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Abstract: Rough set theory is a method of information processing for database systems. The
neutrosophic matrix is a generalization of the fuzzy matrix, especially in handling indeterminacy
situations. The concept of matrix theory and its energy in the neutrosophic environment help to
determine the value of the uncertain matrix. In this paper, we correlate the rough set theory with
the neutrosophic matrix theory to introduce the rough neutrosophic matrix (RNM). In this structure,
lower and upper approximation neutrosophic matrices are used to deal with uncertain situations. We
demonstrate that the given matrix plays a different role in decision-making situations and defined
the proposed matrix’s determinant, adjoint, algebraic properties and operations. Finally, derived the
ranking function for a rough neutrosophic matrix’s energy. The new multi-criteria decision-making
(MCDM) approach was presented with the ranking formula, which was utilized to rank the alternatives,
and numerical examples were provided to show how the proposed matrix and its energy could be
applied to an MCDM problem.
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1. Introduction

Zadeh [1] initially introduced fuzzy sets, fuzzy membership functions, and fuzzy logic in 1965.
Pawlak [2, 3] first proposed the concept of a rough set in 1982. Its idea is the upper and lower
approximations of a set, a pair of sets that approximate sets. In this case, those approximations are
based on the equivalence relation. He connects the fuzzy set concept with the rough set concept in
1985. The concepts of fuzzy rough sets and rough set approaches for imperfect information systems
were introduced in 1990 and 1998, respectively [4, 5]. Smarandache [6, 7] introduced the
neutrosophic set in 1998. He developed the ideas of neutrosophic sets and logic to address the
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problem of indeterminacy specifically. Additionally, he developed single, interval, and multi-valued
neutrosophic sets, as well as hesitant and dual hesitant neutrosophic sets.

Neutrosophic set and rough set theory will both be effective strategies for dealing with partial,
ambiguous, uncertain, and inaccurate data. In 2014, the rough neutrosophic set was first proposed by
Broumi et al. [8]. In this study, they described the basic neutrosophic sets and how they function. The
interval valued neutrosophic rough set was subsequently proposed in 2015 [9]. The same year,
Mondal and Pramanik [10] demonstrated a crude grey relational analysis-based approach for
neutrosophic MADM. This study defines the rough neutrosophic decision matrix and applies it to the
resolution of an MCDM problem. A rough neutrosophic field was the subject of several different
proposals in 2017 [11, 12]. They investigated MCDM in rough single-valued neutrosophic sets, rough
neutrosophic multisets, and rough neutrosophic sets with coefficient correlation. The innovative
multi-granulation neutrosophic rough set over single-valued and its applications were discussed by
Bo et al. [13] in 2018. The same year, a rough neutrosophic set was employed in medical diagnostics
by Samuel and Narmadhagnanam [14] The use of medical diagnostics to determine the patient’s care
is covered in this paper. Zhang et al. [15] released a paper with work on medical conditions focusing
on single-valued neutrosophic indeterminate rough multisets in two universes. Pi-distance of rough
neutrosophic sets for medical diagnosis was published in 2019 by Samuel et al. [16]. The goal of the
research is to use a rough neutrosophic set to assess the patient’s condition and establish a casual link
between the sickness and their symptoms. The concepts of neutrosophic single-valued rough sets,
neutrosophic soft sets with rough set theory and incorporating topology [17, 18] will be developed
further in 2021. As a result, the rough set is significant in each area of the neutrosophic field. In 2022,
Subha et al. [19] introduce the idea of rough neutrosophic sets in rings. Additionally, they
demonstrate that the upper and lower approximations of the neutrosophic subring and its examples.

Michael G. Thomason introduced the concept of fuzzy matrice theory in 1977. It can be used in
a variety of situations. The matrix approach is well known to provide an extra benefit in resolving
the issue. In 2002, Pal et al. [20] created specifically intuitionistic fuzzy matrices. Furthermore, it
is challenging to assess the worth of membership and non-membership at some stage. Fuzzy and
neutrosophic relational maps were introduced in 2004 by Kandasamy and Smarandache [21]. They
also incorporated square neutrosophic matrices into this. They developed the neutrosophic matrix and
related algebraic operations in 2014 [22]. The neutrosophic square matrix algebraic creativity was
published by Abobala et al. [23] in 2021. This paper presents the algebraic functions of neutrosophic
matrices, and this work presents the requirements of the inverse of a square neutrosophic matrix using
its determinant. To address many uncertainty-related issues, the complex neutrosophic matrix, a novel
idea, is introduced by Poonia and Bajaj [24] in 2021. They have offered several algebraic operations
based on the suggested matrix, including addition, union, subtraction, and many others that will be
useful for developing essential ideas. The multi-valued neutrosophic matrix was presented by Martina
and Deepa [25] in 2021. In this, the operations and properties of the proposed matrix were discussed,
and they created the linguistic variable for that matrix, which was then applied in the neutrosophic
simplified TOPSIS method.

In 2009, Christi DiStefano et al. proposed the concept of matrix energy. They came up with the
formula for the energy of the matrix. A generalization of the energy of a graph is the energy of a
matrix. Bravoa et al. [26] presented a study titled “Energy of Matrixes” in 2017 and defined several
theorems regarding matrix energy in addition to upper and lower bounds. In 2013, Vijayabalaji and
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Balaji [27] introduced the concept of rough matrix theory in the decision-making field. Neutrosophic
soft metric matrices are introduced, and various operations on such matrices are defined by
Khan et al. [28] in 2021. Also, they create an approach using neutrosophic soft metric matrices and
use it to solve a problem with decision-making. A novel fuzzy neutrosophic soft complement matrix,
the trace, and some essential functions of the fuzzy neutrosophic soft matrix are presented by
SheebaMaybell and Shanmugapriya [29] in 2022. They examine a few concepts and attributes of
fuzzy neutrosophic soft matrices. The energy concept was then applied to the rough neutrosophic
matrix [30] in 2022. This paper defines the energy of a rough neutrosophic matrix and applies it to a
multi-criteria decision-making problem.

The rough matrix in a fuzzy environment applies to solving decision-making problems. In this
case, the MCDM problem of ranking the alternatives underperformed in indeterminate situations.
When we use a neutrosophic matrix in a rough structure, it will handle the uncertain area of ranking
the alternatives. As a result, matrix theory is a frequently used notion in the neutrosophic field, and
the concept of energy is also widely developed in matrix theory. In the neutrosophic environment,
there is no study involving the matrix energy. So, we concentrate on the neutrosophic matrix and its
energy, especially in the rough matrix theory where we apply the neutrosophic context. The main
contribution of this paper is to create a rough neutrosophic matrix and build a ranking formula for a
rough neutrosophic set, which was applied to the new MCDM method to evaluate the alternatives and
provide a good result. At this stage, the results will be more valuable than the earlier study.

