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Abstract: In this paper, we establish some congruences mod p* involving the sums Zf;ll kmBilk,
where p > 3 is a prime number and B, are generalized Catalan numbers. We also establish some
congruences mod p? involving the sums Zf_ll /’c’”B}ff}cBZl2 where m, [, l,,d are positive integers
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1. Introduction

In combinatorics,
1 (2k 2k 2k
Cr,=—— = - , withk € N,
¢ k+1(k) (k) (k+1) Wik e
are the well-known Catalan numbers. The meaning of Catalan numbers are the numbers of ways to

divide the (n + 2)-polygon in n triangles. For any positive integer n, the generalized Catalan numbers
B, are defined (cf. [10, 15]) by

2
Bn,k:l_c( " ),OSkSn.
n\n—-k

In [15], L. W. Shapiro shows that the meaning of the generalized Catalan numbers B, ; are the number
of pairs of non-intersecting paths of length n and distance k. For 1 < k < n, we list the first values of
generalized Catalan numbers in the following table:
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" 1 2 3 4 5 6
1 1 0 0 0 0 0
2 2 1 0 0 0 0
3 5 4 1 0 0 0
4 14 14 6 1 0 0
5 42 48 27 8 1 0
6 132 165 110 44 10 1
The generalized Catalan numbers satisfy the recurrence relation
Bn,k = Bn—l,k—l + ZBn—l,k + Bn—l,k+17 k> 2, n= 2, (11)

with the initial conditions B,y = B,,, = 0, m > n. When k = 1, we have B,; = C, forn > 1.
Now we consider the generating function of the generalized Catalan numbers. Let

g(x.y) = ZZBnk ,y —Zzn(n_ ) !

n=1 k=1 k=1

Exchanging the order of summation, we can get

ok S 2n + 2k
8lx.y) = Zkvnzn(n—) Z ZZ(n+k)(n:l- )yn° (12)

In view of [4, (1.121)], we have

+00
2k (2n+ 2k z—1 1
- B h - d . 1.3
:02(n+k)( n )y =7, wherey = 5— an |y|<4 (1.3)
Combining (1.2) and (1.3) yields that
-1 1
gx,y) =€ — 1=V 1, wherey = >— and |yl < 7

Remark. Taking k = % in (1.3), we have

2n+ 1 — 1 [(2n\
Z_2211+1( n )y _Zn+1( )y

which implies that z is the generating function of the Catalan numbers C,,.

There are various identities and congruences involving Catalan numbers (cf. [5,6, 11]). Differential
equations and generating function are often used to manage combinatorial identities involving Catalan
numbers (cf. [8,9]). However, there are few identities involving the numbers B, ;. Several applications
of B, appeared in [1, 6, 15]. Koparal and Omiir [2, 10, 14] studied the congruences involving B,
where p is prime.
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The numbers B, are closely related to generalized harmonic numbers under congruence relation.
For a € N, the generalized harmonic numbers are defined by

n

1
H” =0 and H® = Zl rE forn e Z*.

By the well-known Wolstenholme theorem [20], we have that if p > 3 is a prime, then
H, ;=0 (mod p?) and H;z)l =0 (mod p). (1.4)

For m € {-2,-1,0,1,2,3} and n € {1,2,3}, Z.-W. Sun [16] established a kind of congruences
mod p 1nvolv1ng the sums Y, 1 k"H;. Y. Wang [18, 19] generalized some of these congruences to
mod p? type. In [16], Z. W. Sun also made two conjectures on supercongruences of Euler-type. These
conjectures were conformed in [13, 17], respectively.

In this paper, we focus on the properties of B, ;. With the use of the congruences involving harmonic
numbers, we establish several congruences mod p? involving the sums > lk’"BZIk and mod p?

p=1 7m 2l p2b
involving the sums )}, _| k BB, a

Our main results are as follows.

Theorem 1.1. Let p > 3 be a prime and m, | be two positive integers such that 3 <m < p — 1. Then

-1 % — Dmp®B,,_; (mod p?), if 241m,

P (1-4DpB,, + X p2 3 (")B,B,,, (mod p*), if 2|m,

r

where By, By, B,, . .. are the Bernoulli numbers defined by
~(n+1
By=1 and ;( L )Bk:O(n: 1,2,3,..)).

