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Abstract: This paper investigates an unreliable M/G(P1, P2)/1 retrial queueing system with a woking
vacation. An arriving customer successfully starts the first phase service with the probability α or the
server fails with the probability ᾱ. Once failure happens, the serving customer is taken to the orbit.
The failed server is taken for repair with some delay. Once the repair is comleted, the server is ready
to provide service once again. In this background, we implemented the working vacation scenario.
During working vacation, the service will be provided at a slower rate, rather than entirely stopping
the service. The supplementary variable method was adopted to find the orbit and system lengths.
Additionally, some unique results and numerical evaluations have been presented.
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1. Introduction

Retrial queues with unreliable servers are extensively researched in a variety of fields,
such as telephone switching systems, call centers, computer communication and networks of
telecommunication, automobile industries, and manufacturing systems. Here, the retrial queuing
model is reflected in customer service requirements. For example, if arriving customers found the
server to be unavailable, busy, under repair, and on working vacation, they would have joined a retrial
group. This term is called an orbit and requests the service at a later time.

This model played in a wide range in the field of telecommunications and engineering literary
works, as well as in mathematical queueing theory. Falin [1] surveyed and discussed the considerable
aspects of retrial queues. Falin and Templeton [2] dealt with more information about retrial queues.
Artalejo and Gomez-Corral [3], Gomez-Corral and Antonio [4], Artalejo and Jesus [5] have deeply
delved into the historical background of retrial queues. Mohamed [6] investigated an unreliable retrial
model and framed it with a single server, customer balking, and server undergoing breakdown and
repairs. Gao and Zhang [7] focused on retrial queues linked with orbital search and applied them
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to call centers. Mohammadi et al. [8] considered an M/G/1 retrial model which is embedded with k
consecutive heterogeneous service processes and vacations ran under the transient state. Sztrik et al. [9]
looked at a unique retrial queues system that implied a two-way communication mechanism because
the models suddenly gained a lot of attention.

The servicing pattern played an important role in the modelling of retry waits. There have been
studies conducted on a variety of services such as including phase services, optional services, multi-
optional services, and single services. The service is provided to the customer as either a single phase
or more than a single phase. In a network communication scenario, the data transmission process
has two phases: In the first phase, the availability of the communication channels is checked, and in
the second phase, the packets are transmitted to the destination. Varalakshmi et al. [10] took a look
an M/G/1 retrial model where the server provided service in two phases: single vacation, Bernoulli
feedback, and starting failure. JintingWang and FangWang [11] focused on retrial queues with finite
sources along with two phases of services. Alem et al. [12] made a comparison of their model M/G/1
retrial queue and their M/M/1 retrial queue with two ways of communication together with n types of
outgoing calls. Boualem et al. [13] conducted a thorough analysis of the single server classical retrial
queue with repeated tries and customers receive service in two phases.

When the server is idle, the visiting (new or returning) customers face the starting failure. If
the server launched with a predefined probability, the server would immediately be reported to the
customer. If it is not, the server would be a failure. Ke [14] established a model which covered starting
failure and disruption of service. Krishnakumar et al. [15] covered a retrial queue of a single server
by including feedback and startup errors. Lan and Tang [16] made a study on a discrete-time Geo/G/1
retrial queueing system for the probabilistic preemptive priority, together with server startup errors and
replacements in the repair with balking. Rajadurai et al. [17] carried out a wide discussion on server
retrial queueing architecture with multiple working vacations. Arivudainambi et al. and Ammar et
al. [18, 19] discussed starting failure together with a working breakdown, displaying how the normal
busy server becomes insufficient due to disasters occurring at any time and causing the major server to
fail. When a server failed, the server was taken for repair and operated at a lower speed (known as the
working breakdown period) during the repair period.

The server experiences failure at any time. If it happened, the repair work could not start
immediately and the arbitrary amount of time is known as the delay time. After accomplishing the
repair work the server instantly resumes serving the customer. Choudhury and Ke [20] invented a
batch arrival retrial queue with a combination of Bernoulli vacation and delayed repair. Liu et al. [21]
exhibited a multi-server retrial system that included a delayed reboot. Kumar et al., Saggou et al. and
Wang et al. [22–24] revealed more aspects of the delay in the retrial queueing system.

Due to some of the reasons, such as the limited lifespan of the server, outside interference, server
malfunctions and startup failures, the servers malfunctioned. Therefore, it required maintenance during
a slow period or busy period since so much research is carried out on problematic servers and repairs are
conducted in stages from the perspectives of queueing and dependability. Rajadurai et al. [25] released
the queueing publications by using the retrial queueing system with repeated working vacations and
vacation interruptions, where the server tends to fail and repair. Kulkarni and Choi, Abdolllahi and
Salei Rad [26, 27] provided a detailed background for failures and repairs of servers. Gao et al. [28]
made a provocative investigation on the retrial queue, which included two different sorts of breakdowns
and delays to repair in the M/G/1 retrial queue.
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In the vacation queuing system, the server fully ceased to provide service while on vacation,
whereas, in the working vacation scheme, the server continued to provide service at a reduced
rate rather than ceasing altogether. Markovian queueing systems with working vacations have
been researched to use in the area of computer systems, communication networks and production
management. Bouchentouf et al. [29] made a study on the model of the multi-station unreliable
machine by combining the policy of a working vacation and patient customers. Jeyakumar and
Senthilnathen [30] also discussed bulk arrival and service with a multi-working vacation model.
Manoharan and Majid [31] made a detailed study on multiple working vacations for the multi-server
model. Murugan and Vijayalakshmi [32] worked on multiple working vacations for a single server
with bulk arrival retrial queueing model, whereas Gupta and Kumar [33] denoted a wide investigation
on working vacation together with servers vacation interruption for M/M/1retrial queueing model.
Bouchentouf [34] made an interesting investigation on a machine model that had multi stations along
with a working vacation. Zhang [35] considered the Markovian queues which contained unreliable
servers undergoing working vacation.

An examination of these papers reveals that the retrial queueing model with a single server
delivering two stages of important services, commencing starting failure, delayed repair, and working
vacation have been studied. Our goal is to explore the performance of such a single-server queue
with simultaneous two different phases of service, both the phases are mandatory. At the start, the
customer’s failure in the service area was taken to the orbit. When the server failed, it was taken for
repair with some delay. Additionally, service will be delivered in a slower way during vacation, in
light of the growing demands for flexible service in practice. It has uses in many different industries,
including wired networks, email systems, local area networks, client-server networks, web servers,
inventory and production, maintenance, and quality control, among others.

We have established our analysis by the following segments. The first segment 1 is supported by
an introduction with a review of recent literature and Section 2 provides a pictorial and a mathematical
representation of the model with a practical justification. Section 2.1 of the paper analyses a study
on the system’s steady state probability. Section 2.2 engages with the solution for the framed model
under steady state. Certain measures of performance are given in Section 2.3. Additional evaluations
are covered in Section 2.4. In Section 3, important numerical examples, along with a 2D and 3D
representation, are created from the model’s mathematical results. Section 4 deals with the conclusion.

2. Model’s pictorial and mathematical representations

In addition to commencing failure, delayed repair, and two crucial phase services with a working
vacation, the framed M/G(P1, P2)/1 retrial queueing model was also taken into consideration. The
following are extensive instructions for using the framed model.

Figure 1 shows the diagram of M/G(P1, P2)/1 model.
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Figure 1. Diagram of M/G(P1, P2)/1 model.

• The arrival process: Customers enter the system in a Poisson stream with an arrival rate of λ̂,
(λ̂ > 0). The arriving customer receives service right away after discovering the server to be open
and then exits the system.
• The retrial process: If a customer arrives and discovers the server is with another customer or has

left to provide low-cost service while on vacation, they are whisked away to a crowd of backed-up
customers known as the orbit from that service region. The request for service is then repeated
later. The primary customer enters the orbit by discovering the server to be busy and then tries
for repeated requests of service later on at a random time, on the basis of the “First Come, First
Out” discipline. It is also assumed that the waiting area is not vacant. It was assumed that the
inter-retrial periods follow a general random variable Â along with the distribution function Â(t),
and its related density function θ(x̃) with an equivalent Laplace-Stieltijes transform (LST) Â∗(Φ)
govern the time between trials.
• Regular two phase services: If a new customer or a customer from an orbit who is taking a

trial sees the server to be free at a typically busy period, they must engage the server to become
busy. Once the service has started successfully, the customer will be served right away with
the requested service with a specific probability of α; on the other hand, failure will start right
away with a probability of ᾱ. The customer who is in the service area is taken to orbit after the
beginning failure occurs. After an arbitrary amount of time, the orbited customer accepts their
request. During the period of the regular service time, both the phase of the essential service was
provided by only one server having a general distribution with rate µb, µsb for the first phase P1

and second phase P2, which follows a random variable L̂b and ˆ̂Rb, respectively, with probability
distribution function L̂b(t), and ˆ̂Rsb(t) with Laplace-Stieltjes transforms L̂∗b(Φ) and ˆ̂R∗b(Φ), provided
that the first and second moments are E(L̂b), E( ˆ̂Rb) and E(L̂2

b), E( ˆ̂R2
b), respectively.

• The process of working vacation (WV): When the server discovers that the orbit is empty,
they promptly take a working holiday. The server’s rate of service is low during the working
vacation period, which is indicated by µv; accomplishments made on the spot during the vacation

AIMS Mathematics Volume 8, Issue 10, 24196–24224.



24200

period, followed by a random variable through Ŵv with a probability distribution function Ŵv(t)
and Laplace-Stieltjes transforms Ŵ∗

v (Φ), provided that the first and second moments are E(Ŵv),
E(Ŵ2

v ) respectively. Instead of entirely ceasing service throughout this process, a low rate of
service µv is provided to the arriving customer. When the low-cost service finishes, the switch
from µv to µb occurs.
• Delayed repair: The service will be stopped for a newly arriving customer at the event of a

breakdown, that customer will be moved to the orbit from the service station and retrial their
request after a certain period of time, while that server is not immediately scheduled for repair but
is issued a delay in repair. This process is followed by a random variable Ê f , together with the
probability distribution provided by Ê f (t) and the Laplace-Stieltjes transforms Ê∗f (Φ), provided
that the first and second moments are E(Ê f ), E(Ê2

f ) respectively.
• Repair process: The service will be stopped for newly arriving customers at the moment of a

breakdown, and that customer will be moved to the orbit from the service station before starting
their requests after a random period of time, while that server is immediately scheduled for repair.
Then the random variable Ŝ f is then used and the probability distribution is provided by Ŝ f (t)
and the Laplace-Stieltjes transform Ŝ ∗f (Φ), provided that the first and second moments are E(Ŝ f ),
E(Ŝ 2

f ), respectively.
Inter-arrival time, first and second-phase service during the typical busy season, low service rate,
and delays in repair time are all regarded as independent of one another. Numerous stochastic
methods are intertwined with this system .

