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1. Introduction

Let C be the set of all complex numbers and R the set of all real numbers. We set N = {1,2,---},
Ny =NuU{0}and Z = {0, +1,+£2,---}. We denote by C? the set of all p dimensional complex column
vectors, and by M, (C) the set of all p X p complex matrices.

In this paper we consider periodic linear difference equations of the forms

x(n+1) = Hx(n), (1.1)
x(n+ 1) = Hx(n) + b(n) (1.2)

where n € Z, H € M,(C), x(n) € C? and b(n) € C” is a vector valued function with period p € N.
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The purpose of this paper is to give criteria of the uniform boundedness of the solutions to the above
equations. Criteria of the boundedness of solutions were given in [1-5]. Some related one-dimensional
results can be found in [6] (see also the references therein).

First, we give a necessary and sufficient condition for the sequence {L"} of a square matrix L to
be bounded, from which the criterion on the uniform boundedness of the solutions to the Eq (1.1) is
obtained immediately.

Second, a criterion on the uniform boundedness of the solutions for the Eq (1.2) is given by applying
a certain representation of solutions developed in [3]. It seems that its proof is not easy to obtain from
the usual representation of the solution by the variation of constants formula.

Finally, in connection with the Eq (1.2) with delay, we give the characteristic equation of a matrix
under the commuting condition. In more details, making use of the simultaneous diagonalization
theorem under the commuting condition AB = BA, we can apply the preceding results to the periodic
linear difference equation with delay of the form

x(n+ 1) = Ax(n) + Bx(n — p) + f(n), (1.3)
where A, B € M,(C), x(n) € C? and f(n) € C? is a vector-valued function with period p € N. But we

only consider the characteristic equation of the matrix M in a reduced equation y(n+1) = My(n) + g(n)
derived from the Eq (1.3).

2. Boundedness of the sequence {L"}

2.1. Spectral decomposition theorem

We define (n), as follows.

1, (k= 0),
n)y =3 nn-1)(n-2)---(n—k+1), k=1,2,---,n),
0, (k=n+1,n+2,--).

Denoting by (Z) a binomial coeflicient, we have

()

0T (n), (n), =n! and (n); =0 (k > n).

k
E or E, is the identity matrix in M,(C). We denote by O and 0 the zero matrix and the zero vector,
respectively.

Moreover, we denote by o(L) the set of all eigenvalues of a matrix L € M,(C) and by h,(L) the
index of n € o(L). Then G,(L) = N((L — nE)"") is the generalized eigenspace of € o<(L), where
N(L) = {x € C? : Lx = 0}. Clearly, C? is decomposed as C? = @nEU(L) G,(L). We denote by Q,(L)
the projection from C? to G,(L). Then Q,ZI(L) = Q,(L) and LQ,(L) = Q,(L)L.

Now, we state the spectral decomposition theorem for the matrix L € M,(C), which plays an
important role in this paper.
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Lemma 1. [1] Letn € o(L). If n # 0, then

hy(L)~1

L= Z Z ()W"_j(L—nE)"Qn(L), n=0,1,2,-

n
nea(l) j=0 J
In particular, operating O, (L) to (2.1), we have

hy(L)—1

Lo L=y (’;‘.)n"‘f@— NEYQ,(L).
=0
If n =0 € o(L), then
n _ 0’ nz h (L)’
LO,(L) = { LQ,(L), n< hZ(L) -1

2.2. Asymptotic behavior of L"

2.1

(2.2)

We discuss the asymptotic behavior of L" as n — oo using Lemma 1. For L € M,(C) we take the

operator norm ||L|| = sup, . ||Lx]|. Then we have
L] < (L]l

Clearly, if lim,,_,, ||L"u|| = oo for some u € C? \ {0}, then lim,,_,, ||L"|| = oo.
For A € (L), we set P, = Q,(L). We also set

os(L) ={neo):Inl <1}, oy(L)={nea(l):|n>1}

and
on(L)={ne€o(l):|nl =1}

The following lemma, which slightly modifies 1) and 2) of Theorem 6.1 in [3], is the most probably

known. We give a proof of it for completeness.

