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Abstract: One of the most often used data science techniques in business, finance, supply chain man-
agement, production, and inventory planning is time-series forecasting. Due to the dearth of studies in
the literature that propose unique weights and structure (WASD) based models for regression issues,
the goal of this research is to examine the creation of such a model for time-series forecasting. Given
that WASD neural networks have been shown to overcome limitations of traditional back-propagation
neural networks, including slow training speed and local minima, a multi-function activated WASD for
time-series (MWASDT) model that uses numerous activation functions, a new auto cross-validation
method and a new prediction mechanism are proposed. The MWASDT model was used in forecast-
ing the gross domestic product (GDP) for numerous nations to show off its exceptional capacity for
learning and predicting. Compared to previous WASD-based models for time-series forecasting and
traditional machine learning models that MATLAB has to offer, the new model has produced notice-
ably better forecasting results, especially on unseen data.
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1. Introduction

As information technology has advanced, new sophisticated computer approaches have been
adopted in order to implement the best practices in public administration, financial management, and
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planning. Several studies have demonstrated the necessity of implementing new information and com-
munication technology (ICT)-based techniques for the reformation and enhancement of public and
financial management strategies [1]. In numerous scientific fields, the use of new machine learning
(ML) techniques has resulted in the acceptance of new, improved intelligence methodologies for time-
series forecasting issues [2]. Methodologies for artificial intelligence have been used in a variety of
fields, including but not limited to engineering, medicine, economics and finance, and social science
research. They are frequently employed in the field of engineering for feedback control systems stabi-
lization [3, 4], solar systems measurements [5], wind speed forecasting [6] and alloy behavior analysis
[7]. Also, they are often employed in the field of medicine for diagnosing diabetic retinopathy [8], flat
foot [9] and several types of cancer, including lung cancer [10] and breast cancer [11], whereas they
are usually employed in the field of economics and finance for portfolio optimization [12], time-series
forecasting [13, 14], and macroeconomic factors prediction [15, 16]. Additionally, methodologies for
artificial intelligence have been successfully applied in social science research usually for multiclass
classification tasks, such as characterizing occupational mobility [17], evaluating jobs’ potential for
teleworking [18], and classifying occupations [19].

Gross domestic product (GDP) forecasts are increasingly valuable for financial management and
planning. Several studies have examined how various forecasting approaches can be used to predict
the GDP, such as incorporating economic signals from the domestic economy’s main trading partners
[20], incorporating stochastic volatility to improve both point and density forecast accuracy [21], es-
tablishing a grey forecasting model with time power term [22], using gradient boosting and random
forest models [23], and utilizing mixed-frequency factor-mixed-data sampling models [24]. ML algo-
rithms, on the other hand, are prospective substitutes for the time-series regression models that central
banks generally employ for forecasting important macroeconomic indicators [25]. For managing data
sets with a large number of potential regressors, ML models are especially well suited. In this paper,
we investigate the performance of different ML algorithms in obtaining accurate forecasts of GDP for
the United States (U.S.), the United Kingdom (U.K.), Italy, France, Greece and India.

The main objective of this research is to develop a model for GDP forecast using innovative neu-
ral networks enriched with cutting-edge methods. To achieve this, we will employ a 3-layer feed-
forward neural network that is able to handle regression tasks. As an alternative to the well-known
back-propagation algorithm that is used to train feed-forward neural networks, a weights and structure
determination (WASD) training algorithm will be utilized. The WASD algorithm provides the follow-
ing advantages when training a neural network [26]:
- It computes the ideal set of weights directly by using the weights direct determination (WDD) process
as opposed to the back-propagation algorithm, which iteratively modifies the network’s structure.
- It avoids getting stuck in local minima.
- It ultimately contributes to lower computational complexity.
In this paper, a novel multi-function activated WASD for time-series (MWASDT) model is introduced.
It takes into account the unique features of the WASD based model for binary classification presented
in [27], which uses multiple activation functions to reduce the training error even more than the single
activation function models. It also takes into account the unique features of the WASD based model for
time-series forecast presented in [13], which finds the optimal number of lagged observations to reduce
the training error. In order to further improve the structure and functionality of the WASD based neural
networks in the case of time-series forecast, the MWASDT model specifically makes use of various
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activation functions, optimizes the ratio between the fitting and validation sets (i.e., cross-validation
auto-adjustment) and employs a new prediction mechanism. Results from six experiments reveal that,
when compared to some of the most cutting-edge ML regression models available through MATLAB’s
regression learner app, the MWASDT model performed better on all measures.

The following can be used to summarize the main concepts of this work:

• A novel 3-layer feed-forward WASD neural network for time-series forecast, termed MWASDT,
is presented.
• The MWASDT makes use of various activation functions, optimizes the ratio between the fitting

and validation sets to reduce bias and prevent becoming caught in local optima during the training
phase and employs a new prediction mechanism.
• Using the new prediction mechanism, the MWASDT model’s predictions on unseen data can be

kept within a user-specified reasonable range.
• In six experiments on GDP forecast, the MWASDT model is contrasted with some of the most

advanced regression models accessible through MATLAB’s regression learner app.
• Six experiments on GDP forecast demonstrate that the MWASDT model offers superior prediction

abilities compared to other WASD models, including the WASDP model developed in [28].

