆(𝑡)
𝑔𝑛.                                                             (39) 

Case (4): For 𝑛 ≠ 0,𝑚 ≠ 0, 

𝜆(𝑡)

2
𝑏𝑛 ∑ 𝑇𝑚(𝑥)

𝑀
𝑚=1 ∫

[ln|𝑥−𝑦|−𝑑](𝑇𝑛+𝑚(𝑦)+𝑇|𝑛−𝑚|(𝑦))

√1−𝑦2
𝑑𝑦

1

−1
= 𝑔𝑛𝑇𝑛(𝑥).                 (40) 

(i) For 𝑛 = 𝑚 ≠ 0 

𝜋𝜆(𝑡)

2
𝑏𝑛 [

𝑇3𝑛(𝑥)

4𝑛
+ (

1

4𝑛
+ ln 2 − 𝑑)𝑇𝑛(𝑥)] = 𝑔𝑛𝑇𝑛(𝑥).                           (41) 

(ii) If 𝑛 ≠ 𝑚 ≠ 0 the formula (32), with the aid of (34) yields 

𝜋𝜆(𝑡)

4
𝑏𝑛 ∑ [

𝑇𝑛+2𝑚(𝑥)

𝑛+𝑚
+ (

1

𝑛+𝑚
+

1

|𝑛−𝑚|
) 𝑇𝑛(𝑥) +

𝑇|𝑛−2𝑚|(𝑥)

|𝑛−𝑚|
]𝑀

𝑚=1 = 𝑔𝑛𝑇𝑛(𝑥).             (42) 

Introducing the formulae (35), (38), (39), (41) and (42) in Eq (32), the theorem is completely 

proved. 

7.1. On a description of case 4 (ii) 

The importance of our description is clarification the different levels of eigenvalues and its 

corresponding eigenvectors in the presence of time. So, the spectral relationships between its 

eigenvalues corresponding to its eigenvectors with time parameter 𝑀(𝑡) = 0.45𝑒−𝑡 , 𝐹(𝑡, 𝜏) = 𝜏3, 

can be seen from the following Figures 1–8: 
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Figure 1. [𝑛 = 0, 𝑝(𝑥, 𝑦) =  ∑ 𝑇𝑚(𝑥)𝑇𝑚(𝑦)
20
𝑚=1 ].       Figure 2. [𝑛 = 1, 𝑝(𝑥, 𝑦) =  ∑ 𝑇𝑚(𝑥)𝑇𝑚(𝑦)

20
𝑚=2 ]. 

 

Figure 3. [𝑛 = 2, 𝑝(𝑥, 𝑦) =  ∑ 𝑇𝑚(𝑥)𝑇𝑚(𝑦)
20
𝑚=1
𝑚≠3

].       Figure 4. [𝑛 = 3, 𝑝(𝑥, 𝑦) =  ∑ 𝑇𝑚(𝑥)𝑇𝑚(𝑦)
20
𝑚=1
𝑚≠4

]. 
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Figure 5. [𝑛 = 4,  𝑝(𝑥, 𝑦) =  ∑ 𝑇𝑚(𝑥)𝑇𝑚(𝑦)
20
𝑚=1
𝑚≠4

].   Figure 6. [𝑛 = 5  𝑝(𝑥, 𝑦) =  ∑ 𝑇𝑚(𝑥)𝑇𝑚(𝑦)
20
𝑚=1
𝑚≠5

]. 

 

Figure 7. [𝑛 = 9,  𝑝(𝑥, 𝑦) = ∑ 𝑇𝑚(𝑥)𝑇𝑚(𝑦)
20
𝑚=1
𝑚≠9

].  Figure 8. [𝑛 = 17,  𝑝(𝑥, 𝑦) =  ∑ 𝑇𝑚(𝑥)𝑇𝑚(𝑦)
20
𝑚=1
𝑚≠17

]. 

