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1. Introduction

In this paper, we are concerned with the following quasilinear Kirchhoff plate equation
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!
Vil = Ay + A%y — f g(t — $)A*Y(s) ds + agy,(x, 1)
0
+ay,(x,t —19) = kyln|y] in QX (0, c0)

y=0,y=0 on Ty x (0, c0)
!
By — B {f gt — s)y(s) ds} =0 on I’y x(0,c0) (1.1)
0
!
Boy = 0yyu — B> { f 8(r = s)y(s) dS} =0 on I x(0,00)
0
¥(0) =%, y:(0) = y' in Q,

yl(-x’ t) = jO(-x7 t) for (-x’ t) € Q X (_TO’ O)’

where Q is an open set of R? with regular boundary I' = dQ = I’y U T (class C* will be enough) such
that Iy N T'; = 0, the initial data y° and y' lie in appropriate Hilbert space, and k is a positive constant.
The boundary operators B, B, are defined by

By =Ay+ (1 —u)Byy,
Boy = 9,Ay + (1 — w)Byy,
and
Bly = 2V1V2yx1xz - V%ymxz - ngxlxl’

B2y = ar ((V% - V%)ychz + V1V2(yx2xz - yx1x1 )) ’

where the constant 0 < u < % is the Poisson coeflicient, v = (v, v,) is the unit outer normal vector to I’
and 7 = (—v,, vy) is a unit tangent vector.

Model (1.1) describes a viscoelastic Kirchhoff plate with rotational forces, which possesses a rigid
surface and whose interiors are somehow permissive to slight deformations, such that the material
density varies according to the velocity. This plate is clamped along I'y without bending and twisting
moments on I';. The analysis of stability issues for plate models is more challenging due to free
boundary conditions and the presence of rotational forces. Moreover, in our case, the logarithmic
source term competes with a delay term and the dissipation induced by both viscoelastic and frictional
terms. Therefore, it will be interesting to study this interaction.

In the past decades, the non-delayed wave equation under the influence of viscoelastic term has
create great interest in the research field of partial differential equations. The well-posedness, stability
and blow-up of solutions of such equations have recently been established in many papers. It has
been stabilized through various controls, such as internal control damping, boundary control, dynamic
boundary conditions, distributed damping, and thermal damping, see [1-12]. In [13], the authors
considered a viscoelastic plate equation with p—Laplacian and memory terms

!
Uy + A’u— Apu + f g(t — s)Au(s)ds — Au, + f(u) =0, (1.2)
0

and the existence of weak and strong solutions was obtained by Faedo-Galerkin approach and the
exponential stability was established by assuming that g decays exponentially. In [14], Cavalcanti
et al. considered the following wave equation

Uy — KoAu + f divla(x)g(t — s)Vu(s)lds + f(u) + b(x)h(u,) = 0,
0
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where frictional damping was also considered. They proved an exponential stability result for g
decaying exponentially and 4 being linear and polynomial stability result for g decaying polynomially
and 4 having a polynomial growth near zero. We mention, in the case where k) = 1 and f = h = 0,
that the uniform decay of solutions was obtained in [15]. For viscoelastic Kirchhoff plate equation,
in [10], the authors showed exponential and polynomial decay of the energy of the solutions. They
considered a relaxation function satisfying

—dog(t) < g'(1) < —dg(1), 0 < g" (1) < dag(n), (1.3)

for some positive constant d;, i = 0,1,2. Jorge Silva, Mufioz Rivera and Racke [16] studied the
following viscoelastic Kirchhoff plate equation

!
uwwmm%+A%—wmwm—f}m—gﬁmmn:Q
0

and established the general rates of energy decay of the system by assuming that

g'(1) < =£(0)g (), (1.4)
where &(f) 1s a non-increasing positive function satisfying that there exists a constant &, > 0 such that

&)
@)

Motivated by the work of Lasiecka and Tataru [17], where a wave equation with frictional damping
was considered, another step forward was done by considering relaxation functions satisfying

g'(t) < —H(g(1)),

< &.

where the function H > 0 satisfying H(0) = H’(0) = 0, and is a strictly increasing and strictly convex
near the origin. This condition was first introduced by Alabau-Boussouira and Cannarsa [18]. It turned
out that the convexity properties can be explored for a general class of dissipative systems [19,20]. We
also point out that the importance of the works [19,20] in which simple sharp optimal or quasi-optimal
upper energy decay rates have been established. Since then, the optimal energy decay of numerous
related systems are established by the methodology established in [19,20] (see also [21,22]).