The following provides a description of the paper’s structure. An overview of the multi-function
activated WDD process for time-series process is given in Section 2. Section 3 presents the 3-layer
feed-forward MWASDT neural network structure. Section 4 presents the MWASDT algorithm as well
as the whole training and forecasting processes for the MWASDT neural network model. Section 5
shows and discusses the findings of six experiments on GDP forecast using the MWASDT model,
the WASDP model developed in [28] and some of the most cutting-edge regression models available
through MATLAB’s regression learner app. In Section 6, concluding observations are given.

2. The multi-function activated WDD process for time-series

This section describes the multi-function activated WDD process for time-series. The WDD process
is an essential part of any WASD method since it does away with the requirement for labor-intensive,
usually unreliable iterative computations to obtain the appropriate weights matching the current hid-
den layer layout. The WDD procedure reportedly allows for both speed and lower computational
complexity whilst avoiding some of the accompanying challenges as opposed to traditional weight
determination methods [26].

Here, comprehensive justifications of key theoretical underpinnings and studies are provided for the
creation of the MWASDT neural network. First, it is important to mention a few of the main symbols
used in this work: a! denotes the factorial of a; ()T denotes transposition; ()† denotes pseudoinver-
sion; sign(·) denotes a sign function; round(·) denotes a round function. ()⊙ denotes the elementwise
exponential.

The Taylor polynomial approximation (TPLA) theorem is restated from [29].

Theorem 2.1. The following holds when a target function, f (·), has the (H + 1)-order continuous
derivative on the range [r1, r2], and H is a nonnegative integer:

f (a) = BH(a) +CH(a), a ∈ [r1, r2], (2.1)
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where CK(a) and BK(a), respectively, imply the error term and the H-order TPLA of f (a).

Let f (h)(z) be the value at the point z of the h-order derivative of f (x). The approximate representa-
tion of f (a) is shown below:

f (a) ≈ BH(a) =
H∑

h=0

f (h)(z)
h!

(a − z)h, z ∈ [r1, r2]. (2.2)

Proposition 2.1. Theorem 2.1 can be used to approximate multivariable functions. Let the target
function with v variables and (H+1)-order continuous partial derivatives in an origin’s neighborhood
(0, . . . , 0) be f (a1, a2, . . . , av). The H-order TPLA BH(a1, a2, . . . , av) about the origin is shown below:

BH(a1, a2, . . . , av) =
H∑

h=0

∑
h1+···+hv=h

a1 · · · av

h1 · · · hv

∂h1+···+hv f (0, · · · , 0)

∂ah1
1 · · · ∂a

hv
v

 , (2.3)

where h1, h2, . . . , hv are nonnegative integers.

According to [27, 13], the data also requires normalization to a range of [−0.5,−0.25] before their
input in the neural network model because it enhances the accuracy of the WDD method. We achieve
that by using a linear transformation [30] as below:

Anor =
A − Amin

4(Amax − Amin)
−

1
2
, (2.4)

where Amax and Amin are the maximum and minimum values of the time-series data A =

[At−1, At−2, . . . , At−m] ∈ R1×m, respectively, with t > m denoting the time. It is worth noting that the
neural network can deal with over-fitting in this way. As a consequence, the normalized input A and
the target vector D = At ∈ R are considered.

According to the power activated multi-input neural networks in [26], the nonlinear function given
below may be used to express the relationship between the input variables At−1, At−2, . . . , At−m and the
output target D of the neural network:

f (At−1, At−2, . . . , At−m) = D. (2.5)

Thereafter, based on Proposition 2.1, the H-order TPLA BH(At−1, At−2, . . . , At−m) can map (2.5) as
shown below:

BH(At−1, At−2, . . . , At−m) =
n−1∑
h=0

khwh, (2.6)

where kh = Gh(At−1, At−2, . . . , At−m) ∈ R1×mn signifies a power activation function, wh ∈ R
mn signifies

the weight that corresponds to kh, and h is both the number of the hidden layer neurons and the power
value. Additionally, the four power elementwise activation functions (AFs) presented in Table 1 are
recommended when dealing with regression tasks [13].
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Table 1. Power activation functions.

Name Gh(X) Range Reference

Power Xh (−∞,∞) AF 1

Power sigmoid eXh

eXh
+1

[1
2 , 1
)

AF 2
Power inverse exponential e−Xh

(0, 1) AF 3
Power softplus ln(1 + eXh

) (0,∞) AF 4

For a given number of mr ∈ N observations, the input matrix A and the target vector D become:

A =


At−m At−m+1 . . . At−1

At−m−1 At−m . . . At−2
...

...
. . .

...

At−m−r At−m−r+1 . . . At−r

 ∈ Rr×m, D =


At

At−1
...

At−r+1

 ∈ Rr. (2.7)

Thereafter, setting kr,h = Gh(C1,C2, . . . ,Cm) ∈ Rr×mn, where Ci ∈ R
r denotes the ith column of the input

matrix A in (2.7), the input-activation matrix is shown below:

K =


k1,0 k1,1 . . . k1,n−1

k2,0 k2,1 . . . k2,n−1
...

...
. . .