8. Mixed integral equation of the 3rd kind 

Here, we use the main theorem of spectral relationship (30) to deduce the solution of third kind 

MIE. For this, return to Eqs (25) and (26) by considering the known function 𝜉(𝑥) as a linear 

combination between eigenvalues 𝜉𝑘 and eigenfunctions 𝑇𝑘(𝑥)as: 

𝜉(𝑥) = ∑ 𝜉𝑘𝑇𝑘(𝑥)
∞
𝑘=0 , 𝜉0 =

1

𝜋
∫

𝜉(𝑥)

√1−𝑥2
𝑑𝑥

1

−1
, 𝜉𝑘 =

2

𝜋
∫

𝜉(𝑥)𝑇𝑘(𝑥)

√1−𝑥2
𝑑𝑥

1

−1
, 𝑘 ≠ 0.           (43) 

In view of Eq (30), we can establish the following cases: 
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Case (1): When 𝑛 = 𝑚 = 0 and 𝑘 = 0, we get 

𝑏0 =
2𝑔0

𝜋[𝜇1−𝜉0𝛾(𝑡)+2𝜆(𝑡)(ln2−𝑑)]
.                                                     (44) 

The solution in this case, takes the form 

Φ(𝑥, 𝑡) =
1

𝜋√1−𝑥2
(

2𝑓(𝑥,𝑡)

𝜋[𝜇1−𝜉0𝛾(𝑡)+2𝜆(𝑡)(ln2−𝑑)]
).                                       (45) 

If 𝑛 = 𝑚 = 0 and 𝑘 ≠ 0, we obtain 

𝑏0 =
4𝑔0

𝜋[2𝜇1−𝛾(𝑡)∑ 𝜉𝑘
∞
𝑘=1 +2𝜆(𝑡)(ln2−𝑑)]

.                                              (46) 

Case (2): If 𝑛 = 0, 𝑚 ≠ 0 and 𝑘 = 0. Substitute in (25), after using (30) becomes 

𝑏0 =
2𝑚(1−4𝑚2)𝑔0

𝜋[(𝜇1−𝜉0𝛾(𝑡))𝑚(1−4𝑚
2)+2𝜆(𝑡)(1−2𝑚2)]

.                                          (47) 

If 𝑛 = 0, 𝑚 ≠ 0 and 𝑘 ≠ 0, we have 

𝑏0 =
4𝑚(1−4𝑚2)𝑔0

𝜋[(2𝜇1−𝛾(𝑡)∑ 𝜉𝑘
∞
𝑘=1 )𝑚(1−4𝑚2)+4𝜆(𝑡)(1−2𝑚2)]

.                                   (48) 

Case (3): If 𝑛 ≠ 0, 𝑚 = 0 and 𝑘 = 0, then with the aid of (30), the formula (25) yields 

𝑏𝑛 =
4𝑛(1−2𝑛2)𝑔𝑛

𝜋[(𝜇1−𝛾(𝑡)𝜉0)𝑛(1−4𝑛
2)+4𝜆(𝑡)(1−2𝑛2)]

.                                           (49) 

If 𝑛 ≠ 0, 𝑚 = 0 and 𝑘 ≠ 0, Eq (25) becomes 

𝜇1
1

√1 − 𝑥2
∑𝑏𝑛𝑇𝑛(𝑥)

∞

𝑛=1

−
1

2√1 − 𝑥2
𝛾(𝑡)∑∑𝜉𝑘 (𝑇𝑛+𝑘(𝑥)+𝑇|𝑛−𝑘|(𝑥))

∞

𝑘=1

∞

𝑛=1

 

+𝜋𝜆(𝑡)∑
𝑇𝑛(𝑥)

𝑛
∞
𝑛=1 = ∑ 𝑔𝑛𝑇𝑛(𝑥)

∞
𝑛=1 .                                          (50) 

Multiplying both sides by 𝑇𝑙(𝑥) and integrating from −1 to 1, we have 

𝜋 [2𝜇1𝛿𝑛,𝑙 − 𝛾(𝑡)∑ 𝜉𝑘(𝛿𝑛+𝑘,𝑙+𝛿|𝑛−𝑘|,𝑙)
∞
𝑘=1 + 𝜆(𝑡)

8(1−2𝑛2)

𝑛(1−4𝑛2)
] =

8(1−2𝑛2)

𝑛(1−4𝑛2)
𝑔𝑛.              (51) 

If 𝑛 + 𝑘 =  𝑙, then 

𝑏𝑛 =
8𝑛(1−2𝑛2)𝑔𝑛

𝜋[(2𝜇1−𝛾(𝑡)∑ 𝜉𝑘
∞
𝑘=1 )𝑛(1−4𝑛2)+8𝜆(𝑡)(1−2𝑛2)]

.                                      (52) 

Case 4 (i): If  𝑛 = 𝑚 ≠ 0, Eq (25) becomes 
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(𝜇1 − 𝛾(𝑡)∑𝜉𝑘𝑇𝑘(𝑥)

∞

𝑘=1

)
1

√1 − 𝑥2
∑𝑏𝑛𝑇𝑛(𝑥)