For the case of viscoelastic plate equation with infinite history, we mention the recent work of
Al-Mahdi [23], where the author proved, under a general assumption on the behavior of the relaxation
function at infinity and by dropping the boundedness assumption on the history data, a relation between
the decay rate of the solution and the growth of the relaxation function at infinity.

Logarithmic nonlinearity usually occurs in expansion cosmology, supersymmetry field theory,
quantum mechanics and nuclear physics. Such problems have applications in many branches of
physics, such as nuclear physics, optics and geophysics. In [24,25], the authors studied a relativistic
version of logarithmic quantum mechanics in a bounded interval [a, b],

Uy — Uy +u = guln |u|2.

In [26], the global existence and uniqueness of solutions of a 3-D wave equation with logarithmic
nonlinearity was proved. Gorka [27] considered a 1-D case of the model in [26], and proved the global
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existence of weak solutions. In [28], the authors proved the existence of global classical solutions and
also studied the Cauchy problem of the 1-D case of the model. When studying the dynamics of Q-ball
in theoretical physics, Hiramatsu et al. [29] introduced the following equation

Uy — Au+ u+ u, + |ufPu = uln|ul,

and some numerical results are obtained. The global existence of weak solutions was proved by
Han [30]. Hu et al. [31] considered the equation

Uy — Au+ u, = uln |ul,

and established some energy decay rates. The result was improved in [32]. In [33], the authors
considered the plate equation with logarithmic nonlinearity, proved the global existence of solutions
and established that the solutions decay exponentially for a suitable initial data. Later, they extended
the results to the case of nonlinear damping, see [34]. We also mention the recent work [35], in which
the authors studied the global well-posedness of nonlinear fourth order dispersive wave equations
with logarithmic source term and subject to nonlinear weak damping and linear strong damping. The
general decay of a viscoelastic wave equation with logarithmic source, and of a Balakrishnan-Taylor
viscoelastic equation with nonlinear frictional damping and logarithmic source term were proved
in [36, 37] and [38], respectively. The energy decay of viscoelastic plate equation with logarithmic
nonlinearity was established in [39] by assuming that g’(¢) < —&(1)g”(¢).

The delay effects often appear in many practical problems. However, the delay effects can be
generally regarded as a source of instability. In [40], Nicaise and Pignotti established an exponential
energy decay of a wave equation with time delay

Uy — Au+ pyu; + pou,(t —7) =0,

under the assumption 0 < u, < ;. Kirane and Said-Houari [41] studied a viscoelastic wave equation
with a delay term in internal feedbacks and obtained a general decay result of the total energy to the
system by assuming (1.4) and u, < ;. The result was improved in [42]. For the plate equation with
time delay term, Park [43] considered

!
uy + ANu— M(|Vull)Au + o(r) f g(t — $)Au(s)ds + agu, + ayu,(t — ) = 0,
0

with Dirichlet-Neumann boundary conditions, and obtained a general decay result of energy under the
assumption (1.4). In [44], the author considered a viscoelastic plate equation with a linear time delay
term

t
Uy + A’u— f g(t— A% u(s)ds + ity + pou(t — 1) = 0.
0

and established the decay property of energy for either 0 < |up| < py or u; = 0, 0 < |uz| < a, and
assuming that the kernel g satisfies (1.3). For wave equations with time delay and logarithmic source,
we can find a recent result in [45].

Inspired by above results, in this paper, we study a quasilinear Kirchhoff plate with time delay and
logarithmic source with a wider class of relaxation functions. We first prove the local existence of
system (1.1), and then prove the global existence of solutions. We also establish a very general energy
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decay result of the system by following the general approach in [18]. As the considered assumption
here on the kernel is more general than earlier papers, hence our result improves and generalizes earlier
result in the literature.

The plan of the paper is as follows. In Section 2, we give some preliminaries. In Section 3, we
prove the local existence of solutions. The global existence will be proved in Section 4. Section 5 is
devoted to the general energy decay.