We provide the rough neutrosophic matrix’s determinant, adjoint, operations and algebraic
properties in Sections 3 and 4. The ranking functions of the rough neutrosophic set were derived in
Section 5. The novel multi-criteria decision-making method for a rough neutrosophic matrix was
given in Section 6. It was numerically illustrated in Section 7 by a multi-criteria problem. The
comparative results were presented in Section 8. Finally, the results and conclusion were given.

2. Basic definitions

Definition 1. Rough set [2].
Let U be the universal set and R be an equivalence relation on U. The collection of all equivalence

classes of U under R is called an approximation space and it is defined as A= U/R.
Let X be a subset of U. Let A(X) and A(X) be lower and upper approximation of X in A, which are

denoted as follows:

A(X) = {a ∈ U : [a]R ⊆ X},

A(X) = {a ∈ U : [a]R ∩ X , ∅},

where [a]R denotes the equivalence class of R containing an element a.
The pair A(X) = (A(X), A(X)) is called the rough set of X in A.

Definition 2. Neutrosophic set [21].
Let U be the universal set and a be an element in U. The degree of truth, indeterminacy and falsity

membership functions are denoted by TS , IS and FS . Then the neutrosophic set S can be defined as

S = {
〈
a,TS (a), IS (a), FS (a) : a ∈ U

〉
},
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where
0 ≤ TS (a) + IS (a) + FS (a) ≤ 3

and TS is the truth membership function, IS is the indeterminacy membership function, FS is the false
membership function, every function lies between [0,1] in U.

Definition 3. Rough neutrosophic set [8].
Let U be the universal set and a be an element in U. Let R be an equivalence relation on U and S

be the neutrosophic set in U with truth membership function TS , indeterminacy function IS and false
membership function FS . The lower and upper approximations of S in U/R is denoted by N(S ) and
N(S ) and they are defined as follows:

N(S ) =
{〈

a,TN(S )(a), IN(S )(a), FN(S )(a)
〉

: b ∈ [a]R, a ∈ U
}
,

N(S ) =
{〈

a,TN(S )(a), IN(S )(a), FN(S )(a)
〉

: b ∈ [a]R, a ∈ U
}
,

where
TN(S )(a) =

∧
b∈[a]R

TS (b) TN(S )(a) =
∨

b∈[a]R

TS (b)

IN(S )(a) =
∨

b∈[a]R

IS (b) IN(S )(a) =
∧

b∈[a]R

IS (b)

FN(S )(a) =
∨

b∈[a]R

FS (b) FN(S )(a) =
∧

b∈[a]R

FS (b)

,

where
0 ≤ TN(S )(a) + IN(S )(a) + FN(S )(a) ≤ 3

and
0 ≤ TN(S )(a) + IN(S )(a) + FN(S )(a) ≤ 3,

where
∧

means “min” and
∨

means “max” and TS (a), IS (a) and FS (a) are truth, indeterminacy, false

membership function of a on neutrosophic set S. Therefore, N(S ) and N(S ) are two neutrosophic sets

in U. The pair (N(S ),N(S )) is called the rough neutrosophic set in U/R.

If N(S ) = N(S ) for any a ∈ U, then S is called definable neutrosophic set.

Definition 4. Rough matrix [27].
We can define a rough matrix RM = [ri j] of order m × n as follows

RM = [ri j] =


r11 r12 . . . r1n

r21 r22 . . . r2n
...

...
. . .

...

rm1 rm2 . . . rmn

 ,
where, each ri j ∈ µ

R
x . µR

x is rough membership function.

Definition 5. Neutrosophic matrix [22].
A neutrosophic matrix P of order m × n is defined as

P = [
〈
Ti jp, Ii jp, Fi jp

〉
]m×n,
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where, Ti jp, Ii jp and Fi jp are called truth, indeterminacy and false membership of i jth in P, which
satisfying the condition

0 ≤ Ti jp + Ii jp + Fi jp ≤ 3.

For simplicity, we write [Pi j]m×n, where,

Pi j =
〈
Ti jp, Ii jp, Fi jp

〉
.

Definition 6. Energy of neutrosophic matrix [30].
The neutrosophic matrix can be expressed by three matrices, the first matrix includes the entries ai j

as truth membership values, the second matrix includes the entries bi j as indeterminacy membership
values, and the third matrix includes the entries ci j as false membership values. It is denoted as

P(N) =
〈
P(Ti j), P(Ii j), P(Fi j)

〉
and ai j ∈ P(Ti j), bi j ∈ P(Ii j) and ci j ∈ P(Fi j).

Then the neutrosophic matrix’s energy is defined as

E[P(N)] =
〈
E[P(Ti j)], E[P(Ii j)], E[P(Fi j)]

〉
=

〈 n∑
i=1

∣∣∣λi − µλ
∣∣∣ , n∑

i=1

∣∣∣ζi − µζ ∣∣∣ , n∑
i=1

∣∣∣ηi − µη
∣∣∣〉 ,

where λi is the truth matrix eigenvalues, ζi is the indeterminacy matrix eigenvalues, and ηi is the
false matrix eigenvalues, where (i = 1, 2, · · · , n), µλ, µζ and µη are the mean values of λi, ζi and ηi

respectively.

3. Rough neutrosophic matrix and its operations

In this section, we present rough neutrosophic matrix, its determinant, adjoint and its operations.

Definition 7. Rough neutrosophic matrix.
A rough neutrosophic matrix is defined as D =

〈
Di j(S ),Di j(S )

〉
with order of m × n. where Di j is a

lower approximation and Di j is a upper approximation of the neutrosophic set S. It can be expressed
as

D =
〈
Di j(S ),Di j(S )

〉
=

〈(
T i j(S ), Ii j(S ), F i j(S )

)
,
(
T i j(S ), Ii j(S ), F i j(S )

)〉
m×n
,

where, T i j(S ), Ii j(S ) and F i j(S ) are i jth values of truth, indeterminacy and false membership matrices

of lower approximation and T i j(S ), Ii j(S ) and F i j(S ) are i jth values of truth, indeterminacy and false
membership matrices of upper approximation of rough neutrosophic matrix D, which statisfy the
conditions

0 ≤ T i j(S ) + Ii j(S ) + F i j(S ) ≤ 3,

0 ≤ T i j(S ) + Ii j(S ) + F i j(S ) ≤ 3.
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Example 1. Let we define the rough neutrosophic matrix D with order of 4 × 2.

D =


〈
(0.2, 0.5, 0.2), (0.3, 0.4, 0.8)

〉 〈
(0.1, 0.3, 0.4), (0.5, 0.6, 0.7)

〉〈
(0.3, 0.4, 0.7), (0.5, 0.3, 0.7)

〉 〈
(0.1, 0.2, 0.5), (0.3, 0.2, 0.7)

〉〈
(0.2, 0.6, 0.9), (0.7, 0.3, 0.1)

〉 〈
(0.3, 0.5, 0.6), (0.9, 0.3, 0.5)

〉〈
(0.5, 0.7, 0.9), (0.1, 0.2, 0.4)

〉 〈
(0.4, 0.5, 0.1), (0.2, 0.3, 0.4)

〉
 .