Practical justification
Customer support ticketing system: The customer service ticketing system is one of the most
significant pieces of software used by top service providers and customer support operations. Teams
may manage and keep track of customer concerns with these tools, all in a very coordinated and
cooperative way. The ticket system centralises all client communications via email, web forms,
phone, video, social media, SMS, and chat. The banking, insurance, automobile, utility, e-commerce,
software, telecommunications, and other industries all use ticketing systems. When customers
submitted support tickets, their arrival can be modelled as a Poisson process. The system may
experience starting failures due to technical issues or overloaded servers. The support tickets went
through a two-phase service: In the first phase (P1), the tickets are assigned to a support representative,
and in the second phase (P2), the representative addressed the issue and provided a resolution. If
the representative is busy, the tickets are stored in a buffer(orbit) and retried later. The system may
also experience delays in repairing any technical problems that arise, and a repair process is initiated
to restore the system to an operational status. We have established that this work encompasses two
crucial service phases, commencing with starting failure, and including a working vacation.

2.1. An investigation on steady state probability of the system

Equations of differential difference under steady state for the framed structure were thought through
by including additional variables such as elapsed time for retrial, service, working vacation, and
delayed repair. Now, the system’s and orbit’s customer numbers, along with the server’s current
condition probability generating function (PGF) are acquired.
Stability conditions: By the time of steady state, it was assumed that when x̃ = 0, Â(0) = 0, Â(∞) =
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1, L̂b(0) = 0, L̂b(∞) = 1, ˆ̂Rb(0) = 0, ˆ̂Rb(∞) = 1, Ŵv(0) = 0, Ŵv(∞) = 1, Ê f (0) = 0, Ê f (∞) = 1,
Ŝ f (0) = 0, and Ŝ f (∞) = 1 are continuous, by which, the conditional rate of completion for retrial, first
phase service, second phase service, working vacation, delayed repair and for repair are given by the
following:
The hazard rate θ(x̃) is assigned for retrial of Â(x̃) : θ(x̃) =

dÂ(x̃)
1−Â(x̃)

;

The hazard rate µb(x̃) is assigned for first phase service of L̂b(x̃) : µb(x̃) =
dL̂b(x̃)

1−L̂b(x̃)
;

The hazard rate µsb(x̃) is assigned for second phase service of ˆ̂Rb(x̃): µsb(x̃) =
d ˆ̂Rb(x̃)

1− ˆ̂Rb(x̃)
;

The hazard rate µv(x̃) is assigned for lower rate service of Ŵv(x̃): µv(x̃) =
dŴv(x̃)

1−Ŵv(x̃)
;

The hazard rate η(x̃) is assigned for delayed repair of Ê f (x̃): η(x̃) =
dÊ f (x̃)

1−Ê f (x̃)
; and

The hazard rate ϑ(x̃) is assigned for repair of Ŝ f (x̃): ϑ(x̃) =
dŜ f (x̃)

1−Ŝ f (x̃)
.

Apart from these, Â0(t), L̂0
b(t), ˆ̂R0

b(t), Ŵ0
v (t), Ê0

f (t), Ŝ
0
f (t) were taken to be elapsed retrial times, elapsed

first phase service, elapsed second phase service, elapsed lower rate service, elapsed delay and repairs
respectively. Furthermore, introducing the random variables,

∆̌(t) =



0 The server seems to be in idle.
1 The server seems to be busy with the first phase service.
2 The server seems to be busy with second phase service.
3 The server seems to be in working vacation period and server is busy.
4 The server seems to be on delay.
5 The server seems to be on regular repair period.

Moreover, we see that the system’s state at time t can be characterised by the bivariate Markov
process

{
∆̌(t), Ṅ(t); t ≥ 0

}
; here, ∆̌(t) represents the state of the server as (0, 1, 2, 3, 4, 5) based on

the server’s idle, P1, P2, WV, delay to repair and repair at the time t, and Ṅ(t) denotes the available
customer’s number in the orbit.

To work with a Markov process where ∆̌(t) > 0, we introduce five more variables: if ∆̌(t) = 0 and
Ṅ(t) > 0, then Â0(t) represents the elapsed retrial time; if ∆̌(t) = 1 and Ṅ(t) > 0, then L̂0

b(t) represents
the elapsed first phase service time during normal busy period at time t; if ∆̌(t) = 2 and Ṅ(t) > 0,
then ˆ̂R0

b(t) represents the elapsed second phase service time during normal busy period at time t; if
∆̌(t) = 3 and Ṅ(t) > 0, then Ŵ0

v (t) represents the elapsed working vacation time at time t; if ∆̌(t) = 4
and Ṅ(t) > 0, then Ê0

f (t) represents the elapsed delayed time to repair during normal busy period at
time t; and if ∆̌(t) = 5 and Ṅ(t) > 0, then Ŝ 0

f (t) reflects the amount of time spent making repair during
a typical busy time t.
Ergodicity of the designed dynamic model
Let {tn; n ∈ 1, 2, ...} represent a sequence of time for either the end of a service or the completion of a
vacation. The random vector’s sequence Zn =

{
∆̌(tn,+), Ṅ(tn,+)

}
was shown as the embedded Markov

chain for the suggested retrial queueing paradigm. Additionally S = {0, 1, 2, 3, 4, 5} × Ṅ is its state
space.
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Theorem 1. The embedded Markov chain
{
Zn; n ∈ Ṅ

}
is ergodic if and only if ρ < Â∗(λ̂), where ρ =

ᾱ + αλ̂(E(L̂b) + E( ˆ̂Rb)) + ᾱλ̂(E(Ê f ) + E(Ŝ f )) .

Proof. It is strong where the chain
{
Zn; n ∈ Ṅ

}
seems to be not only irreducible, but also an aperiodic

Markov chain.

Here, Foster’s criterion, according to which an irreducible and an aperiodic Markov chain are
only ergodic when a non-negative function exists, was used to demonstrate the necessary condition
for ergodicity. Let it be f (ú), ú ∈ Ṅ and ∈> 0 were the mean drift, which is given to be
χú = E

[
( f (z̃n+1) + f (z̃n) | z̃n = ú))

]
appears to be a finite measure for all values of ú ∈ Ṅ and χú ≤ − ∈;

the same is true for all values of ú ∈ Ṅ, omitting theoretically for a certain finite number ú. Under this
circumstance, let us deliberate the function f (ú) = ú. Then we have

χú =

ᾱ + αλ̂(E(L̂b) + E( ˆ̂Rb)) + ᾱλ̂(E(Ê f ) + E(Ŝ f )) − Â∗(λ̂), ú = 1, 2, . . .

ᾱ + αλ̂(E(L̂b) + E( ˆ̂Rb)) + ᾱλ̂(E(Ê f ) + E(Ŝ f )) − 1, ú = 0

It is clear that the necessary condition and the sufficient condition for ergodicity were given by an
inequality ᾱ + αλ̂(E(L̂b) + E( ˆ̂Rb)) + ᾱλ̂(E(Ê f ) + E(Ŝ f )) < Â∗(λ̂).
For proving the necessary condition, as professed in Sennott et al. [40], the Markov chain {Zn; n ∈ N}
gratifies Kaplan’s form, specifically χú < ∞ for all the values of ú ≥ 0 and for the existence ú0 ∈ N
such that χú ≥ 0 for all the datas of ú > ú0. In this case, Kaplan’s condition appears to be satisfied
because of the existence of ă such that ϕŭ,ú = 0 for ŭ > 0 and ú < ŭ− ă, where R = (ϕŭ,ú) was taken as a
one step transition matrix of {Zn; n ≥ 1}. Then, it was taken that the inequality ᾱ+αλ̂(E(L̂b) + E( ˆ̂Rb)) +

ᾱλ̂(E(Ê f ) + E(Ŝ f )) ≥ Â∗(λ̂) indicates the non-ergodicity of the Markov chain. �

For the Markov process {Zn; n ∈ N}, the probability was defined by
Υ0(t) = P

{
∆̌(t) = 0, X(t) = 0

}
also the probability densities are given by

Υn(x̃, t)dx̃ = P
{
∆̌(t) = 0, X(t) = n, x̃ ≤ Â0(t) < x̃ + dx̃

}
, t ≥ 0, x̃ ≥ 0, and n ≥ 1

Ψn,b(x̃, t)dx̃ = P
{
∆̌(t) = 1, X(t) = n, x̃ ≤ L̂0

b(t) < x̃ + dx̃
}
, t ≥ 0, x̃ ≥ 0 and n ≥ 0

Πn,b(x̃, t)dx̃ = P
{
∆̌(t) = 2, X(t) = n, x̃ ≤ ˆ̂R0

b(t) < x̃ + dx̃
}
, t ≥ 0, x̃ ≥ 0 and n ≥ 0

fn,v(x̃, t)dx̃ = P
{
∆̌(t) = 3, X(t) = n, x̃ ≤ Ŵ0

v (t) < x̃ + dx̃
}
, t ≥ 0, x̃ ≥ 0 and n ≥ 0

D́n(x̃, t)dx̃ = P
{
∆̌(t) = 4, X(t) = n, x̃ ≤ Ê0

f (t) < x̃ + dx̃
}
, t ≥ 0, x̃ ≥ 0 and n ≥ 1

Ωn(x̃, t)dx̃ = P
{
∆̌(t) = 4, X(t) = n, x̃ ≤ S 0

f (t) < x̃ + dx̃
}
, t ≥ 0, x̃ ≥ 0 and n ≥ 1

In the parts that follow, the probabilities listed were used.