...

kr,0 kr,1 . . . kr,n−1

 ∈ Rr×mn, (2.8)

and the weight vector is W = [w0,w1, . . . ,wn−1]T ∈ Rmn. As opposed to the iterative weight train-
ing used in traditional neural networks, the weights of the H-order TPLA neural network are then
calculated directly using the WDD process outlined below [29]:

W = K†D. (2.9)

3. The MWASDT neural network structure

The 3-layer feed-forward neural network structure is shown in Figure 1. Particularly, the neural
network receives the normalized input values At−1, At−2, . . . , At−m based on (2.4) from Layer 1 (i.e.,
input layer) and allocates them to the relevant neuron of Layer 2 with equal weight 1. Notice that Layer
2 has a maximum number n of activated neurons. Further, the neurons that connect Layer 2 and Layer
3 (i.e., output layer) are acquired using the WDD procedure and have weights W j, j = 1, 2, . . . , n − 1.
To compute the prediction Ď of At, the formula shown below is used:

Ď = KW. (3.1)
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At-1

At-2

B(Ď)

Layer 1 Layer 2 Layer 3

w0 

w1 

wn-1 

G0(At-1,At-2,…,At-m)

G1(At-1,At-2,…,At-m)

Gn-1(At-1,At-2,…,At-m)

1 

1 

1 
At-m

Figure 1. Structure of the MWASDT neural network.

Last, Layer 3 has one activated neuron, which uses the function shown below:

B(Ď) =


At−1 + Var(A) · γ , ||Ď| − |At−1|| > Var(A) · γ & Ď > At−1

At−1 − Var(A) · γ , ||Ď| − |At−1|| > Var(A) · γ & Ď < At−1

Ď , otherwise
(3.2)

where A = [At−1, At−2, . . . , At−m], Var(A) denotes the variance of A, and the parameter γ ≥ 0 imposes a
bound on in the predicted value of the neural network model. Given that the parameter γ is specified by
the user, the model’s predictions on unseen data can be kept within a user-specified reasonable range.
Keep in mind that the predicted value of the neural network model remains unbound for γ = +∞. It
is important to mention that B(Ď) is the normalized output of the neural network. As a result, it is
necessary to denormalize the value of B(Ď) using the reverse procedure shown in (2.4).

4. The MWASDT algorithm

The MWASDT algorithm is in charge of training the neural network model. That is, it finds the
optimal ratio between the fitting and validation input sets (i.e., p∗), the optimal number of inputs m
or observation delays (i.e., M∗), the optimal number of hidden layer neurons n, the optimal AF of
each hidden layer neuron (i.e., v), and the weights W of the neural network. Consider the time-series
At, At−1, . . . , At−g, the maximum number of hidden layer units nmax specified by the user and, according
to [13], the maximum number of inputs Mmax = round(g/3). Also, consider the parameter p ∈ [0, 1]
which is the ratio between the fitting and validation input sets (i.e., cross-validation split). Since a
typical split is above 50% for the fitting set and less than 50% for the validation set, the following
iterative procedure ((1)-(10) steps) is used in particular for p = 0.55 : 0.01 : 0.85, where p takes prices
from 0.55 to 0.85 with step 0.01.

(1) For M = 1 : Mmax, where M takes prices from 1 to Mmax with step 1, repeat the following (2)-(9)
steps.

(2) We create the input matrix A and the target matrix D according to (2.7) for r = g and m = M,
and we set G1 = round(pg), the number of the fitting data, and G2 = g − G1, the number of the
validation data. That is, the training set of the neural network comprises the matrices A and D.
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Algorithm 1 Matrix K calculation.
Require: The data A, the vector V that contains the optimal powers of every hidden-layer neuron

checked so far, the h = [AF 1, AF 2, AF 3, AF 4] that contains the optimal AFs of V , the delays
number M.

1: j← 1
2: while j ≤ length(V) do
3: Q← A⊙V( j)

4: if h( j) == AF 1 then
5: K(:,M( j − 1) + 1 : M j)← Q
6: else if h( j) == AF 2 then
7: K(:,M( j − 1) + 1 : M j)← eQ ⊙ (eQ + 1)−1

8: else if h( j) == AF 3 then
9: K(:,M( j − 1) + 1 : M j)← e−Q

10: else if h( j) == AF 4 then
11: K(:,M( j − 1) + 1 : M j)← ln(1 + eQ)
12: end if
13: j← j + 1
14: end while
Ensure: The matrix K.

(3) For h = 0 : nmax − 1, where h takes prices from 0 to nmax − 1 with step 1, repeat the following
(4)-(8) steps.

(4) For v = 1 : 4, where v takes prices from 1 to 4 with step 1, repeat the following (5)-(7) steps.
(5) Create Kv (i.e., one matrix K for each of the four AF of (1)) for the input A in line with Alg. 1.
(6) Calculate the weights Wv for the first G1 observations (fitting set) of Kv, i.e., Kv(1 : G1, :), in line

with the WDD process of (2.9). That is, we set Wv = Kv(1 : G1, :)†D(1 : G1).
(7) Based on Wv of the previous step and the last G2 observations (validation set) of Kv, i.e., Kv(G1+1 :

G2, :), their predictions’ mean absolute percentage error (MAPE) over the target value D(G1 + 1 :
G2) is measured. That is, we set Ď(G1 + 1 : G2) = Kv(G1 + 1 : G2, :)Wv, where Ď(G1 + 1 : G2)
denotes the predictions on the validation set. Note that the MAPE is a well-known statistic tool
that measures the accuracy of a forecasting approach and is commonly used in ML as a loss
function for regression problems. In addition, MAPE values that are closer to zero are preferable,
and is calculated as follows:

MAPE =
100%

g

g∑
i=1

∣∣∣∣∣ D̂i − Di

Di

∣∣∣∣∣, (4.1)

where D̂ and D, respectively, are the forecasted and the target prices.
(8) Based on the MAPE, the best performing AF (i.e., v∗) of each neuron h is chosen iteratively. If

the MAPE of v∗ is lower than the previous best MAPE, then a new hidden-layer neuron is created
under that AF (i.e., we set the AF V = [V, v∗] and the hidden-layer neuron power N = [N, h]),
otherwise this v∗ is bypassed and not included in the hidden-layer neurons. As a result, we keep
at minimum the hidden-layer neurons while reducing the overall MAPE of the neural network
model.
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(9) Compare the best MAPE of the current M to the minimum MAPE of the optimal delays number
so far (i.e., M∗). If the best MAPE of the current M is lower than M∗, it becomes the minimum
MAPE, and the current M becomes the optimal delays number.