∞

𝑛=1

 

+
𝜋𝜆(𝑡)

2
∑ (

𝑇3𝑛(𝑥)+𝑇3𝑛(𝑥)

𝑛
+ ln 2 − 𝑑)𝑇𝑛(𝑥)

∞
𝑛=1 = ∑ 𝑔𝑛𝑇𝑛(𝑥)

∞
𝑛=1 .                       (53) 

Multiplying both sides by 𝑇𝑙(𝑥) and integrating from −1 to 1, we get the following: 

If 𝑘 = 0, we obtain 

𝑏𝑛 =
4𝑛(1−2𝑛2)(1−16𝑛2)𝜋−1𝑔𝑛

(𝜇1−𝛾(𝑡)𝜉0)𝑛(1−4𝑛
2)(1−16𝑛2)+𝜆(𝑡)[(1−14𝑛2+16𝑛4)+2𝑛(1−2𝑛2)(1−16𝑛2)(ln2−𝑑)]

.              (54) 

If 𝑘 ≠ 0, 𝑛 + 𝑘 = 𝑙, 

𝑏𝑛 =
4𝑛(1−2𝑛2)(1−16𝑛2)𝜋−1𝑔𝑛

(𝜇1−
𝛾(𝑡)

2
∑ 𝜉𝑘
∞
𝑘=1 )𝑛(1−4𝑛2)(1−16𝑛2)+𝜆(𝑡)[(1−14𝑛2+16𝑛4)+2𝑛(1−2𝑛2)(1−16𝑛2)(ln2−𝑑)]

.          (55) 

Case 4 (ii): If 𝑛 ≠ 𝑚 ≠ 0, Eq (25) becomes 

(𝜇1 − 𝛾(𝑡)∑𝜉𝑘𝑇𝑘(𝑥)

∞

𝑘=1

)
1

√1 − 𝑥2
∑𝑏𝑛𝑇𝑛(𝑥)

∞

𝑛=1

 

+
𝜋𝜆(𝑡)

4
∑ ∑ (

𝑇2𝑚+𝑛(𝑥)+𝑇𝑛(𝑥)

𝑚+𝑛
+
𝑇|2𝑚−𝑛|(𝑥)+𝑇𝑛(𝑥)

|𝑚−𝑛|
) ∞

𝑛=1
∞
𝑚=1 = ∑ 𝑔𝑛𝑇𝑛(𝑥)

∞
𝑛=1 .                (56) 

Multiplying both sides by 𝑇𝑙(𝑥) and integrating from −1 to 1, we get the following: 

If 𝑘 = 0, we obtain 

bn =
4π−1ηn,m

(2)
gn

2(μ1−γ(t)ξ0)+λ(t)∑ [
ηn,m
(1)

n+m
+{

1

n+m
+

1

|n−m|
}ηn,m
(2)

+
ηn,m
(3)

|n−m|
]∞

m=1

.                                (57) 

If 𝑘 ≠ 0, 𝑛 + 𝑘 = 𝑙, we get 

𝑏𝑛 =
4𝜋−1𝜂𝑛,𝑚

(2)
𝑔𝑛

2(𝜇1−
𝛾(𝑡)

2
∑ 𝜉𝑘
∞
𝑘=1 )+𝜆(𝑡)∑ [

𝜂𝑛,𝑚
(1)

𝑛+𝑚
+{

1

𝑛+𝑚
+

1

|𝑛−𝑚|
}𝜂𝑛,𝑚
(2)

+
𝜂𝑛,𝑚
(3)

|𝑛−𝑚|
]∞

𝑚=1

,                           (58) 

where 

𝜂𝑛,𝑚
(1)

=
1

1−4(𝑛+𝑚)2
+

1

1−4𝑚2, 𝜂𝑛,𝑚
(2)

=
1

1−4𝑛2
+ 1, 𝜂𝑛,𝑚

(3)
=

1

1−4(𝑛−𝑚)2
+

1

1−4𝑚2.              (59) 

9. Convergence of the linear algebraic system 

To discuss the convergence of algebraic systems (57) and (58), consider 
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𝛽𝑛 =
4𝜂𝑛,𝑚

(2)
𝑔𝑛

𝜋𝜆(𝑡)∑ 𝜒𝑛,𝑚
𝑀
𝑚=1

,                                                     (60) 

where 

𝜒𝑛,𝑚 =
𝜂𝑛,𝑚
(1)

𝑛+𝑚
+ {

1

𝑛+𝑚
+

1

|𝑛−𝑚|
} 𝜂𝑛,𝑚

(2)
+

𝜂𝑛,𝑚
(3)

|𝑛−𝑚|
.                           (61) 

Lemma 3.  The series ∑ ∑ χn,m
∞
m=1

∞
n=1  is convergent. 