2. Preliminaries

We let
0

V={peH(®Q):¢=00nTy), W:{¢eH2(Q):¢:5

=0on F()},

(6. 6) = fg SIS, Il = (6,9),

and

(. Pr, = f (X)), llellf, = (@ @),
I

The operator b(-, -) is defined as

b(p, ¢) = f (‘:OX1X1¢xm + ooty Py, T U (‘:0x1X1¢XzXz + QDXzXQ¢xm) +2(1 - ﬂ)QDX1XQ¢X1X2)dx-
Q

For (¢, ¢) € (H4(Q) N W) x W, we know

0
fg (A%) gdx = b(e, ¢)—(Blso, 8—‘1’) +(Bop, Py, - 2.1

I

Due to I'y # 0, it is well known ([5]) that
cillgllipq, < (@, 9) < eallgllfp g, for some cr,c; > 0. (2.2)
Let C,, C,r, and C; be the imbedding constants with
lel? < Cpble, @), lI@llE, < Cpr,b(e, @) (2.3)
and
IVell* < Ciblp, @), Vo € W. (2.4)

Assumptions
Throughout this paper, we assume that:
(H1) The coeflicients ay and a; satisfy

0 < |a;| < aop. (25)
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(Hy) The kernel g : [0,00) — (0,00) is a non-increasing differentiable function,
with 1 - f g(s)ds := g; > 0, verifying
0
g'(t) < =¢()G(g(t)) forallt >0, (2.6)
where G : (0,00) — (0, 00) is a C'-function, which is either linear or strictly increasing and strictly
convex C2-function on (0, 7], o < g(0), G(0) = G'(0) = 0, and ¢ is positive, differentiable, and
non-increasing.

(H3) The constant k in (1.1) satisfies

2 3
< —ngle .

0<k
C;

2.7)

Remark 2.1. ( [46]) If G is a strictly iﬁcreasing and strictly convex C?* function on (0, ro], with G(0) =
G’(0) = O, then it has an extension G, which is strictly increasing and strictly convex C? function
on (0, 00). For instance, if G(ry) = a,G'(ro) = b, G"(ry) = ¢, we can define G, for t > ry, by

G = %ﬁ +(b=cro)+ (a + %roz - bro). 2.8)

As in [40], we define

2(x,0,t) = y(x,t — 071p) for (x,6,1) € Qx (0,1)x (0, T). (2.9)

Then, problem (1.1) is equivalent to

t
Vil Y = Ay + A%y — f g(t — $)A’y(s) ds + agy,(x, 1)
0
+az(x, 1,1) = kyln|y| in  QXx(0,c0)
T02/(x,0,1) + 7o(x,0,1t) = 0 for (x,6,1) € Qx(0,1)x (0, 7),
y=0,y=0 on Ty x(0,0)
' (2.10)
By - B, {f gt — s)y(s) ds} =0 on I'|x(0,00)
0
!
Boy —0yyu — B> { f gt — s)y(s) dS} =0 on I} X (0,00)
0
y(0) =", y(0) =y in Q,
Z(x’ 09 0) = jO(-x9 _QTO) =20 in Q X (0, 1)

Below, we recall some lemmas that are useful for our work.

Lemma 2.1 ([39]). Let € € (0, 1). Then there exists a., > 0 such that
sllns| < s* + aéosl_60 forall s > 0. (2.11)
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Lemma 2.2. [47,48] (Logarithmic Sobolev inequality) Let y be any function in H'(R?) and a > 0 be
any number. Then

2
a
f y* In [yldx < In(lyIDIyI> + 2—||Vy||2 — (1 +Ina)lyl*.
R2 T

Fory € V, we can define y(x) = 0, for x € R>\ Q. Theny € H'(R?), that is to say, for a general domain
Q, we have the following logarithmic Sobolev inequality,

2
a
f P Infyldx < In(llyDIyI + —27T||Vy||2 - (1 +Ia)llylP,
Q

where y is any function in V and a > 0 is any number.