Lemma 2. Let A € o(L).
1) If A € os(L), then

IL" Pl < (0)pyay-1 A" O CONPAL, 1> ha(L)
where C(A) = hy(L) maXo j<i,)-1 (L — AEY||, hence
lim ||L"P,|| = 0.

2)If A € oy(L), then
lim ||[L" P u|| = oo

for all u € C? satisfying Pu # 0.

AIMS Mathematics Volume 8, Issue 10, 24116-24131.
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Proof. 1) Let A € os(L).
(a) The case A # 0: Since lim,,_,, (':l =0, (r > 1), it follows from Lemma 1 that for a sufficiently

large n,
hy(L)-1
n . ,
IZAENY ()A TIL = AEY Py
= I
ha(L)-1
(), e
< > = ——Cclipal
; T M@

< (Wl EC||IPy]l — 0asn — oo,

Thus lim,,_,, [|[L"P,|| = 0.
(b) The case A = 0: Clearly, 2° = 1,2" = 0 (n # 0) and hence L"P, = O.
Combining (a) and (b), we conclude that lim,,_,., L"P, = O holds.
2) Let A € oy(L).
For every u € C? satisfying Pu # 0, there is ad, 1 < d < hy(L) such that

(L—AE)Y'Pu+#0, (L—AE)Pu =0,

and hence,

n _ (n)a-1
LP’M_—(d—l)!

Since |1] > 1, we have lim,,_,, ||L"P,u|| = co. Therefore, the proof is complete. O

XYL = AE)Y P+ o((n)g, A7) (n — o0).

The following lemma is certainly known, but we also give a proof.

Lemma 3. Let 1 € on(L). If hy(L) > 1, then there exists a u € CP such that Pyu # 0 and
lim,,_,, ||L"Pul| = oo.

Proof. Since h,(L) > 1, there exists a v # 0 such that
(L-AEWw #0, (L-AE)*v =0.
It follows by induction that
L'v=nl""Ly—m-DA, n=2,3,---.

Hence we obtain

! 1
lim = lim ||[Lv — Av + —Av|| = ||Lv — Av|| # 0.
n—oo n n—oo n
Thus there exists a u € C? such that v = P u. Therefore, lim,,_,, ||L"P,u|| = oo holds. |

Now we consider the case when A € oy (L) with Ay (L) = 1.

Theroem 1. Let L € M,(C) and A € on(L). Then the following statements are equivalent:
1) hy(L) = 1.
2) |IL"Pul| = ||Paul| for all u € CP and n € N.
3)|IL"P,|| = ||P,|| for all n € N.
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Proof. 1) = 2). For any vector u € C” we have L"P,u = A"P,u by using (2.2). Thus
L Paull = ||A"Pull = |A"[|Paull = [|Paull.

2) = 1). Assume that 1) does not hold. Then we have A,(L) > 1. It follows from Lemma 3 that
there exists a u € C? such that lim,_,., ||[L" P, u|| = co. Thus we obtain that sup, . ||[L" Pu|| = oo holds,
which contradicts the assertion 2).

1) = 3). It follows from (2.2) that L"P, = A" P,. Hence ||L"P;|| = ||P,]| holds.

3) = 2). This is obvious from the property of the operator norm. O

The following result is easily derived from Theorems 1-3.

Proposition 1. Let o(L) = o5(L) U on(L). Then the following statements are equivalent:
1) hy(L) =1 forall A € oy(L).
2) sup,, 1L < oo.
3) sup,.oy IIL"ul| < oo for all u € CP.

Proof. 1) < 2). Assume that 1) holds. Since o(L) = o5(L) U on(L), we have E = } ., Pa. Thus
L" = Y coqy L"Py. 1t follows from Lemma 2 and Theorem 1 that ||L"P,|| < oo for all n € N and all
A € o(L). Therefore, we have
< DL Pyl < oo,
Aec(L)

Conversely, we assume that 2) holds. Since sup, o ||L"|| < oo, we have ||[L"P,|| < |IL*|||P,l] < oo for
A € oy(L). On the other hand, if A € oy(L) with h, (L) > 1, then lim,_, ||[L"P,|| = co by Lemma 3,
which leads to a contradiction. Hence 1) holds.