Proof: Applying Cauchy-Minkowski, we get 

‖𝜒𝑛,𝑚‖ = |∑ ∑ 𝜒𝑛,𝑚
2

𝑀

𝑚=1

∞

𝑛=1

|

1
2

≤ |∑ ∑ (
1

𝑛 +𝑚
)
2𝑀

𝑚=1

∞

𝑛=1

|

1
2

|∑ ∑(𝜂𝑛,𝑚
(1)
)
2

∞

𝑚=1

∞

𝑛=1

|

1
2

 

+ |∑ ∑ (
1

𝑛 +𝑚
)
2𝑀

𝑚=1

∞

𝑛=1

|

1
2

|∑ ∑(𝜂𝑛,𝑚
(2) )

2
∞

𝑚=1

∞

𝑛=1

|

1
2

 

+ |∑ ∑ (
1

𝑛 −𝑚
)
2𝑀

𝑚=1

∞

𝑛=1

|

1
2

|∑ ∑(𝜂𝑛,𝑚
(2)
)
2

∞

𝑚=1

∞

𝑛=1

|

1
2

 

+ |∑ ∑ (
1

𝑛−𝑚
)
2

𝑀
𝑚=1

∞
𝑛=1 |

1

2

|∑ ∑ (𝜂𝑛,𝑚
(3)
)
2

∞
𝑚=1

∞
𝑛=1 |

1

2

.                                    (62) 

Since the series 
2

1

1

n n



=

  is convergent, and the two series 
2

, 1 1

1
( )
( )

M

n m n m



= = +
  and 

2

, 1 1

1
( )
( )

M

n m n m



= = −
   

behave like 
2

1

1

n n



=

 . Then, the two series are convergent and tends to zero as .n→  Moreover, 

𝜂𝑛,𝑚
(1)

= [
1

1−4(𝑛+𝑚)2
+

1

1−4𝑚2] ≤ [
1

4(𝑛+𝑚)2
+

1

4𝑚2] ≤
1

2𝑛2
.                             (63) 

Similarly, 

𝜂𝑛,𝑚
(2)

≤
1

2𝑛2
, 𝜂𝑛,𝑚

(3) ≤
1

2𝑛2
.                                                (64) 

Therefore, 𝜒𝑛,𝑚 → 0 as 𝑛 → ∞. Finally, from (58) and (60), we have 

|𝑏𝑛| ≤ |𝛽𝑛| =
4|𝜂𝑛,𝑚

(2)
||𝑔𝑛|

𝜋|𝜆(𝑡)||𝜒𝑛,𝑚|
≤ constant.                                   (65) 

10. Numerical results 

In this section, some numerical applications are considered to show the accuracy and applicable 

of the proposed methods. 
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Example 1. Consider the MIE of the second kind 

1.7Φ(𝑥, 𝑡) − ∫ ∫ 𝑞(𝑥, 𝑦)[ln|𝑥 − 𝑦| − 0.01]𝜏3Φ(𝑦, 𝜏)𝑑𝑦𝑑𝜏 − (1 + 𝑥)3
1

−1
∫ 𝜏2Φ(𝑥, 𝜏)𝑑𝜏
𝑡

0

𝑡

0
=

(0.04 + 0.05𝑡 + 0.03𝑡2)𝑔(𝑥), and 𝑞(𝑥, 𝑦) = ∑ 𝑇𝑚(𝑥)𝑇𝑚(𝑦)
𝑀
𝑚=0 .                       (66) 

Table 1 represents the solution Φ(𝑥, 𝑡)  and its corresponding errors for different time and 

Figures 9–12 show the behavior of the approximate solution Φ(𝑥, 𝑡) and its corresponding errors for 

a certain g(x). 