Corollary 1.2. Let p > 3 be a prime and m be an integer such that 3 < m < p — 1. Then

p-1

1
2 K"By = 5 (<" + 1) (1 = 4D4'pB,, (mod p?).
k=1

Corollary 1.3. Let p > 3 be a prime and m be an even integer such that3 <m < p—1. If p | l or
pl@l—1)orm=p-3, then

-1

S

k"B = (1-40)4'pB, (mod p*).

pk —
1

>~
Il

Example 1.4. Let p > 5 be a prime and m be an even integer such that3 <m < p — 1. If4 | (Ap + 1),
then

p- 2
Zk”’BI:Z = ()5 2% 2B, (mod p).
=1

In particular, for A = 3p, we have

p_] 3p2+1

K"'B,7 =0 (mod p’).
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For a fixed positive integer m, we can use Theorem 1.1 to calculate the corresponding congruence.
When m is related to p, in general, we can not give a closed form. With the use of the known
congruence, we give the following corollary.

Corollary 1.5. Let p > 7 be a prime and [ be a positive integer. Then
pk =

2
4- Z kB2 = (1 -4DpB, s + §1(1 —4hp°B, 5 (mod p).

Now, we extend the definition of the generalized Catalan numbers by setting

k{ 2n
B,y = - ,—n<k<n.
n\n—-k
From this, we see that
k{ 2n k{ 2n
B, = = —-B,;. 1.5
o n(n+k) n(n—k) . (15

In this case, the generalized Catalan numbers satisfy the recurrence relation
Buy = Bu14-1+2By-1x + Byorsa1s kIl 22, n 22,

with the initial conditions B,y = B,,, = 0, |m| > n.

Theorem 1.6. Let p > 3 be a prime and m, [ be two positive integers such that 1 < m < p — 3. Then

lp—l nylk ek l)mz(j”(ilz)l)m L ?By s, (mod p?), if 21tm,
4~ — =
=l (i —4DpBp-1-n  (mod p?), if 2| m.

Corollary 1.7. Let p > 3 be a prime and m, [ be two positive integers such that m € {1,3,...,p —4}.

Ifl = 520~ (mod p), then

S

—1 BZZ
Pk =0 (mod p%).

>~
Il

1

Theorem 1.8. Let p > 5 be a prime and m, 1, ,,d be positive integers such that d is less than p — 1
and2 <m < p—3. Then

47h-h Z k"B B =—d" + (1 - Al)pB,, + 20d"(Hy + Hye_y)p
—2D(md"™" +2B,(d))p (mod p*),
where B,(x) = Y1 (Z)ka"‘k (n=0,1,2,...) are the Bernoulli polynomials.
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Corollary 1.9. Let p > 5 be a prime and m, 11, 1,,d be positive integers such that d is less than p — 1
and2 <m < p—3. Then

p-1
47N R BIPBY: =~ d" + p(B,, — 2lymd"" = 4,B,,(d)) (mod p?).
k=1

Corollary 1.10. Let p > 5 be a prime and m > 1 be an odd integer and d be a positive integer less
than p — 1. Then

p—1
47 N KBBY, =~ d" + p(4md"Hyy — 4B,(d))  (mod p?).
k=1

In particular, for d = 1, we have
p—1
DKM, = -4 (mod p?).

k=1

Corollary 1.11. Let p > 5 be a prime and m, 1, L, d be positive integers such that d is less than p — 1
and2 <m < p—3. Then

p-1
D KBIIBS, = 40P (=g" + pB,)  (mod p).
k=1

In particular, for l, = p— 1 -1}, we have

p-1 B 2lip
m p.k _ m 2
k ( ) =-d" + pB,, (mod p°).
B, k-a

kd

In the next section, we provide some lemmas. In section 3, we show the proof of the main results.
2. Preliminaries

In this section, we first state some basic facts which will be used very often.
Lemma 2.1. Let p > 3 be a prime. If m e {1,2,...,p — 2}, then

m m
;)1 = mpB,,_l_m (mod p?). (2.1)

In particular, for m € {1,3,5,..., p — 4}, we have

m) _ m(m + 1) Bp—2—m 2 3
Hp_1 = > P mp (mod p7). (2.2)
Proof. These two congruences are due to J. W. L. [3]. O
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Lemma 2.2. Let p > 3 be a prime and k be an integer such that 1 <k < p — 1. Then

1 3 8
B, =4+ Sp(% - 2Hk) + 4p? (ﬁ - THi+ 8H2) (mod p?).