Corollary 2.1. Let y be any function in W and a > 0 be any number. Then

a’C,
- b(y,y) — (1 + Ina)lyl. (2.12)

flyl2 In|yldx < In(llylDIIyl* + >
Q

Lemma 2.3 (Logarithmic Gronwall inequality [26]). Let d > 0 and B € L'(0, T; [0, o)). If a function
f:[0,T] - [1, o) satisfies

f() < d(l + ftﬁ(s)f(s)lnf(s) ds), 0<t<T,
0
then
f() < dexp(dfﬁ(s) ds), 0<t<T.
0

We need the following lemma.

Lemma 2.4. ( [10]) For any y € C(0, T; H*(Q)), we have

! 1 1d !
b( f g(t— S)}’(S)dS,Yz) = —Eg(t)b(y,y) 3 {(g 0 8*y)(1) - ( f g(S)dS) b(y,y)}
0 0

1
+3(8 0 (D). (2.13)

where
(g0 (1) = fo gt — s)b(y(1) — y(s), (1) — y(s))ds.
3. Local existence

Definition 3.1. Let T > 0. A pair of functions (y,z) is a weak solution of the problem (2.10) if it
satisfies:

y e C([0,T1,V)nC'(0,T], W),

AIMS Mathematics Volume 8, Issue 10, 24087-24115.
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!
f Vil vaw dx + f Vy,.Vw dx + b(y,w) — f g(t = s)b(y(s),w) ds + ay f yw dx
Q Q 0 Q

+a,; fz(x, I,Hwdx = kfyln [ylw dx,
Q Q
y(x’ O) = }’O(X), yt(-xa 0) = yl(x)’ Z(-xa 07 t) = yt(-x’ t)

and

1
f f (toz:(x, 0, 1) + zo(x, 0, 1)) v dOdx = 0,
QJo

z(x, 0) = 2o,
for a.e. t € [0, T and all test functions w € W and v € L*(Q x (0, 1)).

Theorem 3.1. Let yo € W, y, € V and 7o € L*(Q x (0, 1)). Assume that assumptions (HI)-(H3) are
true. Then, the system (2.10) has a weak solution.

Proof. By the Faedo-Galerkin approach, we construct approximations of the solution (y, z) as follows.
Let {wj}f;il be a basis of W. Define W,, = span{w,w», ...,w,,} and v;(x,0) = w;(x). We can extend
vi(x,0) by v;(x, 0) over L*(Q x (0,1)). We denote V,, = span{vi, v, ..., v} for m > 1. We define the
approximations y" € W,, and 7" € V,, by

Y0 = D piwi(0), (66,0 = > q;(0)vi(x,6),

= =

and which solve the approximate system

!
f ' Pyiw dx + f VyiIVw dx + b(y™, w) — f gt — s)b(y"(s),w) ds + ay f yi'w dx,
Q Q 0 Q

+a, fzm(x, 1,Hwdx = kfy’” In|y"|lw dx, ¥ weW,,
Q Q

Y'(x,0) = yg(0), ¥ (x,0) =y7'(x), 2"(x,0,1) = y/'(x,0), (3.1

1
f f (t0z)'(x,0,1) + 2 (x,0,1))vdOdx =0, Yv eV,
Q JO0
Z"(x,0) = zg, (3.2)
where
Vi —yp in W, yI' >y, in V and 7' — 7o in L*(Q x (0, 1)). (3.3)

This leads to a system of ordinary differential equations (ODEs) for unknown functions p; and g;.
Hence, from the standard theory of system of ODEs, a solution (y™, z") of (3.1)—(3.2) exists, for all
m>1,on][0,t,),withO<t,<T, Ym>1.

Replacing w by y?" in (3.1), integrating by parts over Q and using Lemma 2.4 to obtain

AIMS Mathematics Volume 8, Issue 10, 24087-24115.
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d o+2 ' m .m 1 mi|2
dl{ SIS + ( fo g(s)ds)b".y") + S IV

k
2.m m|2 m mi2
#3508y =5 [ Pl 51yIP)

1 ’ m 1 m m
= —aolly/'Il* - a fz’"(x, 1, 0)y"dx + A Y1) ~ 780Gy, (3.4)
Q
Let € be a positive number satisfying
lai] <& < 2ap = ai. (3.5
Replacing v by £7" in (3.2), and integrating by parts over Q X (0, 1), yields to
§ro d f f 1 2 & 2 & 2
—— " = —=||Z"(1 .
> " (x, 6, )|"dbdx 2IIZ (Lol" + ||yt Il (3.6)
Adding (3.4) and (3.6), we infer that
d
d—tS’"(I) = —alh/'I’ - a fz (x, 1L, o)yl 'dx + (g 0 &y")(1) ~ g(t)b(ym,ym)