Definition 8. Determinant of rough neutrosophic matrix.
The determinant of RNM D of order n × n denoted by det(D) or |D| and it is defined as

|D| =
∑
σ∈S n

σ{(α1σ(1)(x), β
1σ(1)

(x), γ
1σ(1)

(x)), · · · , (αnσ(n)(x), β
nσ(n)

(x), γ
nσ(n)

(x))}

=
∑
σ∈S n

σ{(α1σ(1)(x), β1σ(1)(x), γ1σ(1)(x)), · · · , (αnσ(n)(x), βnσ(n)(x), γnσ(n)(x))}

=
∑
σ∈S n

σ

n∏
i=1

〈(
diσ(i), diσ(i)

)〉
,

where, i = 1, 2, · · · , n,
diσ(i) = αiσ(i)(x), β

iσ(i)
(x), γ

iσ(i)
(x)

and
diσ(i) = αiσ(i)(x), βiσ(i)(x), γiσ(i)(x).

Where every element of x belongs to D and S n denotes the symmetric group of all permutations of
{1, 2, · · · , n}.

Definition 9. Adjoint of RNM.
The adjoint of RNM D of order n × n is denoted by adj D. It is denoted by Ai j =

∣∣∣D ji

∣∣∣, where D ji is
transpose of D. It can be written by

Ai j =
∑
σ∈S nin j

∏
t∈n j

〈(
dT

tσ(t), d
I
tσ(t), d

F
tσ(t)

)
,
(
d

T
tσ(t), d

I
tσ(t), d

F
tσ(t)

)〉
,

where S nin j is the set of all permutations of n j over ni and n j = {1, 2, · · · , n}.

Example 2. Let define the rough neutrosophic matrix D with order of 2 × 2.

D =
〈(0.2, 0.5, 0.2), (0.3, 0.4, 0.8)

〉 〈
(0.1, 0.3, 0.4), (0.5, 0.6, 0.7)

〉〈
(0.3, 0.4, 0.7), (0.5, 0.3, 0.7)

〉 〈
(0.1, 0.2, 0.5), (0.3, 0.2, 0.7)

〉 ,
|D| = [(0.2, 0.5, 0.2), (0.3, 0.4, 0.8)].[(0.1, 0.2, 0.5), (0.3, 0.2, 0.7)]
+ [(0.3, 0.4, 0.7), (0.5, 0.3, 0.7)].[(0.1, 0.3, 0.4), (0.5, 0.6, 0.7)]
=

(
min{0.2, 0.1},max{0.5, 0.2},max{0.2, 0.5}

)
,
(
min{0.3, 0.3},max{0.4, 0.2},max{0.8, 0.7}

)
+

(
min{0.3, 0.1},max{0.4, 0.3},max{0.7, 0.4}

)
,
(
min{0.5, 0.5},max{0.3, 0.6},max{0.7, 0.7}

)
= [(0.1, 0.5, 0.5), (0.3, 0.4, 0.8)] + [(0.1, 0.4, 0.7), (0.5, 0.6, 0.7)]
=

(
max{0.1, 0.1},min{0.5, 0.4},min{0.5, 0.7}

)
,
(
max{0.3, 0.5},min{0.4, 0.6},min{0.8, 0.7}

)
= [(0.1, 0.4, 0.5), (0.5, 0.4, 0.7)],

ad jD =
∣∣∣D ji

∣∣∣ = [(0.1, 0.4, 0.5), (0.5, 0.4, 0.7)].
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3.1. Algebaric operations of rough neutrosophic matrix

Let D and C be two rough neutrosophic matrices that are denoted by

D = [(dT
i j, d

I
i j, d

F
i j), (d

T
i j, d

I
i j, d

F
i j)]m×n

and
C = [(cT

i j, c
I
i j, c

F
i j), (c

T
i j, c

I
i j, c

F
i j)]m×n,

then,
(i) Addition

D +C =
(
max{dT

i j, c
T
i j},min{dI

i j, c
I
i j},min{dF

i j, c
F
i j}

)
,
(
max{d

T
i j, c

T
i j},min{d

I
i j, c

I
i j},min{d

F
i j, c

F
i j}

)
.

(ii) Multiplication

D.C =
(
min{dT

i j, c
T
i j},max{dI

i j, c
I
i j},max{dF

i j, c
F
i j}

)
,
(
min{d

T
i j, c

T
i j},max{d

I
i j, c

I
i j},max{d

F
i j, c

F
i j}

)
.

(iii) Subraction

D −C =
(
{dT

i j − cT
i j}, {d

I
i j − cI

i j}, {d
F
i j − cF

i j}
)
,
(
{d

T
i j − cT

i j}, {d
I
i j − cI

i j}, {d
F
i j − cF

i j}

)
,

dT
i j − cT

i j =

dT
i j, if dT

i j ≥ cT
i j,

0, otherwise,
d

T
i j − cT

i j =

d
T
i j, if d

T
i j ≥ cT

i j,

0, otherwise,

dI
i j − cI

i j =

dI
i j, if dI

i j ≥ cI
i j,

0, otherwise,
d

I
i j − cI

i j =

d
I
i j, if d

I
i j ≥ cI

i j,

0, otherwise,

dF
i j − cF

i j =

dF
i j, if dF

i j < cF
i j,

0, otherwise,
d

F
i j − cF

i j =

d
F
i j, if d

F
i j < cF

i j,

0, otherwise.

(iv) Element wise addition

D ⊕C =
(
{dT

i j + cT
i j − dT

i j.c
T
i j}, {d

I
i j.c

I
i j}, {d

F
i j.c

F
i j}

)
,
(
{d

T
i j + cT

i j − d
T
i j.c

T
i j}, {d

I
i j.c

I
i j}, {d

F
i j.c

F
i j}

)
.

(v) Element wise multiplication

D ⊙C =
(
{dT

i j.c
T
i j}, {d

I
i j + cI

i j − dI
i j.c

I
i j}, {d

F
i j + cF

i j − dF
i j.c

F
i j}

)
,
(
{d

T
i j.c

T
i j}, {d

I
i j + cI

i j − d
I
i j.c

I
i j}, {d

F
i j + cF

i j − d
F
i j.c

F
i j}

)
.

(vi) Scalar multiplication

λD =
〈(
{1 − (1 − dT

i j)}
λ, {dI

i j}
λ, {dF

i j}
λ
)
,
(
{1 − (1 − d

T
i j)}
λ, {d

I
i j}
λ, {d

F
i j}
λ
)〉
.