2.1.1. Mathematical notations and probability used for the model

Υn(x̃, t) : At time t, the probability of accurately n customers present in the orbit at the time of retrial
along with the x̃ amount elapsed retrial time.
Ψn,b(x̃, t): At time t, the probability of accurately n customers present in the orbit at the time of first
phase service along with x̃ amount of elapsed service time for the first phase.
Πn,b(x̃, t): At time t, the probability of accurately n customers present in the orbit at the time of second
phase of service along with x̃ amount of elapsed service time for the second phase.
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fn,v(x̃, t): At time t, the probability of accurately n customer present in the orbit at the time of working
vacation along with x̃ amount of elapsed low rate service time.
D́n(x̃, t): At time t, the probability of accurately n customer present in the orbit at the time of delay for
repair along with x̃ amount of elapsed delayed time.
Ωn(x̃, t): At time t, the probability of accurately n customer present in the orbit at the time of repair
along with x̃ amount of elapsed repair time.

We can establish t ≥ 0, x̃ ≥ 0 and n ≥ 1 because of the assumption of the satisfaction of the stability
condition. Additionally, we present the random variable as follows:

Υ0 = lim
t→∞

Υ0(t), n ≥ 0; Υn(x̃) = lim
t→∞

Υn(x̃, t), n ≥ 1; Ψn,b(x̃) = lim
t→∞

Ψn,b(x̃, t), n ≥ 0;

Πn,b(x̃) = lim
t→∞

Πn,b(x̃, t), n ≥ 0; fn,v(x̃) = lim
t→∞
fn,v(x̃, t), n ≥ 0;

D́n(x̃) = lim
t→∞

D́n(x̃, t), n ≥ 1; Ωn(x̃) = lim
t→∞

Ωn(x̃, t), n ≥ 1.

The system’s governing equations
Depending on the assumptions made above, the differential difference equations for the model was
designed with the help of the following supplementary variable technique:

λ̂Υ0 =

∫ ∞

0
f0,v(x̃)µv(x̃)dx̃ (2.1)

d
dx̃
Υn(x̃) + (λ̂ + θ(x̃))Υn(x̃) =0, n ≥ 1 (2.2)

d
dx̃
Ψ0,b(x̃) + (λ̂ + µb(x̃))Ψ0,b(x̃) =0, n = 0 (2.3)

d
dx̃
Ψn,b(x̃) + (λ̂ + µb)(x̃)Ψn,b(x̃) =λ̂Ψn−1,b(x̃), n ≥ 1 (2.4)

d
dx̃

Π0,b(x̃) + (λ̂ + µsb(x̃))Π0,b(x̃) =0, n = 0 (2.5)

d
dx̃

Πn,b(x̃) + (λ̂ + µsb(x̃))Πn,b(x̃) =λ̂Πn−1,b(x̃), n ≥ 1 (2.6)

d
dx̃
f0,v(x̃) + (λ̂ + µv(x̃))f0,v(x̃) =0, n = 0 (2.7)

d
dx̃
fn,v(x̃) + (λ̂ + µv(x̃))fn,v(x̃) =λ̂fn−1,v(x̃), n ≥ 1 (2.8)

d
dx̃

D́n(x̃) + (λ̂ + d́(x̃))fn(x̃) =λ̂D́n−1(x̃), n ≥ 1 (2.9)

d
dx̃
Ω0(x̃) =0, n = 0 (2.10)

d
dx̃
Ωn(x̃) + (λ̂ + v(x̃))Ωn(x̃) =λ̂Ωn−1(x̃), n ≥ 1. (2.11)

The stationary probability solutions for this model occur as non negative iff ᾱ + αλ̂(E(L̂b) + E( ˆ̂Rb)) +

ᾱλ̂(E(E f ) + λ̂E(Ŝ f )) < A∗(λ̂), [possible under the ergodicity condition only].
The system’s steady state boundary conditions when x̃ = 0,

Υn(0) =

∫ ∞

0
fn,v(x̃)µv(x̃)dx̃ +

∫ ∞

0
Πn,b(x̃)µsb(x̃)dx̃ +

∫ ∞

0
Ωn(x̃)v(x̃)dx̃, n ≥ 1 (2.12)
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Ψ0,b(0) = αλ̂Υ0 + α

∫ ∞

0
Υ1(x̃)θ(x̃)dx̃, n = 0 (2.13)

Ψn,b(0) = αλ̂

∫ ∞

0
Υn(x̃)dx̃ + α

∫ ∞

0
Υn+1(x̃)θ(x̃)dx̃, n ≥ 1 (2.14)

Π0,b(0) =

∫ ∞

0
Ψ0,b(x̃)µb(x̃)dx̃, n = 0 (2.15)

Πn,b(0) =

∫ ∞

0
Ψn,b(x̃)µb(x̃)dx̃, n ≥ 1 (2.16)

f0,v(0) =

∫ ∞

0
Π0,b(x̃)µsb(x̃)dx̃, n = 0 (2.17)

f0,n(0) = 0, n = 0 (2.18)

D́1(0) = ᾱ

∫ ∞

0
Υ1(x̃)θ(x̃)dx̃ + ᾱλ̂Υ0, n ≥ 1 (2.19)

D́n(0) = ᾱ

∫ ∞

0
Υn(x̃)θ(x̃)dx̃ + ᾱλ̂

∫ ∞

0
Υn−1(x̃)dx̃, n ≥ 2 (2.20)

Ωn(0) =

∫ ∞

0
D́n(x̃)η(x̃)dx̃, n ≥ 1. (2.21)

The normalising condition is given by

Υ0 +

∞∑
n=0

∫ ∞

0
Υn(x̃)dx̃ +

∞∑
n=0

∫ ∞

0
Ψn,b(x̃)dx̃ +

∞∑
n=0

∫ ∞

0
Πn,b(x̃)dx̃ +

∞∑
n=0

∫ ∞

0
fn,v(x̃)dx̃

+

∞∑
n=0

∫ ∞

0
Ωn(x̃)dx̃ = 0. (2.22)

2.2. The Solution for the model under steady state

Here, the technique used for the retrial queueing model to reach its steady state solution is
probability generating function (PGF). The generating functions used for solving the overhead
equations are defined as follows: |z̃|≤ 1,

Υ(x̃, z̃) =

∞∑
n=1

Υn(x̃)z̃n; Υ(0, z̃) =

∞∑
n=1

Υn(0)z̃n; Ψb(x̃, z̃) =

∞∑
n=0

Ψn,b(x̃)z̃n;

Ψb(0, z̃) =

∞∑
n=0

Ψn,b(0)z̃n; Πb(x̃, z̃) =

∞∑
n=0

Πn,b(x̃)z̃n; Πb(0, z̃) =

∞∑
n=0

Πn,b(0)z̃n;

fv(x̃, z̃) =

∞∑
n=0

fn,v(x̃)z̃n; fv(0, z̃) =

∞∑
n=0

Gn,v(0)z̃n; D́(x̃, z̃) =

∞∑
n=1

D́n(x̃)z̃n;

D́(0, z̃) =

∞∑
n=1

D́n(0)z̃n; Ω(x̃, z̃) =

∞∑
n=1

Un(x̃)z̃n; Ω(0, z̃) =

∞∑
n=1

Un(0)z̃n.

Theorem 2. For the number of customers present in an orbit during the state of server, 0, 1, 2, 3, 4
and 5 denotes the server to be idle, engaged in normal first phase and second phase service, working
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vacation, delay and repair, respectively. The generating functions are given byΥ(z̃), Ψb(z̃),Πb(z̃),fv(z̃),
D́(z̃), Ω(z̃), where Υ0 was determined by the normalizing condition

Υ0 + Υ(1) + Ψb(1) + Πb(1) +fv(1) + D́(1) + Ω(1) = 1

Υ0 =

Ŵ∗
v (λ̂)

{
Â∗(λ̂) − (ᾱ + αλ̂(E(L̂b) + E( ˆ̂Rb)) + ᾱλ̂(E(Ê f ) + λ̂E(Ŝ f )))

}
αA∗(λ̂)Ŵ∗

v (λ̂) + αλ̂E(Ŵv)
.

Proof. Multiply the Eqs (2.2)–(2.11) with the appropriate powers for z̃; then, by summing over for n,
the succeeding set of partially differential equations were obtained:

∂Υn(x̃, z̃)
∂x̃

+ (λ̂ + θ(x̃))Υ(x̃, z̃) =0 (2.23)

∂Ψb(x̃, z̃)
∂x̃

+ (λ̂ − λ̂z̃ + µb(x̃))Ψb(x̃, z̃) =0 (2.24)

∂Πb(x̃, z̃)
∂x̃

+ (λ̂ − λ̂z̃ + µsb(x̃))Πb(x̃, z̃) =0 (2.25)

∂fv(x̃, z̃)
∂x̃

+ (λ̂ − λ̂z̃ + µv(x̃))fv(x̃, z̃) =0 (2.26)

∂D́(x̃, z̃)
∂x̃

+ (λ̂ − λ̂z̃ + η(x̃))D́(x̃, z̃) =0 (2.27)

∂Ω(x̃, z̃)
∂x̃

+ (λ̂ − λ̂z̃ + ϑ(x̃))Ω(x̃, z̃) =0. (2.28)

Above partial differential Eqs (2.23)–(2.28) were solved as follows

Υ(x̃, z̃) = Υ(0, z̃)e−λ̂x̃(1 − Â(x̃)) (2.29)

Ψb(x̃, z̃) = Ψb(0, z̃)e−λ̂(1−z̃)x̃(1 − L̂b(x̃)) (2.30)

Πb(x̃, z̃) = Πb(0, z̃)e−λ̂(1−z̃)x̃(1 − ˆ̂Rb(x̃)) (2.31)

fv(x̃, z̃) = fv(0, z̃)e−λ̂(1−z̃)x̃(1 − Ŵv(x̃)) (2.32)

D́(x̃, z̃) = D́(0, z̃)e−λ̂(1−z̃)x̃(1 − Ê f (x̃)) (2.33)

Ω(x̃, z̃) = Ω(0, z̃)e−λ̂(1−z̃)x̃(1 − Ŝ f (x̃)). (2.34)

Similarly solving for (2.12)–(2.21), we obtain the following:

Υ(0, z̃) =

∫ ∞

0
fv(x̃, z̃)µv(x̃)dx̃ +

∫ ∞

0
Πb(x̃, z̃)µsb(x̃)dx̃ +

∫ ∞

0
Ω(x̃, z̃)v(x̃)dx̃ (2.35)

− λ̂Υ0 −f0,v(0)

Ψb(0, z̃) =
α

z̃

∫ ∞

0
Υ(x̃, z̃)θ(x̃)dx̃ + αλ̂

∫ ∞

0
Υ(x̃, z̃)dx̃ + αλ̂Υ0 (2.36)