(10) Compare the best MAPE of the current p to the minimum MAPE of the optimal ratio between
the fitting and validation input sets so far (i.e., p∗). If the best MAPE of the current p is lower
than p∗, it becomes the minimum MAPE, and the current p becomes the optimal ratio between
the fitting and validation input sets.

In this way, the MWASDT algorithm can keep the lowest number of hidden-layer neurons in the
neural network while optimizing the ratio between the fitting and validation input sets through the
parameter p. At the same time, it finds the optimal number of inputs and lowers the MAPE of the
neural network as a whole. The full workflow of the MWASDT algorithm is depicted in the diagram
in Figure 2.

Initialize

h ≤ nmax-1?

Return Wbest, Mbest, Vbest and Ebest 

Yes

No

M ≤ S?

Set A, D via Eq. (2.7), G1 ← round(pg), G2 ← g-G1, N ← [ ], V ← [ ], E ← ∞, h ← 0, and v ← 1

Calculate K via Alg. 1 for A with M, the 
AFs powers [N;h], and the AFs [V;v]

Yes

Calculate W via Eq. (2.9) for K and D

EM > E?

Yes

Set M ← M+1

No

No

v ≤ 4?

No

Set v ← v+1

Calculate K via Alg. 1 for A with M, 
the AFs powers N, and the AFs V

Calculate W via Eq. (2.9) for K(1:G1,:) 
and D(1:G1), and EV(v) via Eq. (4.1) 

for K(G1+1:G2,:) and D(G1+1:G2)

Set EM ← E, MM ← M, WM ← W, 
VM ← V and AM ← A

Set EM ← ∞,  and M ← 1

p ≤ 0.85?

Set S ← round(g/3), p ← 0.55, and Ebest ← ∞

Yes

No

EM > Ep?

Yes

Set Ebest ← EM, Mbest ← M,        
Wbest ← W, Vbest ← V and Abest ← A

Set p ← p+0.01

No

Set h ← h+1

Set E ← min(EV), N ← [N;h] 
and V ← [V;v] of min(EV)

E > min(EV)?

Yes

Yes

Figure 2. The MWASDT algorithm.

After finding the optimal structure of MWASDT neural network model of Figure 1, we use the last
M observations of the time-series, i.e., At, At−2, . . . , At−M−1, to create the test set of the neural network.
The forecast for the next Z ∈ N in number time instances can therefore be obtained through (3.2).
Particularly, for z = 1 : Z, where z takes prices from 1 to Z ∈ N with step 1, we repeat the following
(a)-(b) steps.
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(a) By using N, V and the observations At+z−1, At+z−2, . . . , At+z−M, create K.
(b) Forecast the price of At+z through (3.2).

As a result, we are able to obtain the neural network forecast for the next Z in number time in-
stances. The detailed procedure for training and forecasting with the MWASDT neural network model
is depicted in the diagram in Figure 3.

Input Data

Return the 
forecasted prices

Find  Amin, Amax and normalize A via (2.4)

Calculate W, M, V and N via MWASDTSet z ← 1

Set A the time-series 
observations, and Z the desired 

number of forecasted prices

z ≤ Z?
Set Ẑ ← [At+z-1;At+z-2…;At+z-M] and 
compute K under M, V, N and Ẑ

Calculate At+z via (3.2) and set z ← z+1

YesNo
Denormalize the prices At+z, 

At+z-1,…, At+1 under Amin, Amax

Figure 3. Procedure for training and forecasting with the MWASDT neural network.

5. Experiments on GDP forecast

This section looks at the MWASDT model’s efficiency and forecasting capacity when used with
real-world data. Particularly, the performance of the MWASDT neural network is investigated and
compared to some of the best-performing regression models accessible in the MATLAB classification
learner app during six experiments on GDP forecast. The exponential Gaussian process regression
(EGPR), linear support vector machine (LSVM), and ensemble bagged trees (EBT) are these regression
models. The WASDP neural network model developed in [28] is also compared. With the following
link, you may get the whole creation and deployment of the concepts and computational methods
featured in Sections 2–4 from GitHub:

https://github.com/SDMourtas/MWASDT.

The MATLAB package provides full implementation and extensive installation instructions.