(vii) Power of matrix

Dλ =
(
{dT

i j}
λ, {1 − (1 − dI

i j)}
λ, {1 − (1 − dF

i j)}
λ
)
,
(
{d

T
i j}
λ, {1 − (1 − d

I
i j)}
λ, {1 − (1 − d

F
i j)}
λ
)
.
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(viii) Average

D@C =
〈dT

i j + cT
i j

2
,

dI
i j + cI

i j

2
,

dF
i j + cF

i j

2

 ,
d

T
i j + cT

i j

2
,

d
I
i j + cI

i j

2
,

d
F
i j + cF

i j

2


〉
.

(ix) Complement of D

Dc =

〈(
dT

i j, 1 − dI
i j, d

F
i j

)
,
(
d

T
i j, 1 − d

I
i j, d

F
i j

)〉
.

(x) Transpose of D

tr(D) =
〈(

dT
ji, d

I
ji, d

F
ji

)
,
(
d

T
ji, d

I
ji, d

F
ji

)〉
.

4. Algebaric properties of rough neutrosophic matrix

In this section, we present the algebaric properties of rough neutrosophic matrix, which are
commutative and associative property, identity property, distributive property, properties of transpose
and determinant of rough neutrosophic matrix.

Proposition 1. If B, C and D are three rough neutrosophic matrices of same order, then it satisfies the
following properties

Commutativity Associativity,
(i) D+C = C+D, (i) (D+C)+B=D+(C+B),
(ii) D.C=C.D, (ii) (D.C).B=D.(C.B),
(iii) D ⊕C = C ⊕ D, (iii) (D ⊕C) ⊕ B = D ⊕ (C ⊕ B),
(iv) D ⊙C = C ⊙ D, (iv) (D ⊙C) ⊙ B = D ⊙ (C ⊙ B).

Proof. Let
D = [(dT

i j, d
I
i j, d

F
i j), (d

T
i j, d

I
i j, d

F
i j)]m×n

and
C = [(cT

i j, c
I
i j, c

F
i j), (c

T
i j, c

I
i j, c

F
i j)]m×n.

Commutativity:

(i) D +C =
(
max{dT

i j, c
T
i j},min{dI

i j, c
I
i j},min{dF

i j, c
F
i j}

)
,
(
max{d

T
i j, c

T
i j},min{d

I
i j, c

I
i j},min{d

F
i j, c

F
i j}

)
,

C + D =
(
max{cT

i j, d
T
i j},min{cI

i j, d
I
i j},min{cF

i j, d
F
i j}

)
,
(
max{cT

i j, d
T
i j},min{cI

i j, d
I
i j},min{cF

i j, d
F
i j}

)
,

so D+C = C+D. Similarly we can prove the other commutative properties (ii)–(iv).
Associativity:

(i) (D +C) + B =
[ (

max{dT
i j, c

T
i j},min{dI

i j, c
I
i j},min{dF

i j, c
F
i j}

)
,
(
max{d

T
i j, c

T
i j},min{d

I
i j, c

I
i j},min{d

F
i j, c

F
i j}

) ]
+ (bT

i j, b
I
i j, b

F
i j), (b

T
i j, b

I
i j, b

F
i j)

=

(
max{dT

i j, c
T
i j, b

T
i j},min{dI

i j, c
I
i j, b

I
i j},min{dF

i j, c
F
i j, b

F
i j}

)
,
(
max{d

T
i j, c

T
i j, b

T
i j},min{d

I
i j, c

I
i j, b

I
i j}, c

F
i j, b

F
i j}

)
,
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D + (C + B) = (dT
i j, d

I
i j, d

F
i j), (d

T
i j, d

I
i j, d

F
i j) +

[ (
max{cT

i j, b
T
i j},min{cI

i j, b
I
i j},min{cF

i j, b
F
i j}

)
,(

max{cT
i j, b

T
i j},min{cI

i j, b
I
i j},min{cF

i j, b
F
i j}

) ]
=

(
max{dT

i j, c
T
i j, b

T
i j},min{dI

i j, c
I
i j, b

I
i j},min{dF

i j, c
F
i j, b

F
i j}

)
,
(
max{d

T
i j, c

T
i j, b

T
i j},min{d

I
i j, c

I
i j, b

I
i j}, c

F
i j, b

F
i j}

)
,

so (D+C)+B=D+(C+B). Similarly we can prove the other associative properties (ii)–(iv). □

Proposition 2. Let D be a rough neutrosophic matrix. Then it satisfies the following identity property.

(i) D + Ia = Ia + D = D,

(ii) D.Im = Im.D = D.

Proof. (i) Let Ia be the additive identity which is the zero rough neutrosophic matrix. It is denoted by
Ia =

〈
(0, 1, 1), (0, 1, 1)

〉
,

D + Ia =
(
max{dT

i j, 0},min{dI
i j, 1},min{dF

i j, 1}
)
,
(
max{d

T
i j, 0},min{d

I
i j, 1},min{d

F
i j, 1}

)
,

Ia + D =
(
max{0, dT

i j},min{1, dI
i j},min{1, dF

i j}
)
,
(
max{0, d

T
i j},min{1, d

I
i j},min{1, d

F
i j}

)
,

so D + Ia = Ia + D = D.
(ii) Let Im be the multiplicative identity which is the unit rough neutrosophic matrix. It is denoted

by Im =
〈
(1, 0, 0), (1, 0, 0)

〉
,

D.Im =
(
min{dT

i j, 0},max{dI
i j, 1},max{dF

i j, 1}
)
,
(
min{d

T
i j, 0},max{d

I
i j, 1},max{d

F
i j, 1}

)
,

Im.D =
(
min{0, dT

i j},max{1, dI
i j},max{1, dF

i j}
)
,
(
min{0, d

T
i j},max{1, d

I
i j},max{1, d

F
i j}

)
,

so D.Im = Im.D = D. Hence it satisfies the identity property. □

Proposition 3. Let B, C and D be three rough neutrosophic matrices, then it satisfies the following
distributive properties:

(i) D.(C + B) = D.C + D.B,

(D +C).B = D.B +C.B.

(ii) D ⊙ (C ⊕ B) = D ⊙C ⊕ D ⊙ B,

(D ⊕C) ⊙ B = D ⊙ B ⊕C ⊙ B.