Πb(0, z̃) =

∫ ∞

0
Ψb(x̃, z̃)µb(x̃)dx̃ (2.37)

fv(0, z̃) = f0,v(0) (2.38)
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D́(0, z̃) = ᾱ

∫ ∞

0
Υ(x̃, z̃)θ(x̃)dx̃ + ᾱλ̂z̃

∫ ∞

0
Υ(x̃, z̃)dx̃ + z̃ᾱλ̂Υ0 (2.39)

f0,v(0) =
λ̂Υ0

Ŵ∗
v (λ̂)

(2.40)

fv(0, z̃) =
λ̂Υ0

Ŵ∗
v (λ̂)

(2.41)

Πb(0, z̃) = L̂∗b(λ̂(1 − z̃))
[
α

z̃
(z̃ + (1 − z̃)A∗(λ̂))Υ(0, z̃) + αλ̂Υ0

]
(2.42)

fv(0, z̃) = Πb(0, z̃)L̂∗b(λ̂(1 − z̃)) (2.43)

D́(0, z̃) = ᾱλ̂z̃Υ0 + ᾱ(z̃ + (1 − z̃)Â∗(λ̂))Υ(0, z̃) (2.44)

Ωv(0, z̃) = D́(0, z̃)E∗f (λ̂(1 − z̃)). (2.45)

Obtaining Eqs (2.31), (2.32), and (2.34) to (2.35) and then (2.41), (2.42) and (2.45) we get the following
equation:

Υ(0, z̃) =
λ̂z̃Υ0

Ŵ∗
v (λ̂)


(1 − Ŵ∗

v (λ̂(1 − z̃))) + Ŵ∗
v (λ̂)(1 − αL̂∗b(λ̂(1 − z̃)) ˆ̂R∗b(λ̂(1 − z̃)))

− ᾱz̃Ê∗f (λ̂(1 − z̃))Ŝ ∗f (λ̂(1 − z̃))

(αL̂∗b(λ̂(1 − z̃)) ˆ̂R∗b(λ̂(1 − z̃))) + ᾱz̃Ê∗f (λ̂(1 − z̃))Ŝ ∗f (λ̂(1 − z̃))
(z̃ + (1 − z̃)Â∗(λ̂)) − z̃


. (2.46)

Similarly, substitute Eq (2.29) and then (2.46) in (2.36), we get the following equation:

Ψb(0, z̃) =
λ̂αΥ0

Ŵ∗
v (λ̂)


(1 − Ŵ∗

v (λ̂(1 − z̃)))(z̃ + (1 − z̃)Â∗(λ̂)) + Â∗(λ̂)Ŵ∗
v (λ̂)(1 − z̃)

(αL̂∗b(λ̂(1 − z̃)) ˆ̂R∗b(λ̂(1 − z̃))) + ᾱz̃Ê∗f (λ̂(1 − z̃))Ŝ ∗f (λ̂(1 − z̃))
(z̃ + (1 − z̃)Â∗(λ̂)) − z̃


. (2.47)

Similarly, substitute Eq (2.46) in (2.42), we get the following equation:

Πb(0, z̃) =
λ̂αΥ0L̂∗b(λ̂(1 − z̃))

Ŵ∗
v (λ̂)


(1 − Ŵ∗

v (λ̂(1 − z̃)))(z̃ + (1 − z̃)Â∗(λ̂)) + Â∗(λ̂)Ŵ∗
v (λ̂)(1 − z̃)

(αL̂∗b(λ̂(1 − z̃)) ˆ̂R∗b(λ̂(1 − z̃))) + ᾱz̃Ê∗f (λ̂(1 − z̃))Ŝ ∗f (λ̂(1 − z̃))
(z̃ + (1 − z̃)Â∗(λ̂)) − z̃


. (2.48)

Taking Eq (2.46) to the Eq (2.44), we move to the following equation:

D́(0, z̃) =
λ̂ᾱz̃Υ0

Ŵ∗
v (λ̂)

 (1 − Ŵ∗
v (λ̂(1 − z̃)))(z̃ + (1 − z̃)Â∗(λ̂)) + Â∗(λ̂)Ŵ∗

v (λ̂)(1 − z̃)

(αL̂∗b(λ̂(1 − z̃)) ˆ̂R∗b(λ̂(1 − z̃))) + ᾱz̃Ŝ ∗f (λ̂(1 − z̃)))(z̃ + (1 − z̃)Â∗(λ̂)) − z̃

 . (2.49)
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Similarly, substitute Eq (2.49) in (2.45), we get the following equation:

Ω(0, z̃) =
λ̂ᾱz̃Υ0Ê∗f (λ̂(1 − z̃))

Ŵ∗
v (λ̂)


(1 − Ŵ∗

v (λ̂(1 − z̃)))(z̃ + (1 − z̃)Â∗(λ̂)) + Â∗(λ̂)Ŵ∗
v (λ̂)(1 − z̃z̃)

(αL̂∗b(λ̂(1 − z̃)) ˆ̂R∗b(λ̂(1 − z̃))) + ᾱz̃Ê∗f (λ̂(1 − z̃))Ŝ ∗f (λ̂(1 − z̃))
(z̃ + (1 − z̃)Â∗(λ̂)) − z̃


.

(2.50)

The limiting probability generating functions are established by utilizing the aforementioned equations
from (2.47) to (2.49) in (2.29) to (2.34):

Υ(x̃, z̃) =
λ̂z̃Υ0

Ŵ∗
v (λ̂)



(1 − Ŵ∗
v (λ̂(1 − z̃))) + Ŵ∗

v (λ̂)(1 − αL̂∗b(λ̂(1 − z̃))
ˆ̂R∗b(λ̂(1 − z̃))) − ᾱz̃Ê∗f (λ̂(1 − z̃))Ŝ ∗f (λ̂(1 − z̃))

(αL̂∗b(λ̂(1 − z̃)) ˆ̂R∗b(λ̂(1 − z̃)) + ᾱz̃Ê∗f (λ̂(1 − z̃))
Ŝ ∗f (λ̂(1 − z̃)))(z̃ + (1 − z̃)Â∗(λ̂)) − z̃


e−λ̂x̃(1 − Â(x̃)) (2.51)

Ψb(x̃, z̃) =
λ̂αP0

Ŵ∗
v (λ̂)


(1 − Ŵ∗

v (λ̂(1 − z̃)))(z̃ + (1 − z̃)Â∗(λ̂))+
Â∗(λ̂)Ŵ∗

v (λ̂)(1 − z̃)

(αL̂∗b(λ̂(1 − z̃)) ˆ̂R∗b(λ̂(1 − z̃))) + ᾱz̃Ê∗f (λ̂(1 − z̃))
Ŝ ∗f (λ̂(1 − z̃))(z̃ + (1 − z̃)Â∗(λ̂)) − z̃


e−λ̂(1−z̃)x̃(1 − Πb(x̃)) (2.52)

Πb(x̃, z̃) =
λ̂αΥ0L̂∗b(λ̂(1 − z̃))

Ŵ∗
v (λ̂)


(1 − Ŵ∗

v (λ̂(1 − z̃)))(z̃ + (1 − z̃)Â∗(λ̂))+
Â∗(λ̂)Ŵ∗

v (λ̂)(1 − z̃)

((αL̂∗b(λ̂(1 − z̃)) ˆ̂R∗b(λ̂(1 − z̃))) + ᾱz̃Ê∗f (λ̂(1 − z̃))
Ŝ ∗f (λ̂(1 − z̃)))(z̃ + (1 − z̃)Â∗(λ̂)) − z̃


e−λ̂(1−z̃)x̃(1 − ˆ̂Rb(x̃))

(2.53)

fv(x̃, z̃) =
λ̂Υ0

Ŵ∗
v (λ̂)

e−λ̂(1−z̃)x̃(1 − Ŵv(x̃)) (2.54)

D́(x̃, z̃) =
ᾱz̃λ̂Υ0

Ŵ∗
v (λ̂)


(1 − Ŵ∗

v (λ̂(1 − z̃)))(z̃ + (1 − z̃)Â∗(λ̂))+
Â∗(λ̂)Ŵ∗

v (λ̂)(1 − z̃)

((αL̂∗b(λ̂(1 − z̃)) ˆ̂R∗b(λ̂(1 − z̃))) + ᾱz̃Ê∗f (λ̂(1 − z̃))
Ŝ ∗f (λ̂(1 − z̃)))(z̃ + (1 − z̃)Â∗(λ̂)) − z̃


e−λ̂(1−z̃)x̃(1 − Ê f (x̃)) (2.55)

Ω(x̃, z̃) =
λ̂ᾱz̃Υ0Ê∗f (λ̂(1 − z̃))

Ŵ∗
v (λ̂)


(1 − Ŵ∗

v (λ̂(1 − z̃)))(z̃ + (1 − z̃)Â∗(λ̂))+
Â∗(λ̂)Ŵ∗

v (λ̂)(1 − z̃)

(αL̂∗b(λ̂(1 − z̃)) ˆ̂R∗b(λ̂(1 − z̃))) + ᾱz̃Ê∗f (λ̂(1 − z̃))
Ŝ ∗f (λ̂(1 − z̃))(z̃ + (1 − z̃)Â∗(λ̂)) − z̃


e−λ̂(1−z̃)x̃(1 − Ŝ f (x̃)).

(2.56)
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Focusing on the server states and orbit size marginal generating functions, the required probability
generating functions are turned with the help of the following:
Υ(z̃) =

∫ ∞
0
Υ(x̃, z̃)dx̃; Ψb(z̃) =

∫ ∞
0
Ψb(x̃, z̃)dx̃; Πb(z̃) =

∫ ∞
0

Πb(x̃, z̃)dx̃;
fb(z̃) =

∫ ∞
0
fb(x̃, z̃)dx̃; D́(z̃) =

∫ ∞
0

D́(x̃, z̃)dx̃; Ω(z̃) =
∫ ∞

0
Ω(x̃, z̃)dx̃.

Now, for the above Eqs (2.51) to (2.56) on integrating w.r.t x̃ and limiting with 0–∞, the essential
results are (2.57) to (2.62).