5.1. Experiments description

The datasets used in the experiments of this section are taken from the Federal Reserve Economic
Data (FRED) at https://fred.stlouisfed.org/, which contains frequently updated U.S. macro
and regional economic time-series at annual, quarterly, monthly, weekly, and daily frequencies. For
our experiments, we employed the quarterly GDP time-series for the U.S., U.K, Italy, France, Greece
and India. The time frames for training the neural network models are from 1/1991 to 10/2017 for the
U.S., U.K and France, from 1/1997 to 10/2017 for Italy and Greece, and from 4/2004 to 10/2017 for
India. These time frames include 109, 93 and 56 observations, respectively. Therefore, we set g = 109,
g = 93 and g = 56, respectively, in the MWASDT algorithm described in the diagram of Figure 2.
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Additionally, we set nmax = 50 for all the time frames in the MWASDT algorithm. The time frame
for testing the neural network models is from 1/2018 to 1/2023 for all the aforementioned nations and
includes 20 observations. As a result, we set Z = 20 in the process described in the diagram of Figure
3. It is important to note that we set γ = 10 in (3.2) for all the time frames in the MWASDT algorithm
with the exception of Italy’s GDP, where we have set γ = 1. We have also set γ = +∞ for all the
time frames in the MWASDT algorithm, and in the figures and table of this section, we designate it as
MWASDT WR (i.e., MWASDT without restrictions).

In the case of the U.S.’s GDP, the neural network training and test results are presented in Figure 4.
Particularly, the MAPE of the validation set during training is shown in Figure 4a–4c for various ratios
of the fitting and validation input sets p, various delays M for the optimal value of p, and various AFs
for the optimal values of p and M, respectively. More particularly, Figure 4a shows that the optimal
value of p is 0.75, Figure 4b shows that the optimal value of M is 8, and Figure 4c shows that the
optimal number of hidden-layer neurons is 26. In Figure 4d and 4e, which depict the predicted prices
on the validation set during training, we can see that the MWASDT, LSVM, and EGPR models have
a better match with the actual prices than the WASDP and EBT models. As shown in Figure 4f, the
MWASDT and LSVM models are more accurate at forecasting the actual prices than the MWASDT
WR, WASDP, EGPR and EBT models.
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(f) Test set (forecast).

Figure 4. Training and testing the neural network models on the GDP of U.S..

When it comes to the U.K.’s GDP, the neural network training and test results are presented in
Figure 5. Particularly, the MAPE of the validation set during training is shown in Figure 5a–5c for
various ratios of the fitting and validation input sets p, various delays M for the optimal value of p and
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various AFs for the optimal values of p and M, respectively. More particularly, Figure 5a shows that
the optimal value of p is 0.81, Figure 5b shows that the optimal value of M is 16, and Figure 5c shows
that the optimal number of hidden-layer neurons is 23. In Figure 5d and 5e, which depict the predicted
prices on the validation set during training, we can see that the MWASDT, LSVM, and EGPR models
have a better match with the actual prices than the WASDP and EBT models. The MWASDT and
MWASDT WR models are more accurate at forecasting the actual prices than the other models, as
shown in Figure 5f.
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Figure 5. Training and testing the neural network models on the GDP of U.K..

Regarding Italy’s GDP, the neural network training and test results are presented in Figure 6. Par-
ticularly, the MAPE of the validation set during training is shown in Figure 6a–6c for various ratios of
the fitting and validation input sets p, various delays M for the optimal value of p, and various AFs for
the optimal values of p and M, respectively. More particularly, Figure 6a shows that the optimal value
of p is 0.63, Figure 6b shows that the optimal value of M is 9, and Figure 6c shows that the optimal
number of hidden-layer neurons is 27. In Figure 6d and 6e, which depict the predicted prices on the
validation set during training, we can see that the EGPR model has a better match with the actual prices
compared to the other models. As shown in Figure 6f, the WASDP model is less accurate at forecasting
the actual prices than the rest of the models.

In the case of the France’s GDP, the neural network training and test results are presented in Figure
7. Particularly, the MAPE of the validation set during training is shown in Figure 7a–7c for various
ratios of the fitting and validation input sets p, various delays M for the optimal value of p, and various
AFs for the optimal values of p and M, respectively. More particularly, Figure 7a shows that the
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optimal value of p is 0.81, Figure 7b shows that the optimal value of M is 8, and Figure 7c shows that
the optimal number of hidden-layer neurons is 28. In Figure 7d and 7e, which depict the predicted
prices on the validation set during training, we can see that the MWASDT and EGPR models have a
better match with the actual prices compared to the rest of the models. The MWASDT and LSVM
models are more accurate at forecasting the actual prices than the MWASDT WR, WASDP, EGPR and
EBT models, as shown in Figure 7f. When it comes to Greece’s GDP, the neural network training and
test results are presented in Figure 8. Particularly, the MAPE of the validation set during training is
shown in Figure 8a–8c for various ratios of the fitting and validation input sets p, various delays M
for the optimal value of p, and various AFs for the optimal values of p and M, respectively. More
particularly, Figure 8a shows that the optimal value of p is 0.81, Figure 8b shows that the optimal
value of M is 9, and Figure 8c shows that the optimal number of hidden-layer neurons is 20. In Figure
8d and 8e, which depict the predicted prices on the validation set during training, we can see that the
WASDP model is less accurate at matching the actual prices than the other models. The MWASDT and
MWASDT WR models are more accurate at forecasting the actual prices than the rest of the models,
as depicted in Figure 8f.
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Figure 6. Training and testing the neural network models on the GDP of Italy.
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Figure 7. Training and testing the neural network models on the GDP of France.
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Figure 8. Training and testing the neural network models on the GDP of Greece.

AIMS Mathematics Volume 8, Issue 10, 24254–24273.