Proof. Let us assume the elements of D, C and B matrices

dT
i j > cT

i j > bT
i j, dI

i j > cI
i j > bI

i j, dF
i j > cI

i j > bF
i j,

d
T
i j > cT

i j > b
T
i j, d

I
i j > cI

i j > b
I
i j, d

F
i j > cI

i j > b
F
i j,

C + B = [(cT
i j, c

I
i j, c

F
i j), (c

T
i j, c

I
i j, c

F
i j)] + [(bT

i j, b
I
i j, b

F
i j), (b

T
i j, b

I
i j, b

F
i j)],

C + B =
[ (

max{cT
i j, b

T
i j},min{cI

i j, b
I
i j},min{cF

i j, b
F
i j}

)
,
(
max{cT

i j, b
T
i j},min{cI

i j, b
I
i j},min{cF

i j, b
F
i j}

) ]
=

[
(cT

i j, b
I
i j, b

F
i j), (c

T
i j, b

I
i j, b

F
i j)

]
,
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D.(C + B) =
[
(dT

i j, d
I
i j, d

F
i j), (d

T
i j, d

I
i j, d

F
i j)

]
.
[
(cT

i j, b
I
i j, b

F
i j), (c

T
i j, b

I
i j, b

F
i j)

]
,

D.(C + B) =
[ (

min{dT
i j, c

T
i j},max{dI

i j, b
I
i j},max{dF

i j, b
F
i j}

)
,
(
min{d

T
i j, c

T
i j},max{d

I
i j, b

I
i j},max{d

F
i j, b

F
i j}

) ]
=

[
(cT

i j, d
I
i j, d

F
i j), (c

T
i j, d

I
i j, d

F
i j)

]
,

D.C =
[ (

min{dT
i j, c

T
i j},max{dI

i j, c
I
i j},max{dF

i j, c
F
i j}

)
,
(
min{d

T
i j, c

T
i j},max{d

I
i j, c

I
i j},max{d

F
i j, c

F
i j}

) ]
=

[
(cT

i j, d
I
i j, d

F
i j), (c

T
i j, d

I
i j, d

F
i j)

]
,

D.B =
[ (

min{dT
i j, b

T
i j},max{dI

i j, b
I
i j},max{dF

i j, b
F
i j}

)
,
(
min{d

T
i j, b

T
i j},max{d

I
i j, b

I
i j},max{d

F
i j, b

F
i j}

) ]
=

[
(bT

i j, d
I
i j, d

F
i j), (b

T
i j, d

I
i j, d

F
i j)

]
,

D.C + D.B =
[ (

max{cT
i j, b

T
i j},min{dI

i j, d
I
i j},min{dF

i j, d
F
i j}

)
,
(
max{cT

i j, b
T
i j},min{d

I
i j, d

I
i j},min{d

F
i j, d

F
i j}

) ]
=

[
(cT

i j, d
I
i j, d

F
i j), (c

T
i j, d

I
i j, d

F
i j)

]
,

so D.(C+B) = D.C+D.B, and also it satifies (D+C).B = D.B+C.B.
Similarly we can prove the (ii) D ⊙ (C ⊕ B) = D ⊙C ⊕ D ⊙ B, (D ⊕C) ⊙ B = D ⊙ B ⊕C ⊙ B. □

Proposition 4. Let D and C be two rough neutrosophic matrices, tr(D) and tr(C) be the transpose of
RNM D and C respectively and det(D) and det(C) be the determinant of RNM D and C respectively.
Then it satisfies the following:

(i) D + D = D,

(ii) tr(D) = tr(tr(D)),
(iii) tr(D +C) = tr(D) + tr(C),

tr(D.C) = tr(C).tr(D),
(vi) det(D +C) = det(D) + det(C),

det(D.C) = det(D).det(C).
Proof.

(i) D =
[
(dT

i j, d
I
i j, d

F
i j), (d

T
i j, d

I
i j, d

F
i j)

]
,

D + D =
(
max{dT

i j, d
T
i j},min{dI

i j, d
I
i j},min{dF

i j, d
F
i j}

)
,
(
max{d

T
i j, d

T
i j},min{d

I
i j, d

I
i j},min{d

F
i j, d

F
i j}

)
=

[
(dT

i j, d
I
i j, d

F
i j), (d

T
i j, d

I
i j, d

F
i j)

]
= D.

(ii) D =
[ (

dT
i j, d

I
i j, d

F
i j

)
,
(
d

T
i j, d

I
i j, d

F
i j

) ]
,

tr(D) =
[ (

dT
ji, d

I
ji, d

F
ji

)
,
(
d

T
ji, d

I
ji, d

F
ji

) ]
,

tr(tr(D)) =
[ (

dT
i j, d

I
i j, d

F
i j

)
,
(
d

T
i j, d

I
i j, d

F
i j

) ]
,

tr(tr(D)) = D.
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(iii) Let we take the elements of D and C are

dT
i j > cT

i j, dI
i j > cI

i j, dF
i j > cI

i j

and
d

T
i j > cT

i j, d
I
i j > cI

i j, d
F
i j > cI

i j.

D +C =
[ (

max{dT
i j, c

T
i j},min{dI

i j, c
I
i j},min{dF

i j, c
F
i j}

)
,
(
max{d

T
i j, c

T
i j},min{d

I
i j, c

I
i j},min{d

F
i j, c

F
i j}

) ]
,

D +C =
[
(dT

i j, c
I
i j, c

F
i j), (d

T
i j, c

I
i j, c

F
i j)

]
,

tr(D +C) =
[
(dT

ji, c
I
ji, c

F
ji), (d

T
ji, c

I
ji, c

F
ji)
]
,

tr(D) =
[
(dT

ji, d
I
ji, d

F
ji), (d

T
ji, d

I
ji, d

F
ji)
]
,

tr(C) =
[
(cT

ji, c
I
ji, c

F
ji), (c

T
ji, c

I
ji, c

F
ji)
]
,

tr(D) + tr(C) =
[ (

max{dT
ji, c

T
ji},min{dI

ji, c
I
ji},min{dF

ji, c
F
ji}
)
,
(
max{d

T
ji, c

T
ji},min{d

I
ji, c

I
ji},min{d

F
ji, c

F
ji}

) ]
=

[
(dT

ji, c
I
ji, c

F
ji), (d

T
ji, c

I
ji, c

F
ji)
]
,

so tr(D+C) = tr(D)+tr(C) and also tr(D.C) = tr(C).tr(D).
Similarly we can prove the (iv). □

Hence the rough neutrosophic matrices satisfies all the properties.

5. Ranking methods for rough neutrosophic matrix’s energy

In this section, we provide some ranking measures for the energy of rough neutrosophic matrix.
The presented formula are helps to rank the matrix.

Definition 10. Energy of rough neutrosophic matrix [30].
Let

D(N) =
〈
D(N i j(S )), D(N i j(S ))

〉
be the square rough neutrosophic matrix with the order n × n, where, D(N i j(S )) and D(N i j(S )) are a
lower and upper approximation of the neutrosophic set S.