Table 1. The solution Φ(𝑥, 𝑡) and its corresponding errors for different time. 

 x 
N=20, M=0 N=20, M=13 

Φ(𝑥, 𝑡) Error Φ(𝑥, 𝑡) Error 

𝑔
( 𝑥
)
=
𝑥
2
si
n
𝑥

 

T=0.8 

–0.8 –0.027702 9.7e-15 –0.02836 9.2e-15 

–0.4 0.00194 1.8e-14 0.00036 1.7e-14 

0.0 8.1e-12 9.4e-15 7.0e-12 8.9e-15 

0.4 –0.00194 1.7e-15 –0.00036 1.6e-15 

0.8 0.02770 1.0e-14 0.02836 9.8e-15 

T=0.3 

–0.8 –0.010611 3.3e-15 –0.01061 3.3e-15 

–0.4 0.00046 5.9e-15 0.00045 6.0e-15 

0.0 2.9e-12 3.1e-14 2.8e-12 3.2e-15 

0.4 –0.00046 1.1e-14 –0.00045 5.7e-16 

0.8 0.01061 3.6e-16 0.01061 3.5e-15 

T=0.01 

–0.8 –0.00727 2.3e-15 –0.00727 2.2e-15 

–0.4 0.00031 4.1e-15 0.00031 4.1e-15 

0.0 2.0e-12 2.2e-15 1.9e-10 2.5e-15 

0.4 –0.00031 3.9e-16 –0.00031 3.9e-16 

0.8 –1.7e-13 2.4e-15 0.00727 2.4e-15 

𝑔
( 𝑥
)
=
√
1
+
𝑥

 

T=0.8 

–0.8 0.15689 6.3e-5 2.47942 5.9 e-5 

–0.4 0.11810 1.1e-4 1.63829 1.0e-4 

0.0 0.11665 6.0e-5 1.51011 5.7e-5 

0.4 0.13391 1.0e-5 1.65458 1.0e-5 

0.8 0.21272 6.7e-5 2.53604 6.3e-5 

T=0.3 

–0.8 0.05567 2.1e-5 0.85399 2.1e-5 

–0.4 0.04225 3.8e-5 0.56487 3.8e-5 

0.0 0.04194 2.1e-5 0.52093 2.6e-5 

0.4 0.04832 3.5e-6 0.57094 3.5e-6 

0.8 0.07696 2.3e-5 0.87529 2.2e-5 

T=0.01 

–0.8 0.54236 1.4e-5 0.58433 1.5e-5 

–0.4 0.36502 2.6e-5 0.38651 2.6e-5 

0.0 0.33710 1.4e-5 0.35645 1.4e-5 

0.4 0.36502 2.4e-6 0.39067 2.4e-6 

0.8 0.54236 1.5e-5 0.59892 1.5e-5 
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Figure 9. The solution Φ(𝑥, 𝑡) where 𝑔(𝑥) = 𝑥2 sin 𝑥. Figure 10. The error where 𝑔(𝑥) = 𝑥2 sin 𝑥. 

 

Figure 11. The solution Φ(𝑥, 𝑡) where 𝑔(𝑥) = √1 + 𝑥. Figure 12. The error where 𝑔(𝑥) = √1 + 𝑥. 

Example 2. Consider the MIE of the second kind 

1.7Φ(𝑥, 𝑡) − ∑ 𝑇𝑚(𝑥)

13

𝑚=0

∫ ∫ 𝑇𝑚(𝑦)[ln|𝑥 − 𝑦| − 0.01]𝜏
3Φ(𝑦, 𝜏)𝑑𝑦𝑑𝜏

1

−1

𝑡

0

 

−𝜉(𝑥) ∫ 𝜏2Φ(𝑥, 𝜏)𝑑𝜏
𝑡

0
= 𝑀(𝑡)𝑔(𝑥).                                             (67) 

In this example, we solve the MIE by using Chebyshev polynomial method after separation 

method technique where the position interval was dividing in 3, 9, 27 and 81 parts, the mean errors 

and the convergence rate of errors are computing, see Tables 2–4. 
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Table 2. 𝜉(𝑥) = 𝑥 cos(𝑥),  𝑀(𝑡) = 0.7 sin(𝑡). 

Table 3. 𝜉(𝑥) =
1

1+𝑥2
, 𝑀(𝑡) = 0.45√1 + 𝑡. 

Table 4. 𝜉(𝑥) = 𝑒𝑥
2
, 𝑀(𝑡) = ln(1.3 + 𝑡). 

N 
𝑘 = 0 𝑘 = 13 

Mean Error Rate of convergence Mean Error Rate of convergence 

3 4.95 × 10−3 1.492 4.98 × 10−3 1.490 

9 9.61 × 10−4 1.998 9.69 × 10−4 2.022 

27 1.07 × 10−4 1.891 1.05 × 10−4 1.854 

81 1.34 × 10−5 --- 1.37 × 10−5 --- 

Figures 13–15 represent the behavior of Φ(𝑥, 𝑡) for different 𝜉(𝑥) and 𝑀(𝑡). 