24267

Regarding India’s GDP, the neural network training and test results are presented in Figure 9. Par-
ticularly, the MAPE of the validation set during training is shown in Figure 9a–9c for various ratios of
the fitting and validation input sets p, various delays M for the optimal value of p, and various AFs
for the optimal values of p and M, respectively. More particularly, Figure 9a shows that the optimal
value of p is 0.8, Figure 9b shows that the optimal value of M is 13, and Figure 9c shows that the
optimal number of hidden-layer neurons is 49. In Figure 9d and 9e, which depict the predicted prices
on the validation set during training, we can see that the EBT and WASDP models are less accurate
at matching the actual prices than the other models. As depicted in Figure 9f, the MWASDT model is
more accurate at forecasting the actual prices than the other models.
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Figure 9. Training and testing the neural network models on the GDP of India.

5.2. Results discussion

The models statistics on the training and test sets for the GDPs of the U.S., U.K., Italy, France,
Greece and India are shown in Table 2. It is crucial to note that the statistics presented in this table
were generated using MATLAB and then double-checked using SPSS. The coefficient of determina-
tion (R2), MAPE, symmetric MAPE (SMAPE), mean absolute error (MAE), root-mean-square error
(RMSE), mean absolute scaled error (MASE) and mean directional accuracy (MDA) are the perfor-
mance measures considered in our analysis. Particularly, R2 is the proportion of the variation in the
dependent variable that is predictable from the independent variable(s), SMAPE is an accuracy mea-
sure based on percentage errors, MAE is a measure of errors between paired observations expressing
the same phenomenon, RMSE is a measure of the differences between values predicted by a model
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and the values observed, MASE is a measure of the accuracy of forecasts, and MDA is a measure of
prediction accuracy of a forecasting method and compares the forecast direction to the actual realized
direction. See [31] for more details and in-depth analysis of these measures.

In the case of the U.S.’s GDP, the neural network models’ statistics on the training and test sets
are presented in Table 2. In the training set, EGPR has the best R2, MWASDT has the second best,
and WASDP has the worst. On MAPE, SMAPE, MAE, RMSE and MASE, EGPR has the lowest
values, MWASDT has the second lowest values, and WASDP has the highest values. Also, EGPR
and MWASDT have the best MDA, and WASDP has the worst. In the test set, MWASDT has the
best R2, and EBT and MWASDT WR have the worst. On MAPE, SMAPE, MAE, RMSE and MASE,
MWASDT has the lowest values, and MWASDT WR has the highest values. Also, MWASDT has
the best MDA, and EBT and MWASDT have the worst. Overall, the MWASDT has the second best
statistics on the training set and the best statistics on the test set.

When it comes to the U.K.’s GDP, the neural network models’ statistics on the training and test sets
are presented in Table 2. In the training set, EGPR has the best R2, MWASDT has the second best and
WASDP has the worst. On MAPE, SMAPE, MAE, RMSE and MASE, EGPR has the lowest values,
MWASDT has the second lowest values, and WASDP has the highest values. Also, EGPR has the
best MDA, MWASDT has the second best, and LSVM has the worst. In the test set, all the statistics
of MWASDT and MWASDT WR are identical. MWASDT has the best R2, and EBT has the worst.
On MAPE, SMAPE, MAE, RMSE and MASE, MWASDT has the lowest values, and WASDP has the
highest values. Also, MWASDT and LSVM have the best MDA, and WASDP has the worst. Overall,
the MWASDT has the second best statistics on the training set and the best statistics on the test set.

Regarding Italy’s GDP, the neural network models’ statistics on the training and test sets are pre-
sented in Table 2. In the training set, EGPR has the best R2, MWASDT has the third best, and WASDP
has the worst. On MAPE, SMAPE, MAE, RMSE and MASE, EGPR has the lowest values, and
MWASDT has the highest values. Also, EGPR has the best MDA, MWASDT has the third best, and
WASDP has the worst. In the test set, MWASDT WR has the best R2, MWASDT has the third best,
and EGPR has the worst. On MAPE, SMAPE, MAE, RMSE and MASE, EGPR has the lowest values,
MWASDT has the third lowest values, and MWASDT WR has the highest values. Also, MWASDT,
MWASDT WR and LSVM have the best MDA, and WASDP, EGPR and EBT have the worst. Overall,
the MWASDT has the third best statistics on the training set and the second best statistics on the test
set.

In the case of France’s GDP, the neural network models’ statistics on the training and test sets are
presented in Table 2. In the training set, EGPR has the best R2, MWASDT has the second best, and
WASDP has the worst. On MAPE, SMAPE, MAE, RMSE and MASE, EGPR has the lowest values,
MWASDT has the second lowest values, and WASDP has the highest values. Also, EGPR has the
best MDA, MWASDT and LSVM have the second best, and WASDP has the worst. In the test set,
MWASDT has the best R2, and EBT and MWASDT WR have the worst. On MAPE, SMAPE, MAE,
RMSE and MASE, MWASDT has the lowest values, and MWASDT WR has the highest values. Also,
MWASDT has the best MDA, and WASDP has the worst. Overall, the MWASDT has the third best
statistics on the training set and the best statistics on the test set.
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Table 2. Neural network models’ statistics on the GDPs of the U.S., U.K., Italy, France,
Greece and India.