This matrix can be separated by six matrices, the first three matrices belong to a lower
approximation that includes the elements ai j, bi j, ci j another three matrices belong to the upper

approximation that includes the elements ai j, bi j, ci j. where ai j, ai j are truth membership values, bi j,

bi j are indeterminacy membership values and ci j, ci j are false membership values. The matrix can be
written as

D(N) =
〈
D(N i j(S )),D(N i j(S ))

〉
=

〈
(D(T i j(S )),D(Ii j(S )),D(F i j(S ))), (D(T i j(S )),D(Ii j(S )),D(F i j(S )))

〉
,

where the elements, ai j ∈ D(T i j(S )), bi j ∈ D(Ii j(S )), ci j ∈ D(F i j(S )), ai j ∈ D(T i j(S )), bi j ∈ D(Ii j(S )),
and ci j ∈ D(F i j(S )).
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Then the rough neutrosophic matrix’s energy defined as

E[D(N)] =
(
E[D(T i j(S ))], E[D(Ii j(S ))], E[D(F i j(S ))]

)
,
(
E[D(T i j(S ))], E[D(Ii j(S ))], E[D(F i j(S ))]

)
,

E[D(N)] =

 n∑
i=1

∣∣∣λi − µλ
∣∣∣ , n∑

i=1

∣∣∣∣ζ i
− µζ

∣∣∣∣ , n∑
i=1

∣∣∣∣ηi
− µη

∣∣∣∣ ,
 n∑

i=1

∣∣∣∣λi − µλ

∣∣∣∣ , n∑
i=1

∣∣∣∣ζ i − µζ

∣∣∣∣ , n∑
i=1

∣∣∣ηi − µη
∣∣∣ ,

where, λi, ζ i
and η

i
are the truth, indeterminacy, and false eigenvalues of lower approximation matrices

and λi, ζ i, ηi are the truth, indeterminacy, and false eigenvalues of upper approximation matrices.

µλ, µζ , µη, µλ, µζ and µη are mean values of the eigen values λi, ζ i
, η

i
, λi, ζ i and ηi respectively.

Example 3. Let D be a square rough neutrosophic matrix with order 2 × 2.

D =
〈(0.2, 0.5, 0.2), (0.3, 0.4, 0.8)

〉 〈
(0.1, 0.3, 0.4), (0.5, 0.6, 0.7)

〉〈
(0.3, 0.4, 0.7), (0.5, 0.3, 0.7)

〉 〈
(0.1, 0.2, 0.5), (0.3, 0.2, 0.7)

〉 ,
D(T i j) =

0.2 0.1
0.3 0.1

 , D(Ii j) =
0.5 0.3
0.4 0.2

 , D(F i j) =
0.2 0.4
0.7 0.5

 ,
D(T i j) =

0.3 0.5
0.5 0.3

 , D(Ii j) =
0.4 0.6
0.3 0.2

 , D(F i j) =
0.8 0.7
0.7 0.7

 .
The eigen values of truth lower matrix λi = 0.3303,−0.0303 and mean µλi = 0.15. The energy of
D(T i j) = 0.3606. Similarly find other matrices.

So E[D] = [(0.3606,0.7550,1.1),(1,0.8718,1.4036)].

Definition 11. Score function and accuracy function.

Let S =
〈
TS (a), IS (a), FS (a)

〉
be a neutrosophic set in universal set U and every element a ∈ U.

Then the score function [31] of neutrosophic set is defined by

σS (a) =
1 + TS (a) − 2IS (a) − FS (a)

2
.

The accuracy function [32] of neutrosophic set is defined by

τS (a) = TS (a) − 2IS (a) − FS (a).

From this existing formula we defined the score function and accuracy function for rough
neutrosophic set.

Let
N(S ) =

〈(
T N(S )(a), IN(S )(a), FN(S )(a)

)
,
(
T N(S )(a), IN(S )(a), FN(S )(a)

)〉
.

Then the score function of rough neutrosophic set is defined by

σN(S )(a) =
(
1
2

) 1 + T N(S )(a) − 2IN(S )(a) − FN(S )(a) + 1 + T N(S )(a) − 2IN(S )(a) − FN(S )(a)

2

=
2 + T N(S )(a) + T N(S )(a) − 2[IN(S )(a) + IN(S )(a)] − [FN(S )(a) + FN(S )(a)]

4
. (5.1)
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The accuracy function of rough neutrosophic set is defined by

τN(S )(a) =
(
1
2

) (
T N(S )(a) − 2IN(S )(a) − FN(S )(a) + T N(S )(a) − 2IN(S )(a) − FN(S )(a)

)
=

T N(S )(a) + T N(S )(a) − 2[IN(S )(a) + IN(S )(a)] − [FN(S )(a) + FN(S )(a)]

2
. (5.2)

6. The multi-criteria decision-making method using the ranking of rough neutrosophic
matrix’s energy

This section addresses a method for choosing the best option among several alternatives using the
energy of rough neutrosophic matrix. Over x criteria, consider the set of r alternatives. There are a
group of y experts who evaluated the alternatives. So we set F = {F1, F2, · · · Fr}, C = {C1,C2, · · ·Cx}

and experts (EX) = {EX1, EX2, · · · EXy}.
Step 1: Each expert provided the weighted values of m criteria as well as the rating values for each
alternative on each criterion. We use a matrix to represent each alternate rating and weight value.

Assume the expert ratings for x criteria as a matrix with order x × y for the weight of criteria W.

EX1 EX2 . . . EXy


C1 ⟨υ11, ν11, ω11⟩ ⟨υ12, ν12, ω12⟩ . . .
〈
υ1y, ν1y, ω1y

〉
C2 ⟨υ21, ν21, ω21⟩ ⟨υ22, ν22, ω22⟩ . . .

〈
υ2y, ν2y, ω2y

〉
...

...
...

. . .
...

Cx ⟨υx1, νx1, ωx1⟩ ⟨υx2, νx2, ωx2⟩ . . .
〈
υxy, νxy, ωxy

〉 .

Assume the expert ratings for alternative A1 as a matrix with order y × x for the alternative A1.

C1 C2 . . . Cx


EX1 ⟨u11, v11,w11⟩ ⟨u12, v12,w12⟩ . . . ⟨u1x, v1x,w1x⟩

EX2 ⟨u21, v21,w21⟩ ⟨u22, v22,w22⟩ . . . ⟨u2x, v2x,w2x⟩
...

...
...

. . .
...

EXy

〈
uy1, vy1,wy1

〉 〈
uy2, vy2,wy2

〉
. . .

〈
uyx, vyx,wyx

〉 .

Step 2: Determine the weights of experts. Let EX1, EX2, · · · , EXn be the experts, they have individuals
weights. Take

EX1 = ⟨a1, b1, c1⟩ , EX2 = ⟨a2, b2, c2⟩ , · · · , EXy =
〈
ay, by, cy

〉
.

Step 3: Define the matrix with a rough neutrosophic set for criteria and alternatives. A rough
neutrosophic matrix for criteria is created to express the connection between each criterion and the
weight of experts.