Υ(z̃) =
z̃Υ0(1 − Â∗(λ̂))

Ŵ∗
v (λ̂)


(1 − Ŵ∗

v (λ̂(1 − z̃))) + Ŵ∗
v (λ̂)(1 − αL̂∗b(λ̂(1 − z̃)) ˆ̂R∗b(λ̂(1 − z̃)))

− ᾱz̃Ê∗f (λ̂(1 − z̃))Ŝ ∗f (λ̂(1 − z̃))

(αL̂∗b(λ̂(1 − z̃)) ˆ̂R∗b(λ̂(1 − z̃))) + ᾱz̃Ê∗f (λ̂(1 − z̃))Ŝ ∗f (λ̂(1 − z̃)))
(z̃ + (1 − z̃)Â∗(λ̂)) − z̃


(2.57)

Ψb(z̃) =
αΥ0(1 − L̂∗b(λ̂(1 − z̃)))

Ŵ∗
v (λ̂)(1 − z̃)


(1 − Ŵ∗

v (λ̂(1 − z̃)))(z̃ + (1 − z̃)Â∗(λ̂)) + Â∗(λ̂)Ŵ∗
v (λ̂)(1 − z̃)

(αL̂∗b(λ̂(1 − z̃)) ˆ̂R∗b(λ̂(1 − z̃))) + ᾱz̃Ê∗f (λ̂(1 − z̃))Ŝ ∗f (λ̂(1 − z̃)))
(z̃ + (1 − z̃)Â∗(λ̂)) − z̃


(2.58)

Πb(z̃) =

αΥ0L̂∗b(λ̂(1 − z̃))

(1 − ˆ̂R∗b(λ̂(1 − z̃)))

Ŵ∗
v (λ̂)(1 − z̃)


(1 − Ŵ∗

v (λ̂(1 − z̃)))(z̃ + (1 − z̃)Â∗(λ̂)) + Â∗(λ̂)Ŵ∗
v (λ̂)(1 − z̃)

(αL̂∗b(λ̂(1 − z̃)) ˆ̂R∗b(λ̂(1 − z̃))) + ᾱz̃Ê∗f (λ̂(1 − z̃))Ŝ ∗f (λ̂(1 − z̃)))
(z̃ + (1 − z̃)Â∗(λ̂)) − z̃


(2.59)

fv(z̃) =
Υ0(1 − Ŵ∗

v (λ̂(1 − z̃)))

Ŵ∗
v (λ̂)(1 − z̃)

(2.60)

D́(z̃) =
ᾱz̃Υ0(1 − Ê∗b(λ̂(1 − z̃)))

Ŵ∗
v (λ̂)(1 − z̃)


(1 − Ŵ∗

v (λ̂(1 − z̃)))(z̃ + (1 − z̃)Â∗(λ̂)) + Â∗(λ̂)Ŵ∗
v (λ̂)(1 − z̃)

(αL̂∗b(λ̂(1 − z̃)) ˆ̂R∗b(λ̂(1 − z̃))) + ᾱz̃Ê∗f (λ̂(1 − z̃))Ŝ ∗f (λ̂(1 − z̃)))
(z̃ + (1 − z̃)Â∗(λ̂)) − z̃


(2.61)

Ω(z̃) =

ᾱz̃Υ0Ê∗f (λ̂(1 − z̃))
(1 − Ŝ ∗f (λ̂(1 − z̃)))

Ŵ∗
v (λ̂)(1 − z̃)


(1 − Ŵ∗

v (λ̂(1 − z̃)))(z̃ + (1 − z̃)A∗(λ̂)) + (1 − z̃)Â∗(λ̂)Ŵ∗
v (λ̂)

(αL̂∗b(λ̂(1 − z̃)) ˆ̂R∗b(λ̂(1 − z̃))) + ᾱz̃Ê∗f (λ̂(1 − z̃))Ŝ ∗f (λ̂(1 − z̃)))
(z̃ + (1 − z̃)Â∗(λ̂)) − z̃


.

(2.62)

By using the above equation, the only unknown Υ0 was eliminated as follows, which involves
normalising condition and by adjusting z̃ = 1:

Υ0 + Υ(1) + Ψb(1) + Πb(1) +fv(1) + D́(1) + Ω(1) = 1 (2.63)
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Υ0 =

Ŵ∗
v (λ̂)

{
Â∗(λ̂) − (ᾱ + αλ̂(E(L̂b) + E( ˆ̂Rb)) + ᾱλ̂(E(Ê f ) + λ̂E(Ŝ f )))

}
αÂ∗(λ̂)Ŵ∗

v (λ̂) + αλ̂E(Ŵv)
. (2.64)

�

Theorem 3. In order for the model to satisfy the stability criteria, ᾱ+αλ̂(E(L̂b) + E( ˆ̂Rb)) + ᾱλ̂(E(Ê f ) +

λ̂E(Ŝ f )) < Â∗(λ̂), If the server was idle, regularly busy on both the phase, lower rate service, delay and
on repair, then the probability of the stationary distribution customers number in the designed system
and in the orbit was determined by K(z̃) = Υ0 + Υ(z̃) + z̃Ψb(z̃) + z̃Πb(z̃) + z̃fv(z̃) + D́(z̃) + Ω(z̃) and
Θ(z̃) = Υ0 + Υ(z̃) + Ψb(z̃) + Πb(z̃) +fv(z̃) + D́(z̃) + Ω(z̃).

Proof. Now, by substituting the equations from (2.57) to (2.62) in Θ(z̃) = Υ0 + Υ(z̃) + Ψb(z̃) + Πb(z̃) +

fv(z̃) + D́(z̃) +Ω(z̃) and in K(z̃) = Υ0 + Υ(z̃) + z̃Ψb(z̃) + z̃Πb(z̃) + z̃fv(z̃) + D́(z̃) +Ω(z̃) we find the PGF
of the number of customers in the orbit and system finally the results are given by the following:

Θ(z̃) =Υ0


(α(1 − Ŵ∗

v (λ̂))(z̃ + (1 − z̃)Â∗(λ̂)) + αŴ∗
v (λ̂)Â∗(λ̂)(1 − z̃))

Ŵ∗
v (λ̂)((αL̂∗b(λ̂(1 − z̃)) ˆ̂R∗b(λ̂(1 − z̃))) + ᾱz̃Ê∗f (λ̂(1 − z̃))Ŝ ∗f (λ̂(1 − z̃)))

(z̃ + (1 − z̃)Â∗(λ̂)) − z̃


(2.65)

K(z̃) =Υ0


z̃(1 − Ŵ∗

v (λ̂(1 − z̃))) + α(1 − z̃)Ŵ∗
v (λ̂)Â∗(λ̂)L̂∗b(λ̂(1 − z̃)) ˆ̂R∗b(λ̂(1 − z̃))

− ᾱz̃(1 − Ŵ∗
v (λ̂(1 − z̃)))(z̃ + (1 − z̃)Â∗(λ̂))Ê∗f (λ̂(1 − z̃))Ŝ ∗f (λ̂(1 − z̃))

Ŵ∗
v (λ̂)((αL̂∗b(λ̂(1 − z̃)) ˆ̂R∗b(λ̂(1 − z̃))) + ᾱz̃Ê∗f (λ̂(1 − z̃))Ŝ ∗f (λ̂(1 − z̃)))

(z̃ + (1 − z̃)Â∗(λ̂)) − z̃


(2.66)

where Υ0 is given by Eq (2.64). �

The mean system size and the mean orbit size:
Under the steady state condition of the system, the mean and orbit size was given as follows:

(1) The mean number of customers in the orbit (L̂q) was obtained by differentiating Eq (2.65) with
respect to z̃, along by evaluating at z̃ = 1, we get L̂q:

L̂q = lim
z̃=1

{
d
dz̃
Θ(z̃)

}

L̂q =
2αλ̂E(Ŵv)(1 − Â∗(λ̂)) + αλ̂2E(Ŵ2

v )

2(αλ̂E(Ŵv) + αÂ∗(λ̂)Ŵ∗
v (λ̂))

+

αλ̂2(E(L̂2
b) + 2E(L̂b)E( ˆ̂Rb) + E( ˆ̂R2

b)) + ᾱλ̂2(E(Ŝ 2
f ) + E(E2

f ))

+ 2αλ̂(E(L̂b) + E( ˆ̂Rb))(1 − Â∗(λ̂))

2(Â∗(λ̂) − αλ̂(E(L̂b) + E( ˆ̂Rb)) + ᾱ(1 + λ̂(E(Ŝ f ) + E(Ê f )))

+

2ᾱλ̂(E(Ŝ f ) + E(Ê f )) + 2ᾱ(1 − Â∗(λ̂)) + 2ᾱλ̂(E(Ŝ f ) + E(Ê f ))(1 − Â∗(λ̂))
+ 2ᾱλ̂2(E(Ŝ f )E(Ê f ))

2(Â∗(λ̂) − αλ̂(E(L̂b) + E( ˆ̂Rb)) + ᾱ(1 + λ̂(E(Ŝ f ) + E(Ê f ))))
.
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(2) The mean number of customers in the system L̂s is given by differentiating Eq (2.66) with respect
to z̃, and then by evaluating z̃ = 1, we get L̂s:

L̂s = lim
z̃=1

{
d
dz̃

K(z̃)
}

L̂s =
2αλ̂Â∗(λ̂)Ŵ∗

v (λ̂)(E(L̂b) + E( ˆ̂Rb)) + 2λ̂E(Ŵv) + λ̂2E(Ŵ2
v )

2(αλ̂E(Ŵv) + αÂ∗(λ̂)Ŵ∗
v (λ̂))

−

2(ᾱλ̂E(Ŵv) + ᾱλ̂2E(Ŵv)(E(Ŝ f ) + E(Ê f )) + ᾱλ̂E(Ŵv)
+ ᾱλ̂E(Ŵv)(1 − Â∗(λ̂))) + ᾱλ̂2E(Ŵ2

v )

2(αλ̂E(Ŵv) + αÂ∗(λ̂)Ŵ∗
v (λ̂))

+

αλ̂2(E(L̂2
b) + 2(E(L̂b)E( ˆ̂Rb)) + E( ˆ̂R2

b)) + ᾱλ̂2(E(Ŝ 2
f )

+ 2(E(Ŝ f )E(Ê f )) + E(Ê2
f )) + 2αλ̂(E(Lb) + E( ˆ̂Rb))(1 − Â∗(λ̂))

2(Â∗(λ̂) − αλ̂(E(L̂b) + E( ˆ̂Rb)) − ᾱ(1 + λ̂(E(Ŝ f ) + E(Ê f ))))

+
2(ᾱλ̂(E(Ŝ f ) + E(Ê f )) + ᾱ(1 − Â∗(λ̂)) + ᾱλ̂(E(Ŝ f ) + E(Ê f ))(1 − Â∗(λ̂)))

2(A∗(λ̂) − αλ̂(E(L̂b) + E( ˆ̂Rb)) − ᾱ(1 + λ̂(E(Ŝ f ) + E(Ê f )))))
.