Proof. According to the definition of generalized Catalan numbers, it follows that

B _k 2p 3 2k [ 2p—1
p’k_pp—k_p—kp—k—l'

2]9—1 (2p l)pkl kll’kl( )
(p—k—l) k-1 -V [T(-%

=

Observe that

From this it is not difficult to deduce that

2p—1
p—k-1

By the definition of generalized harmonic numbers, we have

n) _ (n) (n) n (n) (n+1) 2
Hy = Z (p— l)n =H,", -(=1) (Hk—l + "ka_J; ) (mod p”).

It follows from (2.1) that

H = — lpB,, 1n— (1" (H, +npHP)  (mod p?).
Combining (2.4) and (2.5) gives that
2p-1 k 2752 3
ko) (-1 (1= 2pH, +2p*H})  (mod p?).
Hence
5 2
B}, = (1 - 2pH, +2p’H}) (mod p°).

(p - k)?

A simple calculation gives (2.3).

Lemma 2.3. Let p > 3 be a prime and m be a non-negative integer less than p — 1. Then

a = (m+ 1
Z k"H, k = P Z ( )Ber—r (mOd Pz)
m+1 r
k=0 r=0
Form > 3, we have
p-1 B,-1 (mod p), if24m,
kalf =
=0 =2 g (m+1)B B,_. (mod p), if 2|m.

)E (=18 (1 = 2pHp oy + 2p*(H,_, — HY, ) (mod p?).

(2.3)

(2.4)

(2.5)

(2.6)

2.7)

(2.8)

(2.9)
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Proof. Sun [16, (2.3)] showed that Z,’;l H,=1-p (mod p?) and Wang [18, Theorem3.1] proved the
rest cases of (2.8). The congruence (2.9) is the special case of the result of Wang [18, Theorem3.2]. O

Lemma 2.4. Let p > 5 be a prime. Then

P_3 _ 2
> (p )B,«Bp_g_, =0 (mod p). (2.10)
r
i=0
For p > 7, we have

p-5
p—4 _ 2.,

Z:(;( ; )B,Bp_5_, =3B, (mod p). 2.11)

Proof. For any integer m and r, we have the congruence

(p - m) _ (_1)r(r+ m— l) (mod p).
r -1

m

Suppose m is an even integer. Then we have (=1)"B,B,_i_—, = B.B,_i_,—, for p > m + 3. Therefore,

plom p—m P rem—1
Z ( )Ber—l—m—r = ( )Ber—l—m—r (mOd P) (212)

r=0 r r=0 m—1

Taking m = 2 in (2.12), we have

p-3 _9 p-3
> (p )Ber_3_, = >+ 1B,B,s, (mod p). (2.13)
r=0 r r=0
Observe that
p-3 p-3 p=3
rBer—?:—r = Z(P -3- r)Ber—3—r = - Z(r + 3)Ber—3—r (mOd P),
r=0 r=0 r=0
which implies that
p-3 3 p-3
rB,B, 3_, = ) B,B, 3, (mod p). (2.14)
r=0 r=0

Zhao [21, (3.19)] showed that

p-3

D BiB,3;=0 (mod p). (2.15)

i=0

Substituting (2.14) and (2.15) into (2.13) gives (2.10).
Taking m = 4 in (2.12), we have

23 p—4 3 (r+3
Z( ] )B,BP_S_,EZ( ; )Ber_5_, (mod p). (2.16)
r=0 r=0
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Matiyasevich [12] proved that for an even integer n > 4, we have

n-2

(n+2)ZBB,,, 22(“2)33”,_;1(“1)3.

Taking n = p — 5 in the above identity, we can obtain

p- p=7
— > ®BiBys i~ ) iBiB,s;=20B,5 (mod p). 2.17)
i i=2
Zhao [21, Proposition 3.13] proved that
- B
D BiBys= =3B, (mod p). (2.18)
For any positive integer i, we have
p-5 p-5
FB.B,s_, = (-1) Z(r +5)B,B,s_, (mod p). (2.19)
r=0 r=0
Combining (2.16) through (2.19) gives (2.11). |