W(C1EX1) =
[
(min(a1, υ11),max(b1, ν11),max(c1, ω11)), (max(a1, υ11),min(b1, ν11),min(c1, ω11))

]
=

〈
(υ11, ν11, ω11), (υ11, ν11, ω11)

〉
,
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W =

EX1 . . . EXy


C1

〈
(υ11, ν11, ω11), (υ11, ν11, ω11)

〉
. . .

〈
(υ1y, ν1y, ω1y), (υ1y, ν1y, ω1y)

〉
C2

〈
(υ21, ν21, ω21), (υ21, ν21, ω21)

〉
. . .

〈
(υ2y, ν2y, ω2y), (υ2y, ν2y, ω2y)

〉
...

...
. . .

...

Cx

〈
(υx1, νx1, ωx1), (υx1, νx1, ωx1)

〉
. . .

〈
(υxy, νxy, ωxy), (υxy, νxy, ωxy)

〉 .

A rough neutrosophic matrix for alternatives is created to express the connection between each
criterion and alternatives.
F1(EX1C1) = (min(υ11, u11),max(ν11, v11),max(ω11,w11)), (max(υ11, u11),min(ν11, v11),min(ω11,w11))

=
〈
(u11, v11,w11), (u11, v11,w11)

〉
,

F1 =

C1 . . . Cx


EX1

〈
(u11, v11,w11), (u11, v11,w11)

〉
. . .

〈
(u1x, v1x,w1x), (u1x, v1x,w1x)

〉
EX2

〈
(u21, v21,w21), (u21, v21,w21)

〉
. . .

〈
(u2x, v2x,w2x), (u2x, v2x,w2x)

〉
...

...
. . .

...

EXy

〈
(uy1, vy1,wy1), (uy1, vy1,wy1)

〉
. . .

〈
(uyx, vyx,wyx), (uyx, vyx,wyx)

〉 .

Step 4: Change the non-square matrix toward a square matrix in this stage. The above matrix W is
separated by six matrices that are a lower three and upper three approximations of truth, indeterminacy
and false matrix are denoted by (W(T i j), W(Ii j), W(F i j)) and (W(T i j), W(Ii j), W(F i j)). Similarly, F1

matrix expressed as (F1(T i j), F1(Ii j), F1(F i j)) and (F1(T i j), F1(Ii j), F1(F i j)).

F1(T i j)y×x ∗W(T i j)x×y = F1(T ) =


uυ11 uυ12 . . . uυ1n
uυ21 uυ22 . . . uυ2n
...

...
. . .

...

uυy1 uυy2 . . . uυyy


y×y

.

Step 5: Calculate the matrix’s energy using the notion of energy of a rough neutrosophic matrix. For
one alternative, we obtained six energies for the lower three and upper three approximations of truth,
indeterminacy, and false matrix.

E(F1) =
〈(

E[F1(T )], E[F1(I)], E[F1(F)]
)
,
(
E[F1(T )], E[F1(I)], E[F1(F)]

)〉
.

Step 6: Repeat this procedure for k possible alternatives. Approximate neutrosophic matrix energies
of E[F1], E[F2], · · · , E[Fr] were obtained for each alternative.
Step 7: Determine the values of the score function and accuracy function for ranking the rough
neutrosophic energy values by Eqs (5.1) and (5.2).

Finally, we rank the alternatives in descending order by these values.

7. Numerical examples

For example, we take the problem of selecting a good factory in a particular area that is good in all
criteria. We take 8 factories as alternatives (F1, F2, F3, F4, F5, F6, F7, F8), the criteria are:
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C1 - Safety and security of workers,
C1 - Environment,
C3 - Use of products.

The problem is evaluated by a group of 4 decision makers (EX1, EX2, EX3, EX4) who are experts
in factory management in that area. Table 1 shows the linguistic variables for neutrosophic numbers
which help experts to evaluate the alternatives.

Table 1. Linguistic variables for neutrosophic numbers.

S. No Linguistic variable (Code) Neutrosophic numbers

1 Very Bad- VB ⟨0.1, 0.9, 1⟩
2 Bad - B

〈
0.3, 0.7, 0.75

〉
3 Medium - M

〈
0.5, 0.5, 0.5

〉
4 Good - G

〈
0.8, 0.3, 0.25

〉
5 Very Good - VG ⟨1, 0.1, 0⟩

Step 1: The ratings of weights of criteria and alternatives are given by the experts. It is shown in
Tables 2 and 3.

Table 2. Weights of criteria.

Criteria EX1 EX2 EX3 EX4

C1 G VG G M
C2 G VG M G
C3 M G VG B

Table 3. Ratings for each alternative.

Factories Experts C1 C2 C3 Factories Experts C1 C2 C3

EX1 G M G EX1 M VG G
F1 EX2 VG G M F5 EX2 G B G

EX3 G M B EX3 G VG G
EX4 M M G EX4 B M M
EX1 G G G EX1 G G VG

F2 EX2 M G M F6 EX2 M B G
EX3 B G M EX3 VB B M
EX4 M VB G EX4 G M VG
EX1 M G G EX1 B M VB

F3 EX2 VB B M F7 EX2 M G M
EX3 G VG G EX3 VG B G
EX4 VG G B EX4 G M M
EX1 G G B EX1 G B M

F4 EX2 VG B M F8 EX2 VG G G
EX3 G M M EX3 M G M
EX4 G VG B EX4 B VG G
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Step 2: The weights of experts:

EX1 = VG = ⟨1, 0.1, 0⟩ , EX2 = G =
〈
0.8, 0.3, 0.25

〉
,

EX3 = G =
〈
0.8, 0.3, 0.25

〉
, EX4 = M =

〈
0.5, 0.5, 0.5

〉
.

Step 3: By the above values determine the rough neutrosophic matrix for criteria and alternatives. A
rough neutrosophic matrix for criteria is created to express the connection between each criterion and
the weight of experts. It is shown in Table 4. A rough neutrosophic matrix for alternatives is created to
express the connection between each criterion and alternatives. It is shown in Table 5.

Table 4. Rough neutrosophic matrix for criteria.

Criteria EX1 EX2

C1
〈
(0.8, 0.3, 0.25), (1, 0.1, 0)

〉 〈
(0.8, 0.3, 0.25), (1, 0.1, 0)

〉
C2

〈
(0.8, 0.3, 0.25), (1, 0.1, 0)

〉 〈
(0.8, 0.3, 0.25), (1, 0.1, 0)

〉
C3

〈
(0.5, 0.5, 0.5), (1, 0.1, 0)

〉 〈
(0.8, 0.3, 0.25), (0.8, 0.3, 0.25)

〉
Criteria EX3 EX4

C1
〈
(0.8, 0.3, 0.25), (0.8, 0.3, 0.25)

〉 〈
(0.5, 0.5, 0.5), (0.5, 0.5, 0.5)

〉
C2

〈
(0.5, 0.5, 0.5), (0.8, 0.3, 0.25)

〉 〈
(0.5, 0.5, 0.5), (0.8, 0.3, 0.25)

〉
C3

〈
(0.8, 0.3, 0.25), (1, 0.1, 0)

〉 〈
(0.3, 0.7, 0.75), (0.5, 0.5, 0.5)

〉

Table 5. Rough neutrosophic matrix for alternative.