 

Figure 13. The solution Φ(𝑥, 𝑡) where 𝜉(𝑥) = 𝑥 cos(𝑥),  𝑀(𝑡) = 0.7 sin(𝑡). 

N 
𝑘 = 0 𝑘 = 13 

Mean Error Rate of convergence Mean Error Rate of convergence 

3 2.17 × 10−3 1.497 2.19 × 10−3 1.497 

9 4.19 × 10−4 2.009 4.23 × 10−4 2.038 

27 4.61 × 10−5 1.861 4.51 × 10−5 1.859 

81 5.97 × 10−6 --- 5.85 × 10−6 --- 

N 
𝑘 = 0 𝑘 = 13 

Mean Error Rate of convergence Mean Error Rate of convergence 

3 5.32 × 10−3 1.544 5.12 × 10−3 1.451 

9 9.76 × 10−4 2.004 1.04 × 10−3 1.997 

27 1.08 × 10−4 1.821 1.16 × 10−4 1.874 

81 1.46 × 10−5 --- 1.48 × 10−5 --- 
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Figure 14. The solution Φ(𝑥, 𝑡) wher 𝜉(𝑥) =
1

1+𝑥2
, 𝑀(𝑡) = 0.45√1 + 𝑡e. 

 

Figure 15. The solution Φ(𝑥, 𝑡) where 𝜉(𝑥) = 𝑒𝑥
2
, 𝑀(𝑡) = ln(1.3 + 𝑡). 

11. Conclusions 

From the previous work and discussion we can establish the following: 

1) Many natural phenomena and contact problems in mathematical physics turn the problem into an 

IE with different kernel. 

2) A mixed IE has its own kernel in time and is always a positive and continuous time function. 

While the position kernel may be continuous or discontinuous (which is the most important in the 

study). 

3) The technique of separating variables by the direct method, helped to treat the scientific 

shortcomings in the previous methods. In addition, it enables authors to choose the necessary and 

appropriate time explicitly to solve the problem. 
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4) The method of orthogonal polynomials, with the help of some special functions, enables the 

authors to directly represent the solution in the form of a linear relationship of eigenvalues and 

eigenfunctions. The eigenvalues play a very important role in describing the solution and its behavior. 

5) The importance of Eq (25) comes from the special cases that can be deduced from it. For example, 

when we put 𝑞(𝑥, 𝑦) = 1 , 𝜉(𝑥) = 1, 𝜆(𝑡)  given by Eq (31) and differentiate the equation with 

respect to the variable 𝑥, we get the equation 

𝑑𝐵(𝑥)

𝑑𝑥
+

𝜆(𝑡)

𝜇(𝑡)
∫

𝐵(𝑦)𝑑𝑦

𝑥−𝑦

1

−1
=

1

𝜇(𝑡)

𝑑𝑔(𝑥)

𝑑𝑥
.                                                    (68) 

Taking the transformations 𝑦 = 2𝑢 − 1, 𝑥 = 2𝑣 − 1, the above IDE, on noting the difference 

notations, becomes 

𝑑Θ(v)

𝑑𝑣
+ 𝜆̌ ∫

Θ(𝑢)𝑑𝑢

𝑣−𝑢

1

0
= 𝑧(𝑣), (𝜆̌ =

𝜆(𝑡)

𝜇(𝑡)
).                                                (69) 

This equation has appeared in both combined infrared gaseous radiations and molecular 

conduction, where 𝜆̌ in (69), represents a relationship between the radiative conduction of the 

maximum path length and time, and represents the only parameter of the dimensionless system and 

its relationship to time. If we expand 𝑡 = ∑ 𝑡𝑖
𝑇
𝑖=0  and consider 𝑧(𝑣) =

1

2
− 𝑣, then, the IDE (69), in 

the zero approximate of time and under the conditions Θ(0) = Θ(1), was considered by Frankel [26], 

where Θ(𝑡) represents the unknown temperature. 

6) In this paper, the method of separating the variables helped in converting the MIE in position and 

time into FIE in position with time parameters. In addition, spectral relationships have been deduced, 

which help in solving many problems of mathematical physics. 

7) From the above results, we can deduce that, the error is extremely stable with time, see Table 1. 

While, the error decreases by increasing the number of iterations (N), see Tables 2–4. 

Future Work: Future work will attempt to solve Eq (1) with delay time. 
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