Lemma 2.5. Let p be an odd prime. Suppose s and t are two positive integers of same parity such that

p>s+t+1. Then
+r+1 +r+1
= [( 1’ (S )—(—1)Ss(s t )+s+t

2 7

1<i<j<p-1
Bp s—t—1 2
A ——— d p?). 2.20
“s+rrn medP) (2:20)
Proof. The congruence (2.20) is proved by Zhao [21, Theorem 3.2]. O

3. Proof of the main results

Proof of Theorem 1.1. It follows from (2.3) that

1 38 :
B) =4 (1 +2p (E - 2Hk) +p’ (ﬁ - ;Hk + 8HI§)) (mod p?),
which implies that

1 1 4 2l
B =4 (1 + 2”1(% - 2Hk) +2p*P (ﬁ — pHet 4H£) + %) (mod p*). 3.1)

Hence

-1

47N k"B = Z K + ZpIZ g 4plz K" H, + 2p21 Z k2

1

"u

>~
Il
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p-1 p—1 p—1
—8p*P Z K"V Hy + 8p*P Z K"H? + pZZZ k"2 (mod pd). (3.2)
k=1 k=1 k=1

It is well-known that for m, p € Z*,

p_l 1

k= Z:; (m : I)B,pm“_’. (3.3)

k=1

(cf. [7, pp.230-238].) Hence for 3 < m < p — 1, the congruence (3.2) reduces to

-1 p-1
41N KB, =pB,, + (% ; 21) P Bt —4pl Y K"H,€
1 k=1

b

=~
Il

p-1 p—1
— 8p*P Z K"V H + 8 A Z K"H?  (mod p?). (3.4)
k=1 k=1

Suppose m is an odd integer. It follows from (2.8) and (2.9) that

-1 p-1

K"'Hy= Y K"H} =B, (mod p). (3.5)

1 k=1

<

>~
Il

For the odd integer m, the integers r and m — r are of different parity. Recall that By = —1/2 and B, = 0
if i > 3 and 2 ¢ i. Therefore,

1 X (m+ 1 m+2
Ber—r = - Bm— . 36
m+1 ;( r ) 4 : (3-6)
Together with (2.8) and (3.6), we obtain
& m+2
kK"H, = 1 pB,_1 (mod p?). (3.7)
k=1

Substituting (3.5) and (3.7) into (3.4) gives the first congruence of Theorem 1.1.

If m is an even integer such that 4 < m < p — 1, then Z,’;l k™ 'H, =0 (mod p). Substituting (2.8)
and the second congruence of (2.9) into (3.4) gives the second congruence of Theorem 1.1. The proof
of Theorem 1.1 is completed. O

Proof of Corollary 1.2. 1t follows from Theorem 1.1. O

Proof of Corollary 1.3. Case p | L or p | 4l — 1 is obvious by the second congruence of Theorem 1.1.
Case m = p — 3 follows from (2.10). O

Proof of Corollary 1.5. Combining (2.11) and the second congruence of Theorem 1.1 gives the desired
congruence. O
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Proof of Theorem 1.6. In view of (3.1), we have

r-1 B p-
I pk (m) (m+1) H 272 py(m+2)
4- Z o =H + 2pIH]" Y — 4pl Zk— PPH

k=1

-1
-8 212172 ELT 21212 —£ 4 pH"? (mod p?) (3.8)
p km+1 p km p p-1 P :

k=1 k=1

Suppose m is an odd integer. It follows from (2.1) that H;"jz) =0 (mod p) and

m+1
m+2

H"Y = pB, o (mod p?). (3.9)
By Fermat’s little theorem, we have }.7_| L H ke = > ! P‘Z""Hk (mod p). In view of (2.8), we
have Z H R = B, >, (mod p). Similarly, we can obtain Z Hk/k’” = B)_1-n = 0 (mod p),
since m is odd and 1 <m < p—4. Also, we can get Zk:] H}/k" = B, »_,, (mod p) by (2.9). Combining
the above and (2.2), we obtain

VB (m+ (@ —m)
47! pk _ N *B 4 Ay 3, 1
D = amaay P Bram- pl§ o (mod ) (3.10)

k=1

Observe that

M“
»|m

2.