& m £ om
—5lk (x, 1,0l + 5l I,

where

1 1 ! 1 1
g"(1) = p—llyf"||§i§+§(1— f g(s)ds)b(ym,ym>+—||Vy,m||2+—<goazym)
m m m é:TO m 2
- Iy * In |y"|dx + ~ ||y P+ 2= Iz (x, 6, |"dbdx. (3.7)

By using Young’s inequality and (3.5), one gets

d 1
Cen = —( o — '—21' - '5) bR - (g _ u) 1276 10 + (6" 0 ")0) = 380bG", 1) <0,

By integrating the last inequality over (0,1),0 < t < t,, it holds that

SHORS le lly?'IPds + sz 12" (x, 1, 9)lPds < E"(0), (3.8)

where M, :( '”2" )andM ( @ )
By using Lemma 2.2, (3.7) and (3.8), we observe that

2CS m m m k m
> bO™,Y") + IV |I2+§(1 +2(1 + Ina)) ly"I?

+2
— Y716 + (g -

1 t t
+(g 0 0*Y™) + €19 f f 2" (x, 6, 1)*dOdx + 2M, f Iy} Pds +2M, f 12" (x, 1, $)I*ds
QJo 0 0

< 28"(0) + klly"|I* Inly"|* (3.9)
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By choosing

(3.10)

one guarantees that
ka*C,
2n

81—

and
1+2(1+1na)>0.

This choice is possible thanks to (H3). Hence, we get

1
1672 + BO™ Y™ + VY1 + "I + (g 0 Y™ + f f 2" (x, 6, )|*dfdx
Q JO

! !
+ f Iy |Pds + f 2" (x, 1, s)|ds
0 0

< M5(1+ ™17 In ly"117), (3.11)

where M3 is a positive constant. On the other hand, we note that

Y0 =y"(,0)+ fo y'(., s)ds.

Applying Cauchy-Schwarz’s inequality and (3.11), one deduces that

f
B OR < 2O + 2T f b (s)IPds
0
!
< AV +2T f Mi(1+ "I In Iy [2)ds
0
<

t
2M4(1+ | ||y"1||21n||ymn2ds),
0
for some positive constant M4. Applying the Logarithmic Gronwall inequality to the last inequality,

we arrive at
Iy (OIF < 2M, exp(2M,T).

By combining the last inequality with (3.11), there exists a constant Ms > 0 such that

1
IIES + DO 3™ + IV P + "I + (g 0 0°y™) + f f " (x, 6, D) d6dx
QJO
! !
+f||y;"||2ds+fIIZm(X,l,s)IlzdngS.
0 0

This latter implies that

y" is uniformly bounded in L*(0,T; W),
y" is uniformly bounded in L*(0,T; V) N L™(0, T; L***(Q)),
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Z" is uniformly bounded in L*(0, T; L*(Q x (0, 1))),
Z"(1) is uniformly bounded in L*(0, T; L*(Q)).

Hence, we can extract subsequence of (y™) and (z™), still denoted by (y") and (Z") respectively, such
that

y" —y weakly starin L¥(0,T; W) and weakly in L*(0, T; W),
y" =y, weakly starin L¥(0,T; V)N L0, T; L"**(Q))
and weakly in L*(0,T; V) N L*(0, T; LF*(Q)),
" — z weakly starin L*(0, T; L*(Q % (0, 1))) and weakly in L*(0, T; L*(Q x (0, 1))),
2"(1) = z(1) weakly in L*(0, T; L*(Q)).

Since (y") is bounded in L*(0, T; W), then, by the use of the embedding of W ¢ L*(Q)(Q C R?), we
infer that (y") is bounded in L*(Q x (0, T)). Likewise, (v/") is bounded in L*(Q % (0,T)). Hence, by the
use of the Aubin-Lions Theorem, we get, up to a subsequence, that

y" — y strongly in L*(Qx(0,7)),

and
y" —>y aein Qx(0,7T).

Since s — ksIn|s| is continuous, it holds that
ky" In|y"| = kyln|y| a.ein Q x (0,T).