F1 C1 C2

EX1
〈
(0.8, 0.3, 0.25), (0.8, 0.3, 0.25)

〉 〈
(0.5, 0.5, 0.5), (0.8, 0.3, 0.25)

〉
EX2

〈
(1, 0.1, 0), (1, 0.1, 0)

〉 〈
(0.8, 0.3, 0.25), (1, 0.1, 0)

〉
EX3

〈
(0.8, 0.3, 0.25), (0.8, 0.3, 0.25)

〉 〈
(0.5, 0.5, 0.5), (0.5, 0.5, 0.5)

〉
EX4

〈
(0.5, 0.5, 0.5), (0.5, 0.5, 0.5)

〉 〈
(0.5, 0.5, 0.5), (0.8, 0.3, 0.25)

〉
F1 C3

EX1
〈
(0.5, 0.5, 0.5), (0.8, 0.3, 0.25)

〉
EX2

〈
(0.5, 0.5, 0.5), (0.8, 0.3, 0.25)

〉
EX3

〈
(0.3, 0.7, 0.75), (1, 0.1, 0)

〉
EX4

〈
(0.3, 0.7, 0.75), (0.8, 0.3, 0.25)

〉
Step 4: Multiplying the truth lower matrices of alternative and weights of criteria

F1(T ) = F1(T i j)y×x ∗W(T i j)x×y =


0.8 0.5 0.5
1.0 0.8 0.5
0.8 0.5 0.3
0.5 0.5 0.3

 ∗

0.8 0.8 0.8 0.5
0.8 0.8 0.5 0.5
0.5 0.8 0.8 0.3

 ,

F1(T ) =


1.29 1.44 1.29 0.80
1.69 1.84 1.60 1.05
1.19 1.28 1.13 0.74
0.95 1.04 0.89 0.59

 ,
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λi = 4.8712 , -0.0324, 0.0113 and 0. Energy of truth lower approximation matrix = 7.3173.
Step 5: We determine the energy of lower and upper approximation of truth, indeterminacy and false
matrices.

Energy of

F1 = [(7.3173, 3.4893, 3.3375), (12.3286, 1.2554, 0.8043)].

Similaly we find the energy for every alternatives.

Step 6: Energy values for each alternative.
F2 = [(6.3293 , 3.9318 , 3.8498), ( 12.7576, 1.2032, 0.7652)],
F3 = [( 6.0865, 3.5045 , 3.2391), ( 12.8080, 1.2251, 0.7675)],
F4 = [( 7.1963, 3.3538, 3.1291), (11.8958, 1.2829, 0.7936)],
F5 = [( 7.0609, 3.4929, 3.3041), (13.0764, 1.2774, 0.9186)],
F6 = [( 5.8110, 3.8487, 3.6749), ( 13.0672, 0.9653, 0.5098)],
F7 = [( 6.0898, 3.8056, 3.6584), (11.9034, 1.2723, 0.7651)],
F8 = [( 7.3234, 3.4354, 3.2567), ( 12.5012, 1.1168, 0.6461)].

Step 7: Determine the values of the score function and accuracy function for rough neutrosophic
matrix energy values. The score function and accuracy function of F1 is calculated by using Eqs (5.1)
and (5.2). In the same way, other alternatives are calculated.

S core f unction o f F1 =
2 + 7.3173 + 12.3286 − 2(3.4893 + 1.2554) − (3.3375 + 0.8043)

4
,

σ(F1) = 2.0037,

Accuracy f unction o f F1 =
7.3173 + 12.3286 − 2(3.4893 + 1.2554) − (3.3375 + 0.8043)

2
,

τ(F1) = 3.0074.

The ranking order is as follows F8 > F5 > F1 > F4 > F3 > F6 > F2 > F7. In Table 6, it was
displayed. Alternative 8 is best to compare to others. So Factory 8 is selected as a good factory in that
area. Figure 1 shows the bar chart of both the score function and accuracy function of each alternative
which represents by MATLAB.

Table 6. Ranking of alternatives.

Factories Score funtion Accuracy function Ranking

F1 2.0037 3.0074 3
F2 1.5504 2.1009 7
F3 1.8572 2.7143 5
F4 1.9740 2.9480 4
F5 2.0935 3.1869 2
F6 1.7664 2.5328 6
F7 1.3535 1.7069 8
F8 2.2043 3.4087 1
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Figure 1. Barchat of ranking.

8. Comparative results

In a existing MCDM methods TOPSIS stay an good role with taken decision. So we solve our
taken problem with neutrosophic numbers by neutrosophic simplified-TOPSIS method [25]. We got
the same ranking order when the problem is solve by TOPSIS method. The final ranking formula for
TOPSIS method given below

R =
N−

N+ + N−
,

where, N+ is max ideal solution and N− is min ideal solution.
The final ranking values and order and the proposed method ranking values and order are displayed

in Table 7. This comparison of results proves that the proposed method is accurate and that the ranking
will remain the same. The ranking order of both results: F8 > F5 > F1 > F4 > F3 > F6 > F2 > F7.

Table 7. Comparative results.

TOPSIS result Proposed method result
Factories N+ N− R Order σ(F) τ(F) Order

F1 0.072 0.383 0.8418 3 2.0037 3.0074 3
F2 0.378 0.077 0.1692 7 1.5504 2.1009 7
F3 0.31 0.145 0.3187 5 1.8572 2.7143 5
F4 0.204 0.251 0.5516 4 1.9740 2.9480 4
F5 0.049 0.406 0.8923 2 2.0935 3.1869 2
F6 0.368 0.087 0.1912 6 1.7664 2.5328 6
F7 0.446 0.009 0.0198 8 1.3535 1.7069 8
F8 0.009 0.446 0.9802 1 2.2043 3.4087 1
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9. Conclusions

The combination of the rough matrix and the neutrosophic matrix is used to deal with uncertain
situations in multi-criteria decision-making problems. This paper achieves good results with the
proposed method by using the rough neutrosophic matrix and ranking formula in the MCDM
environment. The properties and operations of rough neutrosophic matrices were proven. The
problem is solved using the energy of a rough neutrosophic matrix; the problem is about selecting the
best factory in a particular area that satisfies some criteria set by the experts. As a result, factory 8 is
chosen as a good factory. The outcome of the problem is represented by the MATLAB figure. The
outcome was compared with the TOPSIS approach. The ranking will remain the same. Furthermore,
we will extend the concept of a rough neutrosophic matrix and its energy to other types of rough
matrices, such as interval-valued and multi-valued rough neutrosophic matrices.
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