Neural Network Models
Training Set Test Set

GDP Statistic MWASDT WASDP LSVM EGPR EBT MWASDT WASDP LSVM EGPR EBT MWASDT WR
R2 0.9963 0.1661 0.9919 0.9999 0.8870 0.6754 -6.78 0.4858 -4.0×103 -Inf -Inf

MAPE 0.4070 4.6594 0.5897 0.0052 2.1425 6.63 17.77 3.1653 11.17 15.34 145.6
SMAPE 0.2035 2.4111 0.2959 0.0025 1.0642 3.1771 9.97 1.5867 6.08 8.48 Inf

U.S. MAE 73.2 858.1 102.2 0.8837 369.9 1.6×103 4.1×103 736.7 2.6×103 3.6×103 Inf
RMSE 91.7 1.3×103 133.3 1.1084 443.4 2.3×103 4.6×103 981.1 3.3×103 4.1×103 Inf
MASE 0.4342 5.0934 0.6066 0.0052 2.1960 3.0237 7.71 1.3783 5.02 6.78 Inf
MDA 1 0.7187 0.7812 1 0.8437 0.6842 0.1052 0.4210 0.1578 0.1052 0.5263

R2 0.9973 0.7661 0.9854 0.9999 0.8365 -0.2121 -8.1325 -0.5773 -671.2 -Inf -0.2121
MAPE 0.3824 2.8499 0.8684 0.0051 2.7464 5.1247 13.64 9.90 7.25 10.76 5.1247

SMAPE 0.1909 1.4128 0.4358 0.0026 1.3569 2.4277 7.41 4.61 3.81 5.74 2.4277
U.K. MAE 1.7×103 1.4×104 3.9×103 23.32 1.2×104 2.7×104 7.8×104 5.5×104 4.2×104 6.2×104 2.7×104

RMSE 2.1×103 2.0×104 4.6×103 28.64 1.4×104 3.9×104 8.4×104 6.6×104 5.3×104 7.0×104 3.9×104

MASE 0.3692 3.0271 0.8574 0.0051 2.7 1.8282 5.11 3.6377 2.7708 4.08 1.8282
MDA 0.9688 0.8125 0.7187 1 0.8437 0.8421 0.1579 0.8421 0.2105 0.21 0.8421

R2 0.2337 -123.5 0.3038 0.9999 -2.9825 -2.1692 -34.90 -0.984 -273.7 -8.14 -0.9225
MAPE 3.5837 2.5196 3.2356 0.0014 2.7343 6.8643 12.47 16.37 4.7947 5.7314 17.01

SMAPE 1.7491 1.2938 1.5837 0.0007 1.3438 3.2469 6.6946 7.3437 2.4505 2.9573 7.5803
Italy MAE 1.5×104 1.1×104 1.3×104 5.8581 1.1×104 2.9×104 5.6×104 7.4×104 2.1×104 2.6×104 7.7×104

RMSE 1.7×104 1.5×104 1.6×104 7.3976 1.3×104 3.7×104 6.0×104 8.9×104 2.9×104 3.3×104 9.3×104

MASE 7.56 5.3944 6.8173 0.0029 5.6350 2.7428 5.2340 6.8190 2.0116 2.4153 7.09
MDA 0.7407 0.3333 0.7777 1 0.5925 0.6842 0.3684 0.6842 0.3684 0.3684 0.6842

R2 0.9947 -1.623 0.9124 0.9999 0.8533 0.1795 -33.58 -0.812 -3.5×103 -Inf -Inf
MAPE 0.2369 4.8101 1.2691 0.0031 0.9838 6.4375 17.84 2.9038 6.4967 9.0490 41.16

SMAPE 0.1185 2.5287 0.6290 0.0015 0.4915 3.1308 9.8938 1.4324 3.3835 4.7753 Inf
France MAE 1.3×103 2.6×104 6.9×103 17.10 5.3×103 4.0×104 1.1×105 1.8×104 4.1×104 5.7×104 Inf

RMSE 1.7×103 4.1×104 8.2×103 22.39 7.7×103 5.1×104 1.2×105 2.5×104 5.0×104 6.4×104 Inf
MASE 0.4162 8.5665 2.2087 0.0054 1.6924 2.8574 7.9594 1.2532 2.9316 4.0702 Inf
MDA 0.9062 0.5937 0.9062 1 0.7812 0.5263 0.1578 0.4210 0.2105 0.2105 0.4210

R2 0.9609 -20.06 0.9718 0.9999 0.4854 -5.94 -10.10 -5.8×103 -223.5 -2.2×103 -5.94
MAPE 0.7804 12.01 0.6098 0.0051 1.4565 5.54 6.24 6.44 6.79 7.09 5.54

SMAPE 0.3882 5.5702 0.3044 0.0025 0.7333 2.6897 3.2493 3.3208 3.5406 3.6995 2.6897
Greece MAE 348.26 5.1×103 272.65 2.2732 683.24 2.5×103 3.0×103 3.1×103 3.3×103 3.4×103 2.5×103

RMSE 407.17 6.1×103 338.40 3.4009 1.0×103 3.4×103 3.8×103 4.3×103 4.4×103 4.6×103 3.4×103

MASE 0.8034 12.26 0.6290 0.0052 1.5763 1.9282 2.3339 2.3869 2.5383 2.6474 1.9282
MDA 0.7777 0.4444 0.8148 1 0.5185 0.6315 0.4210 0.4736 0.4210 0.4210 0.6315

R2 1 -0.119 0.9771 0.9999 0.4075 -1.715 -0.111 -0.965 -397.3 -Inf 0.0334
MAPE 2.1×10−11 3.2801 1.1351 0.0029 3.6391 8.89 Inf 17.29 9.15 13.89 19.86