2) = 3) is obvious. 3) = 2) follows from the principle of uniform boundedness in Functional
Analysis ( [7, p.249]). O

A spectral radius r,(L) of a matrix L € M,(C) is defined by r,(L) = max{|1] : A € o(L)} and the
spectral radius r,(L) of L is given as follows:

ro(L) = lim [|L"]]". 2.3)
Clearly, (L) < ||L]|.
The following results follow from Theorems 1-3.

Lemma 4. The following statements are equivalent:
1) ro(L) < 1.
2) lim,_, |[|IL"P,|| = 0 for all A € o(L) and n € N.
3) lim, . ||[L"|| = O for alln € N.

Lemma S. Let r, (L) > 1. Then there exists a A € oy(L) such that lim,_,, ||L"Pu|| = oo for all u € CP
satisfying Pu # 0.

The following proposition gives a relationship between the spectral radius of a square matrix L and
lim,,_,. L".
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Proposition 2. Let r,(L) = 1. Then the following statements hold.
(D) lim,, o [|IL"P,|| = O for all A € os(L).
(2) sup,c IL*Pall = |IP.ll < oo for all A € on(L) with hy(L) = 1.
QB)If A € on(L) with hy(L) > 1, then there exists av € C? such that P,v # 0 and lim,,_,, ||L"P | =

2.3. Uniform boundedness of the solution to the Eq (1.1)

We denote by x(n; 7, w, b(+)) the solution of the Eq (1.2) through the point (r,w) € Z x CP. Then
x(n; T, w) = x(n; T, w,0) is the solution of the Eq (1.1) through the point (7, w).

Definition 1. [8] The solutions to the Eq (1.2) are said to be uniformly bounded if for any a > 0
there exists a B(a) > 0 such that ||x(n;t,w, b(-))|| < B(@) for all (t,w) € Z X B, and n > 1, where
B,={weC?l : |w| <al.

The solution of the Eq (1.1) through the point (7,w) € Z X C? is expressed as x(n;7,w) = H" "w.
Therefore, the following result, which is concerned with [9, Theorem 4.9 and Theorem 4.13], follows
immediately from Proposition 1.

Proposition 3. The solutions to the Eq (1.1) are uniformly bounded if and only if every eigenvalue n
of H satisfies either |n| < 1 or || = 1 with the index h,(H) = 1.

The following result is easily derived from Proposition 1 and Proposition 3.

Corollary 1. Let 0(H) = 05(H) U on(H). Then the following statements are equivalent:
1) h,(H) = 1 for all n € oy(H).
2) All the solutions of the Eq (1.1) are bounded.
3) The solutions of the Eq (1.1) are uniformly bounded.

3. Uniform boundedness of the solution to the Eq (1.2)

In this section, we give a criterion on the uniform boundedness of the solutions for the Eq (1.2),
namely, we state and prove the main result in the paper.

Theroem 2. The solutions to the Eq (1.2) are uniformly bounded if and only if every eigenvalue n of
H satisfies either [n| < 1 or |n| = 1,1° # 1 with the index h,(H) = 1.

To prove this theorem, we prepare some results and lemmas.