1<i<j<p— 1

=~
l

Hence taking s = 1,7 = m in (2.20), we have

H —m* +m+4
e T ThB, 2). A1
k 4(m +2) PBp-2-m (mOd P) (3 )

TTM“

Substituting (3.11) into (3.10), we get the first congruence.
Now we assume that m is an even integer. With the use of (2.8), we have Z,’;l Hi /K" = B,_i_p,
(mod p). Combining (2.1) and (3.8), we obtain the second congruence. O

Proof of Corollary 1.7. 1t follows from Theorem 1.6. |

Proof of Theorem 1.8. According to the definition of the generalized Catalan numbers, it is easy to see
that B, o = 0 and

p-1 d-1
k"B B = Z k"B B+ Z kBB (3.12)
k=1 k=1 k=d+1

With the use of (1.5) and (2.3), we can obtain the following congruences. If £ > d, then

21
BB =41k (1 + ]ip — 4pl, i} ) (mod p?). (3.13)

2P
k—d

AIMS Mathematics Volume 8, Issue 10, 24331-24344.
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If k < d, then

21
> 2’;{ _ 4pled_k) (mod p?). (3.14)

21
2 2 AL+ 1p
Bp}chid=4‘+2(1+—k —4pliH, +

Combining (3.12) through (3.14), it follows that

p-1

21 21
kmBi’}(B;li , =4 [Z K" (1 + —“” — 4pl H, + y 2’; - 4pled_k)

k=1
p—1
2lLip
Z km(l + T —4pllHk +
k=d+1

2hp
k—d

- 4P12Hk—d)) (mod p?).

The above congruence can be written as
p—l l p
47N BB, = Z k(1 ( —1 - 4pl1Hk) +2Lp(E) + X))

k=1

21
_am (1 7”’ - 4pllHd) (mod p?), (3.15)

where 2, = Zk d+1 k’"( —-2H,_ d) and X, = ZZ } k’"( —-2H,_ k) Observe that

p—1 d-1
1 1
=) (k+a)" (— - 2Hk) N+ (— - 2H,,_d+k) .
— k kzz(;‘ p—d+k

Recall that H,,_;.x = Hy_—1 (mod p) for k < d. Then

p-1 1
= Z(k +d)" (% - 2Hk) ka (— —2H;¢- 1) (mod p),
k=1

which implies that

p—1
1
T+, = ;(k +d)" (E - 2Hk) (mod p).
With the use of the binomial theorem, we have
p—1 m 1
Y +3, zk 1 ;(r)kd (% —2Hk) (mod p).

Exchanging the summation order gives that

p-1

T +3, = Z (”:)d erf ! 2Zm: (r)d’" ’Zk’Hk (mod p). (3.16)

r=0 k=1 r=0 k=1
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For m € Z, there holds

f“km ~1 (modp), ifp-1|m,
0 (modp), ifp-1tm.

(cf. [7, pp.235].) Hence
m L
( )d””Z K~''=—md™"' (mod p). (3.17)
r
r=0 k=1
In view of (2.8) and the definition of Bernoulli polynomials, we have

m p-1 m
Z (":)d Z K'H, = Z (’;’f)dm-rB, = B,(d) (mod p). (3.18)

r=0 k=1 r=0

Writing (3.17) and (3.18) into (3.16), we obtain

T+ = -md"' - 2B,(d) (mod p). (3.19)
In view of (3.3), we have Zf:_]l k"™ = pB,, (mod p?) and Zf;ll k™! = 0 (mod p) for m > 2. Hence
with the help of (2.8), we have
& 21
Zk’” (1 + Tlp — 41, pH;| = (1 — 41)pB,, (mod p?). (3.20)
k=1
Substituting (3.19) and (3.20) into (3.15), we complete the proof of the theorem. O

Proof of Corollary 1.9 and 1.10. These congruences can be obtained directly from Theorem 1.8. O

Proof of Corollary 1.11. Replacing [,,l, by l;p,l,p in Theorem 1.8 respectively, we get the first
congruence. Then taking [, = p — 1 — [; and with the use of Euler theorem, we obtain the second
one. ]

4. Conclusions

Koparal and Omiir [10] established a kind of mod p?> congruences involving the sum

p-172 p=1 BpiBpi-d : :
o1 K°BpiBpi-a and 3, ===, where B, is generalized Catalan numbers and the power of B, ;

is odd. This article studies the congruences involving generalized Catalan numbers with even powers
and establishes a kind of mod p* congruences involving the sum 3.7~/ k"B, and mod p* congruences

involving the sum ZZ:_II kmBZl}chfi_ ,» Where m is an integer and [, [, [ are positive integers.
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