SMAPE 1.1×10−11 1.7469 0.5653 0.0014 1.8082 4.1371 38.76 7.6581 4.7875 7.5073 8.7166
India MAE 6.3×10−6 1.1×106 3.4×105 918.2 1.1×106 3.0×106 Inf 6.2×106 3.4×106 5.2×106 7.4×106

RMSE 7.9×10−6 2.1×106 4.1×105 1.2×103 1.3×106 4.2×106 Inf 7.5×106 4.4×106 5.9×106 1.1×107

MASE 6.9×10−12 1.1765 0.3741 0.0010 1.1627 1.0454 Inf 2.1319 1.1759 1.7906 2.5326
MDA 1 0.75 1 1 0.6875 0.6315 0.5789 0.7368 0.5263 0.3157 0.7368

When it comes to Greece’s GDP, the neural network models’ statistics on the training and test sets
are presented in Table 2. In the training set, EGPR has the best R2, MWASDT has the third best, and
WASDP has the worst. On MAPE, SMAPE, MAE, RMSE and MASE, EGPR has the lowest values,
MWASDT has the third lowest values, and WASDP has the highest values. Also, EGPR has the best
MDA, MWASDT has the third best, and WASDP has the worst. In the test set, all the statistics of
MWASDT and MWASDT WR are identical. MWASDT has the best R2, and LSVM has the worst. On
MAPE, SMAPE, MAE, RMSE and MASE, MWASDT has the lowest values, and EBT has the highest
values. Also, MWASDT has the best MDA, and WASDP, EGPR and EBT have the worst. Overall, the
MWASDT has the third best statistics on the training set and the best statistics on the test set.

Regarding India’s GDP, the neural network models’ statistics on the training and test sets are pre-
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sented in Table 2. In the training set, MWASDT has the best R2, and WASDP has the worst. On
MAPE, SMAPE, MAE, RMSE and MASE, MWASDT has the lowest values, and EBT has the highest
values. Also, EGPR, MWASDT and LSVM have the best MDA, and EBT has the worst. In the test
set, MWASDT WR has the best R2, MWASDT has the fourth best, and EBT has the worst. On MAPE,
SMAPE, MAE, RMSE and MASE, MWASDT has the lowest values, and WASDP has the highest
values. Also, LSVM and MWASDT WR have the best MDA, MWASDT has the second best, and EBT
has the worst. Overall, the MWASDT has the best statistics on the training and test sets.

In the situations of the U.S., U.K. and France, we can see that these nations have steadily rising
GDPs and have fully recovered from the 2007–2008 and COVID–19 financial crises. We can observe
that whereas Italy and Greece have entirely recovered from the COVID-19 financial crisis, they have
not yet fully recovered from the 2007–2008 financial crisis. India’s GDP is extremely volatile, and
while it entirely recovered from the financial crisis of 2007–2008, it has not yet fully recovered from
the COVID–19 financial crisis. We are able to forecast the rising trend in these countries’ GDPs using
neural networks, but we are unable to predict with high accuracy how the COVID-19 financial cri-
sis will impact GDP. The tests’ execution aids in these participating nations’ economic forecasts. In
order to predict a country’s future economic activity, economists use the most recent data available.
Although the specifics of these reports vary, their fundamental methodology is the same: They forecast
an economy’s growth using economic indicators and models. Most central banks, global rating agen-
cies, and organizations like the International Monetary Fund (IMF) carry out this kind of examination.
However, they are crucial for investors because they aid in their decision as to whether or not to invest
in a particular nation.

Altogether, the MWASDT model did a great job resolving forecasting issues, which is consistent
with the information shown in Table 2. The GDPs of the U.S., Italy, France, and India, where the
accuracy of the MWASDT on the test set grew considerably in comparison to MWASDT WR, clearly
demonstrated the effectiveness of (3.2). The performance of the MWASDT compared to traditional
neural network approaches is quite competitive or even better when forecasting tasks are considered as
regression problems.

6. Conclusions

This paper introduced a novel 3-layer feed-forward WASD neural network for time-series forecast,
termed MWASDT. The findings of six experiments on GDP forecast show that the MWASDT model
outperforms the WASDP model and some of the most cutting-edge regression models available through
MATLAB’s regression learner app. As a result, it has been demonstrated that the MWASDT model
is an excellent substitute to MATLAB’s regression neural network models for forecasting the GDP. It
is important to mention that due to limitations placed by the WDD procedure, which is used by the
MWASDT algorithm, only time-series data can be used as input to train and test the MWASDT neural
network model. Another limitation of the MWASDT model is that it was only designed to be used for
time-series forecasting tasks. Its proper adjustment and application to diverse time-series forecasting
issues across many scientific domains will therefore be the subject of future research.

AIMS Mathematics Volume 8, Issue 10, 24254–24273.



24271

Use of AI tools declaration

The authors declare they have not used artificial intelligence (AI) tools in the creation of this article.

Acknowledgments

This work was supported by the Ministry of Science and Higher Education of the Russian Federa-
tion (Grant No. 075-15-2022-1121).

Conflict of interest

The authors declare no conflict of interest.

References

1. G. N. Kouziokas, A new W-SVM kernel combining PSO-neural network transformed vector
and Bayesian optimized SVM in GDP forecasting, Eng. Appl. Artif. Intel., 92 (2020), 103650.
https://doi.org/10.1016/j.engappai.2020.103650
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