3.1. A representation of solutions to the Eq (1.2)

First, we give a representation of solutions to the Eq (1.2), which was given in [3]. Hereafter,
we abbreviate Q, = Q,(H). We denote by x(n; T, w, b(-)) the solution of the Eq (1.2) satisfying the
initial condition x(r) = w € CP, while by x(n;7,w) if b(n) = 0. Any n € N can be written as

n = k(n)p + r(n), k(n) = [;], 0 < r(n) < p — 1, where the symbol [a] stands for the largest integer

which is not greater than a € R. Set S ,(H) = Z;(l) H*, So(H) = O, and

n—-1

Su(H,b(T +)) = > H'"™"'b(x + i), So(H, b +-)) = 0.

i=0
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Then the unique solution x(n; 7, w, b(-)), n > 7 of the equation (1.2) with x(7) = w is expressed as
follows:

x(n; 7, w, b)) = H "w + H" " 'b(r) + H" "*b(r + 1)
+---+Hb(n-2)+b(n—-1)
= H" "w+ H" 7S 4oy (H")S ,(H, b(T + -))
+ SV(}’L—T)(H’ b(T + ))
To obtain the representation of solutions to the Eq (1.2), we define the characteristic quantities
Y(T, w, b(+)) and 6, (7, w, b(-)) as in [3].
For k,m,n € Ny, p(k,m,n) stands for the set of all finite sequences @ := (ay,az, -, &), @; €
No(i=1,2,---,k):
artay+-tap=m, a+2a,+ -+ kay =n.

For k,m € Ny and j € N we define

ko q G K\ [0 (k#0)
{ & },- =k 20 | e { 0 }j ‘{ I (k=0).

aep(k,m,k) i=1

Let f®(¢) be the k-th derivative of a function f(¢) and fO(®t) = f(¢). If aw) = (w - 17!, (w £ 1)
and w = 7°, then the k-th derivative of the composite function c(z) = a(z”) is given as follows:
By using Fad di Bruno’s formula [10] the k-th derivative ¢¥(z) at 17 is expressed as

k

O Z{ : } n*a®Gr) (n# 0, 1 # 1). G-

i=0 P
For ann € o(H) we set

hy(H)-1

1 .. .
D, < GH ~nE) (70,
Z,? (H) = ’[73(;1)-1]
- > B n = 0).
i=0

Then we define Z,(H, b(t + -)) by
Z,(H,b(t ++)) = Z,?(H)SP(H, 0,b(t +)).

Based on this, we can define the characteristic quantities y,(t, w, b(-)) and 6,(t, w, b(-)) for the Eq (1.2)
as follows:

Yo(T,w, b()) := v, (T, w, b(-); H) = Qyw + Z,(H, b(T + ) (" # 1),

On(T, w, b(*)) := 6,(T,w, b(-); H)
= (H’ - E)Q,w+ S ,(H, Q,b(t + )

AIMS Mathematics Volume 8, Issue 10, 24116-24131.
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hy(H)—1

1 :
= Z ;(/Z)(H - nE)‘QT]w + Sp(H, an(T +4)), (np =1).

i=1

Furthermore, we set Hy,; = %nk(H - nE), (n # 0) and
B,(r(n = 1);7,b(-)) = —H""VZ,(H,b(T + ) + 8 yiu—ny(H, Qyb(T + ), (F # 1),

B,(r(n —7);1,w,b(-)) = H'" O Q,w + S ,u_ny(H, Qyb(t +-)), (f = 1).

Clearly, B, (r(n); T,w, b(-)) is a function with period p.
A representation of solutions to the Eq (1.2) is given by the following lemma.

Lemma 6. [3] Letn € o(H). Then the component Q,x(n,t,w, b(-)) of the solution x(n;t,w, b(-)) to
the Eq (1.2) is expressed as follows:
D) Ifn’ # 1, then

Oyx(n; T,w,b(-)) = H" "y, (t,w, b()) + B,(r(n — 7); 7, b(-)).

In particular,
hy(H)~1
Qyx(n; T, w, b(-)) = Z(n =D Hyjyyy(T,w, b()) + By(r(n — 7); 7, b(")), (7 # 0).
=0

2)Ifn° =1, then

an(n; T$ W$ b(.))

e (), e
+ r(n—t
P e id { ; } Hiipy | H'™8,(,w, b()) + By(r(n = 7); 7, w, b(-)).
=0 i=j P

3.2. Lemmas

Next, we give some lemmas.
We set b = maXo<,<, [|b(n)||. Then by the definition of Z,(;(H) there exists a constant K(77) > 0 such
that ||Z,?(H)|| < K(1n). We also set S (b) = Y_, |IH|[*D.