2.3. Performance measures

Some of the most important performance measures of this M/G/1 retrial queueing system are
derived in this section, which was subjected to the two-phase essential service with starting failure
along with working vacation under steady state; additionally, we derived the reliability analysis, mean
busy period and mean cycle and also orbit size distribution during the departure epoch of this proposed
model.
System state probabilities:

(1) The probability that the server is idle under steady state at the time of retrial was given by the
following:

Υ(1) =
Υ0(1 − Â∗(λ̂))

Ŵ∗
v (λ̂)

 λ̂E(Ŵv) + Ŵ∗
v (λ̂)(ᾱ + ᾱλ̂(E(Ŝ f ) + E(Ê f )) + αλ̂(E(L̂b) + E( ˆ̂Rb)))

A∗(λ̂) − (ᾱ + αλ̂(E(L̂b) + E( ˆ̂Rb)) + ᾱλ̂(E(Ŝ f ) + E(Ê f ))

 .
(2.67)

(2) The probability of the server to be busy on normal first phase service under the steady state was
given by the following:

Ψb(1) =
Υ0αλ̂E(L̂b)

Ŵ∗
v (λ̂)

 λ̂E(Ŵv) + Â∗(λ̂)Ŵ∗
v (λ̂)

Â∗(λ̂) − (ᾱ + αλ̂(E(L̂b) + E( ˆ̂Rb)) + ᾱλ̂(E(Ŝ f ) + E(Ê f ))

 . (2.68)

(3) The probability of the server to be busy on normal second phase service under the steady state was
given by the following:

Πb(1) =
Υ0αλ̂E( ˆ̂Rb)

Ŵ∗
v (λ̂)

 λ̂E(Ŵv) + Â∗(λ̂)Ŵ∗
v (λ̂)

Â∗(λ̂) − (ᾱ + αλ̂(E(L̂b) + E( ˆ̂Rb)) + ᾱλ̂(E(Ŝ f ) + E(Ê f ))

 . (2.69)
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(4) The probability under steady state of the server to be busy during working vacation period was
given by the following:

fv(1) =
Υ0λ̂E(Ŵv)

Ŵ∗
v (λ̂)

. (2.70)

(5) The probability under steady state of the server is delayed to repair at the time of normal busy
period was given by the following:

D́(1) =
Υ0ᾱλ̂E(Ê f )

Ŵ∗
v (λ̂)

 λ̂E(Ŵv) + Â∗(λ̂)Ŵ∗
v (λ̂)

Â∗(λ̂) − (ᾱ + αλ̂(E(L̂b) + E( ˆ̂Rb)) + ᾱλ̂(E(Ŝ f ) + E(Ê f ))

 . (2.71)

(6) The probability under steady state of the server is under repair at the time of normal busy period
was given by the following:

Ω(1) =
Υ0ᾱλ̂E(Ŝ f )

Ŵ∗
v (λ̂)

 λ̂E(Ŵv) + Â∗(λ̂)Ŵ∗
v (λ̂)

Â∗(λ̂) − (ᾱ + αλ̂(E(L̂b) + E( ˆ̂Rb)) + ᾱλ̂(E(S f ) + E(Ê f ))

 . (2.72)

(7) The expected time the customer spends in system (Ŵs) and in orbit (Ŵq) under the condition of
steady state, taken for the Little’s formula is as follows:

Ŵs =
L̂s

λ̂
. (2.73)

Ŵq =
L̂q

λ̂
. (2.74)

2.4. Additional evaluations

2.4.1. Reliability measure

When a server in the trial queueing system is unreliable, reliability measures will give the data
required for the system’s improvement. The following availability indicators are gathered in order to
validate and corroborate the model’s analytical findings. Unreliable servers in queuing systems require
measures of dependability to offer adequate data, which are necessary for system improvement. The
failure frequency and availability measures are obtained to explain the validity of the logical findings
of the framed model.

(1) The probability of the availability of the server under the steady state was occupied by either a
positive customer or by an idle period in which the steady state accessibility of the server was
considered as ∧v = 1 − limz̃→1 Ω(˜̃z) = 1 − Ω(1),

∧v =1 −
Υ0ᾱλ̂E(Ŝ f )

Ŵ∗
v (λ̂)


λ̂E(Ŵv) + Â∗(λ̂)Ŵ∗

v (λ̂)

Â∗(λ̂) −
(
ᾱ + αλ̂(E(L̂b) + E( ˆ̂Rb)) + ᾱλ̂(E(Ê f ) + E(Ŝ f ))

)
 .

The failure frequency during the steady state is gained as FΓ = ᾱΨ (1),

FΓ =ᾱ

 αΥ0(λ̂)E(L̂b)(λ̂E(Ŵv) + Â∗(λ̂)Ŵ∗
v (λ̂))

Ŵ∗
v (λ̂)(Â∗(λ̂) − αλ̂(E(L̂b) + E( ˆ̂Rb)) − ᾱ(1 + λ̂E(Ŝ f )))

 .
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2.4.2. Mean busy period and the mean busy cycle

Let’s assume that, under steady state conditions, E(Tb) and E(TC) represent the anticipated lengths
of the busy period and busy cycle, respectively. The following conclusions are directly obtained by
using the argument of an alternating renewal process, which results in the following:

Υ0 =
E(T0)

E(Tb) + E(T0)
; E(Tb) =

1
λ̂

{
1
Υ0
− 1

}
; E(Tc) =

1
λ̂Υ0

= E(Tb) + E(T0);

where T0 is the amount of time the system has spent in an empty state. Due to the fact that the
interval between two customers’ arrival times is exponentially distributed along the parameter λ̂, then
E(T0) = 1

λ̂
. Using the aforementioned necessary outcomes, we obtain the following anticipated steady

state probability:

E(Tb) =
1
λ̂


αλ̂(E(Ŵv) + Ŵ∗

v (λ̂)(E(L̂b) + E( ˆ̂Rb))) + ᾱŴ∗
v (λ̂)

(
1 + λ̂(E(Ŝ f ) + E(Ê f ))

)
− Â∗(λ̂)Ŵ∗

v (λ̂)(1 − α)

Ŵ∗
v (λ̂)

(
Â∗(λ̂) − αλ̂(E(L̂b) + E( ˆ̂Rb)) − ᾱ(1 + λ̂E(Ŝ f ))

)


E(Tc) =
1
λ̂Υ0

=
1
λ̂


αÂ∗(λ̂)Ŵ∗

v (λ̂) + αλ̂E(Ŵv)

Ŵ∗
v (λ̂)

(
Â∗(λ̂) − αλ̂(E(L̂b) + E( ˆ̂Rb)) − ᾱ(1 + λ̂(E(Ê f ) + E(Ŝ f )))

)
 .

2.4.3. Size of an orbit distribution during departure epoch

PASTA’s (Poisson arrival see time average) argument states that the orbit must have n customers
immediately following a disappearance if and only if the system contained n + 1 customers prior to the
disappearance. Assume that if you specify the likelihood that there are n customers in the orbit at the
time of departure L̂+

n ; n ≥ 0, n, then there will be n customers, with the normalizing constant K0:

L̂+
n = K0

∫ ∞

0
fn,v(x̃)µv(x̃)dx̃ + K0

∫ ∞

0
Πn,b(x̃)µsb(x̃)dx̃ + K0

∫ ∞

0
Ωn(x̃)v(x̃)dx̃; n ≥ 1. (2.75)

Corollary 1. The quantity of customers in orbit during the departure epoch whose probability
generating function was estimated by the following:

L̂+
n = K0

∫ ∞

0
fn,v(x̃)µv(x̃)dx̃ + K0

∫ ∞

0
Πn,b(x̃)µsb(x̃)dx̃ + K0

∫ ∞

0
Ωn(x̃)v(x̃)dx̃; n ≥ 1 (2.76)

L̂D(z̃) =
K0λ̂P0

Ŵ∗
v (λ̂)


Ŵ∗

v (λ̂(1 − z̃))

 (αL̂∗b(λ̂(1 − z̃)) ˆ̂R∗b(λ̂(1 − z̃))) + ᾱz̃E∗f (λ̂(1 − z̃))
Ŝ ∗f (λ̂(1 − z̃))(z̃ + (1 − z̃)Â∗(λ̂)) − z̃


(αL̂∗b(λ̂(1 − z̃)) ˆ̂R∗b(λ̂(1 − z̃))) + ᾱz̃E∗f (λ̂(1 − z̃))Ŝ ∗f (λ̂(1 − z̃))

(z̃ + (1 − z̃)Â∗(λ̂)) − z̃
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+
K0λ̂P0

Ŵ∗
v (λ̂)


αL̂∗b(λ̂(1 − z̃)) ˆ̂R∗b(λ̂(1 − z̃))(1 − Ŵ∗

v (λ̂(1 − z̃)))(z̃ + (1 − z̃)Â∗(λ̂))+
Â∗(λ̂)Ŵ∗

v (λ̂)(1 − z̃)

(αL̂∗b(λ̂(1 − z̃)) ˆ̂R∗b(λ̂(1 − z̃))) + ᾱz̃E∗f (λ̂(1 − z̃))Ŝ ∗f (λ̂(1 − z̃))
(z̃ + (1 − z̃)Â∗(λ̂)) − z̃


. (2.77)

Proof. Eq (2.75) was multiplied with appropriate powers for z̃; taking summation as n = 0, 1, 2, 3, ...,
the following equation was obtained:

L̂D(z̃) = K0

∫ ∞

0
fv(x̃, z̃)µv(x̃)dx̃ + K0

∫ ∞

0
Πb(x̃, z̃)µsb(x̃)dx̃ + K0

∫ ∞

0
Ω(x̃, z̃)v(x̃)dx̃; n ≥ 1.