Lemma 7. Let n € o(H). Then the following inequalities hold:
1) maxo<nsp 1S n(H, @b (T + )l < S (D).
2) 1Z,(H, b(t + -)Il < K(1)S (b).
3) llyy(, w, bC)I < [1Qylllwll + K(m)S (D), (" # 1).
4) 116,(t, w, b()Il < [[H” = ENQyllllwll + S (D), (1" = 1).

Proof. The proof follows from the definitions of S,(H, Q,b(t + ), Z,(t, H,b(-)), y,(t,w,b(-)) and
67](7-5 W5 b('))' O

AIMS Mathematics Volume 8, Issue 10, 24116-24131.
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Lemma 8. Let n € o(H). Then the following statements hold.
1) There exists a 3, > 0 such that

max {||B,(r(n — 7); 7, b()Il} < B,

0<n<p

holds forallt € Zand n > .
2) There exists a 3,(a) > 0 such that

max{||B,(r(n — 7); 7, w, b(-)Il} < B,(@)

0<n<p
holds forall t € Z, n > T and w € B,,.
Proof. Note that for any € o(H), we have, by Lemma 7,
IS vy (H, Qpb(T + )l < S (D).

1) Let” # 1. Since ||Z?](H)|| < K(n) and ||Z,(H, b(t + -))|| < K(1)S (b), we obtain that

I1B,(r(n = 07,6
< I ONIZ,(H, b+ D+ 1S oo (He Qb + )
< K(n) max [H|'S (b) + S 0)

=|K(n) max \H|I* + I)S(b) =: B,
<k<p

2) Letn” = 1. If ||w|| < a, then it follows that forany n > 7

1B, (r(n); 7, w, O < [IH QW+ 11S 10 (H, @b(T + )|

p—1
k kyp .
< max [HIFIQ;la + kZ; IHID = By(@).

Since the remainder is obvious, the proof is complete.

Lemma 9. Letn <€ o(H).
1)Ifne€os(H), then

1Qnx(n; 7, w, bOI < T(1) (IIQnIIIIWII + K(U)S(b)) + By

where T(17) = MaX:<y<oo( — T |l C ().
2) If n € oy(H), then lim, ., ||Q,x(n; T,w, b(-))|| = oo if y,(T,w, b()) # 0.

Proof. 1) Letn € os(H). Then it follows from Lemma 2 and Lemma 7 that
WH" ™y, (T, w, O
< IH" 7Oyl (7, w, bO)II
< (= Dl OCEIQN (IQyMlIwll + KapS ).

(3.2)
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where C(17) = hy(H) maXo<j<p, -1 |(H — nE)’||. Since
lim(n - Dl C ) = 0,

we have
(n = Dl C@) < T().

Thus for all n > T we obtain
10, x5 7, w, BN < T() (IQyller + K()S (b)) + By,

2) Letn € oy(H).
If v, (7, w, b(-)) # 0O, then there is a d > 1 such that

(H = nE)Y 'y, (t,w,b(-)) # 0, (H = nE)"y,(z,w, b()) = 0;

It follows from Lemma 6 and Lemma 8 that if y, (7, w, b(-)) # 0, then

H" "y, (T, w,b(-)) = (n B T)Q;m;(T, w,b(-)) — coasn — oo.
J
Thus Q, x(n; T, w, b(-)) — oo as n — oo. Therefore, the proof is complete. O

3.3. Proof of Theorem 2

We are now in a position to prove Theorem 2.
We set
onH)={neo(H):|nl=1n +1},

and
on(H)={n€eo(H):nl=1,7" =1}

Then oy(H) = oy,(H) U oy, (H).
For any (r,w) € Z x C? the component Q,x(n; T, w, b(-)) of the solution to the Eq (1.2) is given by
Lemma 6.

L. First we prove “if” part of Theorem 2.
If || < 1, then (3.2) holds.
Let n € oy,(H) with h,(H) = 1. Then it follows from Lemma 6 that

H" "y (1w, b() = " "yy(T, w, b()). (3.3)
Applying Lemma 7 and Lemma 8, we obtain that if w € B,,, then

1Qnx(r; 7, w, DO < [|Qylla + K(1m)S (D) + By, (3.4)

Indeed, we have

1Qyx(n; 7, w, DO
< 7" My (T w, DO + 1By (r(n = 1) 7, BO)|

AIMS Mathematics Volume 8, Issue 10, 24116-24131.
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S ||7’n(7', W? b())” +ﬁ77
< (IQllwll + K()S (b)) + B,
< N1Qyllr + Km)S (b) + B

Since the hypothesis yields

o(H) = os(H) U oy (H), CF = (&yeosnGy(H)) @(GBneaNO(H)Wn(H)),

any vector w € C” can be represented as

w = Z o,w + Z ow.

neos (H) nean, (H)
Set
B(a) = p(T + 1)(ga + KS (b)) + 2pp,
where
q= 0. K= max K.
necs (H)ZUUN0 (H) ! neos (H)Jon, (H)
and
neos (H)Uow, (H)IBU neors (H)Uory (H) (n)

If w € B,, then it follows from Lemma 9 and (3.4) that

bens 7w, BN > 1@y 7w, DI+ Y 1Qyx(ns 7, w, O

neos (H) neon(H)
< D T (IQylle + KmS®) + 5,1
neos(H)

+ Z 1Qyllar + K()S (b) + By)

neon(H)

D, [T (ga+KS®) +p]

neos (H)

IA

+ > lga+KS(b)+pl

neang (H)

= p(T + D)(ga + KS (b)) + 2pB = B(a).

This implies that x(n; T, w, b(+)) is uniformly bounded.
II. Next, we prove “only if”” part of Theorem 2.
It suffices to prove that if the solutions of the Eq (1.2) are uniformly bounded, then

C? = @yt Gy(H) = @pecry iyGr(H)) D @y, iy Wy (H)).

Since o(H) = os(H) U oy(H) U oy, (H) U oy, (H), any vector w € CP can be represented as

w = Z O,w + Z O,w + Z O,w + Z O,w.

neos(H) neoy(H) neon, (H) neoy, (H)
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The uniform boundedness of the solutions is equivalent to the uniform boundedness of the components
O, x(n; T, w, b(-)) of solutions for every n € o(H).

(1) The case n € oy(H): It follows from Lemma 9 that Q,x(n;7,w,b(-)) — o0 as n — oo if
Yn(T,w,b(-)) # 0, which is a contradiction. If y,(r,w,b()) = 0, then Q,w = —Z,(H,b(t + -)). Thus
O, x(n;T,w, b(+)) is bounded, but it is not uniformly bounded, which is a contradiction. Therefore,
oy(H) = 0, hence &, ()G (H) = {0}.

(2) The case n € os(H): It follows from Lemma 9 that

D 0T w, b()

neos (H)

is uniformly bounded.
(3) The case n € oy, (H): It suffices to prove G,(H) = W, (H). Assume h,(H) > 2. By Lemma 6 we

have
hy(H)—1

H" "y, (t,w,b(+)) = Z(n — 1) 1" HyjVy(T,w, b(-)) = 00 as n — oo,
J=0
which is a contradiction. Also, h,(H) = 0 yields a contradiction. If ,(H) = 1, then (3.3) holds, which
is uniformly bounded.
(4) The case n € oy, (H): Assume G,(H) = W,(H). Then using the same argument as in (1), we
have G, (H) = {0}. Indeed, we obtain from Lemma 6

Q,x(n; T, w, b(-)) — By(r(n — 7); 7, w, b(-))

e (=),
J
:( 2 T A {j}pH“"”

J=0 i=j

Hr(n_r)an(Tv W7 b('))