Using Eqs (2.54) to (2.57) and (2.60) to (2.63) during the departure epoch number of customer in the
orbit whose generating function was generated. By letting limit z̃→ 1 in (2.76), the unknown constant
K0 was determined as follows:

K0 =
αÂ∗(λ̂)Ŵ∗

v (λ̂) + αλ̂E(Ŵv)

λ̂(Â∗(λ̂) − αλ̂(E(L̂b) + E( ˆ̂Rb)) − ᾱ(1 + λ̂E(Ŝ f )) + (λ̂E(Ŵv) + Â∗(λ̂)Ŵ∗
v (λ̂)))

.

2.4.4. Decomposition of the system stochastically and some special cases

Server vacations are included in the stochastic decomposition of unreliable retrial queueing types,
which have been widely recognized. An important finding from these analyses is that, in this system,
the number of customers at any one time is distributed among the sum of two independent random
variables, one is the number of customers in a comparable regular queueing system at a random point in
time. The second random variable is consumed by several probabilistic explanations, and the particular
situations depend on the intended vacation. It has been found that several of the unreliable retrial
queues exhibit stochastic decomposition. Let χ(z̃) denote the generating function for the number of
customers in both two phases or on vacation in the queueing model at random intervals of time under
steady state, φ(z̃) denote the generating function for the number of customers in the orbit during the
idle, or under repair of the server at a random point of time and Zs(z̃) be the generating function for the
number of customers of the given system, which is to be decomposed. The stochastic decomposition
law was then expressed as Zs(z̃) = φ(z̃) × χ(z̃). Now, the law of decomposition had been established,
it was applied to the retrial model and analyses were performed. The decomposition for a two-phase
queueing system was provided by the following:

Zs(z̃) =χ(z̃) × φ(z̃) (2.78)

φ(z̃) =
Υ0 + Υ(z̃) + D́(z̃) + Ω(z̃)
Υ0 + Υ(1) + D́(1) + Ω(1)

(2.79)

χ(z̃) =
Ψb(z̃) + Πb(z̃) +fv(z̃)
Ψb(1) + Πb(1) +fv(1)

. (2.80)
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Substituting the Eqs (2.64), (2.57), (2.61), (2.62) also (2.67), (2.71), (2.72) in (2.79), we obtain the
following:

φ(z̃) =



Ŵ∗
v (λ̂)(1 − z̃)

(
αL∗b(λ̂(1 − z))R∗b(λ̂(1 − z̃)) + ᾱz̃E∗f (λ̂(1 − z̃))S ∗f (λ̂(1 − z̃))

)
− ᾱz̃(1 − Ŵ∗

v (λ̂(1 − z̃)))E∗f (λ̂(1 − z̃))S ∗f (λ̂(1 − z̃))(z̃ + (1 − z̃)Â∗(λ̂))

Ŵ∗
v (λ̂)(1 − z̃)

(
(αL∗b(λ̂(1 − z̃))R∗b(λ̂(1 − z̃)) + ᾱz̃E∗f (λ̂(1 − z̃))S ∗f (λ̂(1 − z̃)))

)
(z̃ + (1 − z̃)Â∗(λ̂)) − z̃



+


−z̃(1 − z̃)Â∗(λ̂)Ŵ∗

v (λ̂)
(
α + ᾱE∗f (λ̂(1 − z̃))S ∗f (λ̂(1 − z̃))

)
− αz̃(1 − Ŵ∗

v (λ̂(1 − z̃)))(z̃ + (1 − z̃)Â∗(λ̂)) + z̃(1 − Ŵ∗
v (λ̂(1 − z̃)))

Ŵ∗
v (λ̂)(1 − z̃)

(
(αL∗b(λ̂(1 − z̃))R∗b(λ̂(1 − z̃)) + ᾱz̃E∗f (λ̂(1 − z̃))S ∗f (λ̂(1 − z̃)))

)
(z̃ + (1 − z̃)Â∗(λ̂)) − z̃



×


Ŵ∗

v (λ̂)
{
Â∗(λ̂) −

(
ᾱ + αλ̂(E(L̂b) + E( ˆ̂Rb))

)
+ ᾱλ̂

(
E(Ŝ f ) + E(Ê f )

)}
λ̂E(Ŵv)(1 − Â∗(λ̂)) − αλ̂Ŵ∗

v (λ̂)Â∗(λ̂)(E(L̂b) + E( ˆ̂Rb)) + ᾱλ̂2E(Ŵv)(E(Ŝ f ) + E(Ê f ))
+ αŴ∗

v (λ̂)Â∗(λ̂)


.

Substituting the Eqs (2.58),(2.59), (2.60) also (2.68), (2.69), (2.70) in (2.80), we obtain the following:

χ(z̃) =



(
1 − Ŵ∗

v (λ̂(1 − z̃))
)

(z̃ + (1 − z̃)Â∗(λ̂))(α + ᾱz̃E∗f (λ̂(1 − z̃))S ∗f (λ̂(1 − z̃)))+

αŴ∗
v (λ̂)Â∗(λ̂)(1 − z̃)(1 − L∗b(λ̂(1 − z̃))R∗b(λ̂(1 − z̃))) − z̃(1 − Ŵ∗

v (λ̂(1 − z̃)))

Ŵ∗
v (λ̂)(1 − z̃)

(
(αL∗b(λ̂(1 − z̃))R∗b(λ̂(1 − z̃)) + ᾱz̃E∗f (λ̂(1 − z̃))S ∗f (λ̂(1 − z̃)))

)
(z̃ + (1 − z̃)Â∗(λ̂)) − z̃


×


Ŵ∗

v (λ̂)
{
Â∗(λ̂) −

(
ᾱ + αλ̂(E(L̂b) + E( ˆ̂Rb))

)
+ ᾱλ̂

(
E(Ŝ f ) + E(Ê f )

)}
αλ̂Â∗(λ̂)Ŵ∗

v (λ̂)
(
E(L̂b) + E( ˆ̂Rb)

)
+ λ̂E(Ŵ∗

v (λ̂)(1 − z̃))Â∗(λ̂) − ᾱ
(
1 + λ̂(E(Ŝ f ) + E(Ê f ))

)
 .

2.5. Discussion

Special cases
Some of the exceptional instances of our concept are examined in this section.
Case 1: If E( ˆ̂Rb) = 0 and E(Ê f ) = 0, our model is reduced to a single server retrial queue with a single
phase service along with a working vacation and starting failure. In this case, the results are in good
agreement with Gowsalya and Arivudainambi [36]. When the probability generating function of the
number of jobs in the system is K(z̃), the idle probability P0, the probability generating function of the
number of jobs in the orbit is H(z̃), and the mean system size is Ls, and the mean orbit size is Lq:

Υ0 =
Ŵ∗

v (λ̂)
{
Â∗(λ̂) − (ᾱ + αλ̂(E(L̂b)) + ᾱλ̂(λ̂E(Ŝ f )))

}
αÂ∗(λ̂)Ŵ∗

v (λ̂) + αλ̂E(Ŵv)
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Lq =
2αλ̂E(Ŵv)(1 − Â∗(λ̂)) + αλ̂2E(Ŵ2

v )

2(αλ̂E(Ŵv) + αÂ∗(λ̂)Ŵ∗
v (λ̂))

+
αλ̂2(E(L̂2

b)) + ᾱλ̂2(E(Ŝ 2
f )) + 2αλ̂(E(L̂b)

2(Â∗(λ̂) − αλ̂(E(L̂b)) + ᾱ(1 + λ̂(E(Ŝ f )))

+
2ᾱλ̂(E(Ŝ f )) + 2ᾱ(1 − A∗(λ̂)) + 2ᾱλ̂(E(Ŝ f ))(1 − A∗(λ̂))

2(A∗(λ̂) − αλ̂(E(L̂b)) + ᾱ(1 + λ̂E(Ŝ f )))

Ls =
2αλ̂Â∗(λ̂)Ŵ∗

v (λ̂)(E(L̂b)) + 2λ̂E(Ŵv) + λ̂2E(Ŵ2
v )

2(αλ̂E(Ŵv) + αÂ∗(λ̂)Ŵ∗
v (λ̂))

−
2(ᾱλ̂E(Ŵv) + ᾱλ̂2E(Ŵv)(E(Ŝ f )) + ᾱλ̂E(Ŵv) + ᾱλ̂E(Ŵv)(1 − Â∗(λ̂))) + ᾱλ̂2E(Ŵ2

v )

2(αλ̂E(Ŵv) + αÂ∗(λ̂)Ŵ∗
v (λ̂))

+
αλ̂2(E(L̂2

b)) + ᾱλ̂2(E(Ŝ 2
f ) + E(E2

f )) + 2αλ̂E(L̂b)

2(Â∗(λ̂) − αλ̂(E(L̂b) + E( ˆ̂Rb)) − ᾱ(1 + λ̂E(Ŝ f )))
+

2(ᾱλ̂(E(Ŝ f )) + ᾱ(1 − Â∗(λ̂)) + ᾱλ̂(E(Ŝ f ))

2(Â∗(λ̂) − αλ̂E(L̂b) − ᾱ(1 + λ̂E(Ŝ f ))))
.

Case 2: If E( ˆ̂Rb) = 0, E(Ê f ) = 0, α = 1 the framed model was shrunk to a single server retrial queueing
system through a single phase service along with low working rate vacation. Here, K(z̃) denotes the
generating function for the customer’s number in the framed system, Υ0, represents the probability of
idleness, whereas Θ(z̃) represents generating function for customer’s number in the orbit, average size
of the system was denoted by L̂s, and the average size of the orbit was denoted by L̂q. As a result, the
final results coincide with the results of Arivudainambi et al. [37]:

Υ0 =
Ŵ∗

v (λ̂)
{
Â∗(λ̂) − (λ̂(E(L̂b)))

}
Â∗(λ̂)Ŵ∗

v (λ̂) + λ̂E(Ŵv)

Lq =
2λ̂E(Ŵv)(1 − Â∗(λ̂)) + λ̂2E(Ŵ2

v )

2(λ̂E(Ŵv) + Â∗(λ̂)Ŵ∗
v (λ̂))

+
λ̂2(E(L̂2

b)) + 2λ̂(E(L̂b)

2(Â∗(λ̂) − λ̂(E(L̂b))

Ls =
2λ̂Â∗(λ̂)Ŵ∗

v (λ̂)(E(L̂b)) + 2λ̂E(Ŵv) + λ̂2E(Ŵ2
v )

2(λ̂E(Ŵv) + Â∗(λ̂)Ŵ∗
v (λ̂))

+
λ̂2(E(L̂2

b)) + E(Ê2
f )) + 2λ̂E(L̂b)

2(Â∗(λ̂) − λ̂(E(L̂b) + E( ˆ̂Rb)))
.