= [n ; T] H’("_T)(S,](T, w,b(:)) — coasn — oo,

It follows from Lemma 8 that Q,x(n; T, w, b(-)) — oo as n — oo. This is a contradiction. Therefore, the
proof is complete. m|

4. A characteristic equation

Making use of the simultaneous diagonalization theorem under the commuting condition AB = BA,
we can apply the preceding results to the Eq (1.3). But we only consider the characteristic equation of
the matrix M in a reduced equation

y(n+1) = My(n) + g(n), 4.1)

derived from the Eq (1.3). Indeed, making a change of variables y;(n) = x(n —p + 1), i € {0, 1,--- , p},
we have

y,'_l(l’l+ 1) = X(I’l—p+i) :yi(n)’ i=1,2,--- , 0,
Yp(n+1) = x(n + 1) = Ay,(n) + Byo(n) + f ().
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Therefore, the Eq (1.3) is transformed to the Eq (4.1), where

Yo(n) O FEFE O ... O 0
yi(n) O O E ... O 0
Yp-1(n) O O O ... E 0
yp(n) B O O ... A f(n)

We denote by M,,,(C) the set of all m X n complex matrices.
First, we give the characteristic equation det(zE — M) = 0 of the matrix M in the Eq (4.1) in the

following proposition.

Proposition 4. The characteristic equation of M is given by

det(zE — M) = det(z"*'E — A — B) = 0. 4.2)

Proof. Let z # 0. Then we have

zE —-FE

zE —-E O
det(zE — M) = det 0 ' .
zE -E
-B zE— A
zF —-E
7zE —-FE O
= det(zE) det -
. 0 _E
7E -F
zFE—A
(0]
- zE)Y'(-E O 0
o @B )
-B
zF -E
zE —-E O
=z’ det O £
zE -FE
—%B 7zE—A
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Repeating this procedure we have

zE -E
zE —FE O
det(zE — M) = 7% det
0 _E
zE -E
—ZLQB zE—-A
_ o-lp B -E
Z det(_z%_lB zE—A)

= 7°7VP det(zE) det ((zE —A) - (—ZPL_lB(zE)‘I(—E)))

1
=z det(zE -A- —B)
z
= det ("'E -~ A - B).
Thus the characteristic equation of M becomes
det(z’"'E - ?A - B) = 0.
If z = 0, then det(zE — M) = det(—M) = det(—B). |
Corollary 2. The matrix M is nonsingular if and only if the matrix B is nonsingular.

Next, we find the eigenvalues of M under the commuting condition (C): AB = BA.

Definition 2. Let two matrices A and B be semisimple matrices in M,(C). Then two matrices A and B
are said to be simultaneously diagonalizable if there exists a nonsingular matrix P € M,(C) such that
P~ 'AP, P~'BP are diagonal matrices.

Let ay,...,a, (not necessarily distinct) be all the eigenvalues of A and yy, ..., u, (not necessarily
distinct) all the eigenvalues of B. By the assumption (C) the simultaneous diagonalization theorem
holds, that is, there exists a nonsingular matrix P € M,(C) such that

@ -+ 0 w - 0
P'AP=D,=|: .. :landP'BP=Dg=|: -.. :|. 4.3)
0 - a, 0 - u,

Proposition 5. Let A, B be semisimple matrices in M,(C) and satisfy the commuting condition (C).
Then

p
det(zl — M) = ]_[(zf’“ R ThY
i=1
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Proof. Using Proposition 4, we obtain

det(zE — M) = det(Z’(zE — A) — B)
= det(z’(zE — PD4P™") — PDgP™")
= det(P(Z"(zE — D,) — Dg)P™")
= det(z”(zE — D4) — Dp)

p
= [ & i - .
i=1
Therefore, the proof is complete. O
5. Conclusions

We have given a criterion on the uniform boundedness of the solutions to linear difference equations
(LEs) with periodic forcing functions. In particular, we have shown a subtle difference on the uniform
boundedness of the solutions between the nonhomogenuous equation (1.2) and the corresponding
homogenuous equation (1.1).
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