Case 3: If E( ˆ̂Rb) = 0, E(Ê f ) = 0, α = 1, Â∗(λ̂) → 1, the framed model was shrunk to a single server
retrial queueing system with only one phase service along with low working rate vacation. Here, K(z̃)
denotes the generating function for the customer’s number in the framed system, Υ0 represents the
probability of idleness, average size of the system was denoted by L̂s. As a result, the final results
coincide with the results of Zang and Hou [38]:

Υ0 =
Ŵ∗

v (λ̂)
{
1 − (λ̂(E(L̂b)))

}
Ŵ∗

v (λ̂) + λ̂E(Ŵv)

Lq =
λ̂2E(Ŵ2

v )

2(λ̂E(Ŵv) + Ŵ∗
v (λ̂))

+
λ̂2(E(L̂2

b)) + 2λ̂(E(L̂b)

2(1 − λ̂(E(L̂b))

Ls =
2λ̂Ŵ∗

v (λ̂)(E(L̂b)) + 2λ̂E(Ŵv) + λ̂2E(Ŵ2
v )

2(λ̂E(Ŵv) + Ŵ∗
v (λ̂))

+
λ̂2(E(L̂2

b))

2(1 − λ̂(E(L̂b)))
.
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Case 4: If E( ˆ̂Rb) = 0, E(Ê f ) = 0, E(Ŵv) = 0, α = 1, Â∗(λ̂) → 1 and Ŵ∗
v (λ̂) = 1 the framed model

was condensed to M/G/1 queueing system through single phase service. Here, the generating function
of system’s size K(z̃), together with idle probability Υ0, and average number in the system L̂s are
simplified as follows, which holds with Gross and Harris’s [39] P − K formula:

Υ0 =1 − (λ̂(E(L̂b)))

Ls =λ̂(E(L̂b)) +
λ̂2(E(L̂2

b))

2(1 − λ̂(E(L̂b)))
.

3. Numerical illustrations

The results of the model were investigated with the help of the software MATLAB, for learning
the outcome of performance appearances by fluctuating the values of parameters λ̂, µb, µsb, µv, ϑ, θ, α

and ᾱ on the system. Without loss of generality, it has been assumed that the exponential distribution
whose density function f (x̃) = ve−vx̃, x̃ > 0, were imposed over the times on retrial, the first phase,
second phase service, working vacation and on a repair. The parameters’ arbitrary values are selected
in a way that they satisfy the stability requirement. Probability’s attributes were deliberated through
tables and through figures.

Table 1 displays the raises of retrial rate (θ), probability that the server is idle P0 rises as well as the
ρ and the average orbital and system sizes, Lq and Ls, decline along with the corresponding waiting
times Wq and Ws for the values of µb = 5, µsb = 10, µv = 2, η = 3, ϑ = 10, λ̂ = 0.3, α = 0.5. According
to Table 2, as the rate for lower speed services (µv) increases, the server’s idle time P0 increases along
with the ρ, the average orbital size Lq and its waiting time Wq drop, whereas system sizes Ls, and its
associated waiting times Ws, increase for the values of θ = 0.5, µb = 5, µsb = 10, η = 3, ϑ = 10, λ̂ =

0.3, α = 0.5.
As seen in Table 3, by increasing the normal service rate (µb), it reflects an increase of ρ and

probability of the server idle P0, whereas there is a drop in the average orbital size Lq, system sizes Ls

and its respective waiting time Wq and Ws owing to the values of θ = 0.5, µv = 2, µsb = 10, η = 3, ϑ =

10, λ̂ = 0.3, α = 0.5. From Table 4, it is clear that when the repair rate (ϑ) continues to increase, ρ
and probability of the server’ idle P0 also increases. By the time the average orbital size Lq, system
sizes Ls and its respective waiting time Wq and Ws are significantly reduced according to the values of
θ = 0.5, µv = 2, µsb = 10, η = 3, λ̂ = 0.3, µb = 5, α = 0.5.

Table 1. Significant effect of the retrial rate(θ) on ρ, P0, Lq,Wq, Ls,Ws.

θ P0 ρ Lq Wq Ls Ws

5 0.7588 0.3682 0.7215 2.4051 0.5334 1.7781
7.5 0.7787 0.3839 0.6181 2.0603 0.4923 1.6411
10 0.7887 0.3921 0.5687 1.8958 0.4730 1.5767

12.5 0.7947 0.3970 0.5398 1.7994 0.4618 1.5392
15 0.7987 0.4003 0.5209 1.7362 0.4544 1.5147

17.5 0.8015 0.4027 0.5074 1.6915 0.4492 1.4975
20 0.8037 0.4045 0.4975 1.6582 0.4454 1.4847
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Table 2. Consequences of lower speed service rates (µv) for ρ, P0, Lq,Wq, Ls,Ws.

µv P0 ρ Lq Wq Ls Ws

5 0.3050 0.0991 40.5937 135.8015 20.3088 67.6960
7.5 0.3150 0.1010 40.5651 80.4371 20.3198 67.7328
10 0.3202 0.1019 40.5515 66.6293 20.3259 67.7531

12.5 0.3233 0.1025 40.5435 60.3627 20.3298 67.7660
15 0.3254 0.1029 40.5383 56.7856 20.3324 67.7748

17.5 0.3269 0.1032 40.5346 54.4728 20.3344 67.7813
20 0.3280 0.1034 40.5319 52.8548 20.3358 67.7862

Table 3. Impact of normal service rates (µb) on ρ, P0, Lq,Wq, Ls,Ws.

µb ρ P0 Lq Wq Ls Ws

5 0.0913 0.2633 40.7404 135.8015 20.2775 67.5915
7.5 0.0826 0.2382 24.1311 80.4371 11.9571 39.8570
10 0.0783 0.2257 19.9888 66.6293 9.8781 32.9270

12.5 0.0757 0.2182 18.1088 60.3627 8.9334 29.7781
15 0.0739 0.2132 17.0357 56.7856 8.3937 27.9791

17.5 0.0727 0.2096 16.3418 54.4728 8.0446 26.8152
20 0.0717 0.2069 15.8564 52.8548 7.8002 26.0006

Table 4. Effects of repair rates (ϑ) on ρ, P0, Lq,Wq, Ls,Ws.

ϑ ρ P0 Lq Wq Ls Ws

5 0.0652 0.1881 42.8804 142.9348 21.3175 71.0582
7.5 0.0739 0.2132 24.5591 81.8637 12.1611 40.5370
10 0.0783 0.2257 19.9888 66.6293 9.8781 32.9270

12.5 0.0809 0.2332 17.9143 59.7142 8.8421 29.4738
15 0.0826 0.2382 16.7300 55.7666 8.2509 27.5029

17.5 0.0839 0.2418 15.9642 53.2140 7.8686 26.2287
20 0.0848 0.2445 15.4284 51.4282 7.6012 25.3373

Figure 2 indicates that an increase in the first phase service (µb) and retrial rate (θ) mirrors an
increase in the system’s idle state (Υ0). Figure 3 illustrates how the rate of P1 (µb) and repair rate (ϑ)
rise along with the system’s idle state (Υ0). Figure 4 reveals that when the system’s idle state (Υ0)
increases, so too do the retrial rate (θ) and repair rate (ϑ). Figure 5 shows that on increase the arrivals
λ̂ together with the rate of repairs (ϑ) increases and this duplicates the lengthening of the queue (Ls).
Figure 6 indicates that when the rate of arrivals (λ̂) increases together with the rate of repairs, (ϑ)
increases and this duplicates the lengthening of the queue (Lq). Figure 7 indicates that when the rate
of trials (θ) increases, the rate of repairs (ϑ) increases and this duplicates the lengthening of the system
(Ls). Figure 8 clearly shows that while the repair rate (ϑ) increases, the system’s idle state (Υ0) also
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increases gradually and the system’s length (Ls), queue length (Lq) and waiting time (Wq) continue to
decrease. Figure 9 demonstrates that when the retrial rate (θ) increases, the length of the system and
queue (Lq, Ls) as a whole and the waiting time Wq for the model continue to decrease. This replication
of the increase in the idle state (Υ0) is done by the system’s idle state.

Figure 2. Effects of first phase service (µb) and retrial rate (θ) on system’s idle state (Υ0).

Figure 3. Effects of P1 (µb) and repair rate (ϑ) on system’s idle state (Υ0).
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Figure 4. Effects of system’s idle state (Υ0) on retrial rate (θ) and repair rate (ϑ).

Figure 5. Effects of the arrivals (λ̂) and repairs (ϑ) on the length of the system (Ls).

Figure 6. Effects of rate of arrivals (λ̂) and rate of repairs (ϑ) on length of the queue (Lq).
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Figure 7. Effects of rate of trials (θ) and rate of repairs (ϑ) on length of the system (Ls).

Figure 8. Effects of repair rate (ϑ) and the system’s idle state (Υ0) on system’s length Ls,
queue length (Lq) and waiting time (Wq).

Figure 9. Effects of retrial rate (θ) on the length of the system and queue (Lq, Ls), the waiting
time Wq, and on idle state (Υ0).
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4. Conclusions

Through this evaluation, we looked at a single server retrial queueing system with two phases
of essential service, delayed repair under a working vacation policy, and a busy server that was
vulnerable to starting failure and delayed for repair. The conditions that are required and sufficient
for the system to be stable are attained. The numerical illustrations used to validate the analytical
conclusions may be used to create the outputs in a variety of real-life scenarios such as customer
support ticketing system, wired networks, email systems, LAN and client-server communication,
inventory and production, maintenance and quality control, etc,. The supplementary variable technique
was adopted to find the probability generating functions for the numbers of customers in the system
when it is free, busy, working on vacation, delayed, and under repair. We acquired some significant
system performance metrics. The explicit formulae for the typical orbital and system queue lengths
have been procured. To explore the effects of the system characteristics, some numerical examples
and a stochastic decomposition were analyzed towards the end. The investigation’s innovation lies in
the addition of a server’s starting failure, and being delayed for repair when retrial queues are present
with varied working vacation policies. The inspiration for this approach came from a variety of real-
time systems, such as computer and communication networks where messages are handled by a single
server while adhering to a vacation interruption and working vacation policy.
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