The embedding of W in L*(€2) implies that the sequence (¥ In|y™|) is bounded in L*(Q X (0, T)).
Applying the Lebesgue bounded convergence theorem, we deduce that

ky™In|y"| — kyln|y| strongly in L*(0,T;L*(Q)).

The remainder of the proof can be done as in [33,49], so we skip it. m]
4. Global existence

The energy to problem (2.10) is
, 1 ! 1
B0 = =3+ 5(1- [ s+ 519

+§(g062y)—§fy 1n|y|dx+—||y|| +—ff |z(x, 6, t)lzdé’dx. “4.1)

Let
! k
10 =(1- f g(s)ds)b(y,y) — k f ¥ Inyldx -+ Sy 4.2)
0 Q

Then, it holds

1 "
E(f)=mllyzllfj+§ —IIVytII + 5 (goazy)+ ff l2(x, 60, D d6dx + I(l) (4.3)
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Lemma 4.1. There exists c;3 > 0 so that

1 1
E'(1) < =c3(lyilP + llz(1, 1) + E(g' o Py)(1) - 580b(y.y) < 0. (4.4)

Proof. Multiplying the first equation of (2.10) by y,, we see
1 1
E'@) = —allyl’ - a f 2(x, Lydx + 5(g" o )0 ~ 58(0b(,y)
Q

1
+&710 f f 2(x,0,0)z,(x, 0, 1)dOd x.

2 Jo

Applying Young’s inequality, we get

|ai

—a fZ(x 1, Dydx < u||yz||2 = ll=(l DI, (4.5)

Using the second equation of (2.10), we have

1
&g f f z2(x,0,)z:(x, 0, )dOd x
aJo

1
=-£ f f z2(x, 0, )ze(x, 6, 1)dOd x
QJo0
_ ¢ ‘9 2
] fg fo 2 (e, 0,07 d0dx

_ ¢ f (. L)Y+ f (e(x,0,)dx
2 Q 2 Q
p ¢

= —Ellz(l,t)ll2 + 5”)’:”2- (4.6)
So, we find
, lall &N o (€ lail 2 2 80
E@ < ~(a0— = = Sl - (3 - =)l ol + (g 0 dy) = 2Fbny). (4
By the assumption on ay, a; and the choice of &, the proof is completed. O
We define c
0 = 51 - <1n e,
where 3k
C, = 5 + klna.
Then, Q has the maximum value E; = 'ﬁrf atr, = exp(zc1 ) = ae, Q is increasing on (0, r.), Q is
decreasing on (r,, 00), lirg Q(r) = 0 and lim Q(r) = —co.
Lemma 4.2. Assume ||yo|| < r. and 0 < E(0) < E,. Then,
lly()|| < r. and I(t) >0 forallt€[0,T). 4.8)
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Proof. From (2.12) and (3.10), we know

ka*C, k
(81 = =52 )o 0. 50) + (5 + K1+ Ina) = kin Iy Iy(o)IP
T 2

(€1 = kInlly@)iy@IP
200y OIl). (4.9)

First, we claim ||y(¢?)|| < r. for all ¢ € [0, T). Indeed, from (4.3) and (4.9), we have

I(1)

\%

V

1
E@® 2 1) 2 Qb OID- (4.10)

Suppose |[y(?)|| = r. for some 0 < t < T. Since the mapping ¢+ — |[[y(?)|| is continuous (as a
composition of two continuous functions), then there exists 7y € (0, T') such that ||y(ty)|| = r.. So,

E(1) = O(lly(o)ll) = O(r.) = Ej.
This contradicts to E(t) < E(0) < E; for all r > 0.
Now, we show I(t) > O for all € [0, T'). Using (4.9), |[y(?)|| < r. for all t € [0, T"), and the definition
of r., we see
ko0
I(t) > (Cy = kInr)|yll” = Ellyll > 0.
O

Theorem 4.1 (Global existence). Assume the conditions of Lemma 4.2 hold. Then the solution (y, ) to
problem (1.1) is global.

Proof. From (4.3), (4.8) and (4.9), we obtain

Inyllﬁiﬁ < (p+2)E(), 4.11)
21 47
by, ) < —— () < ————E(0), 4.12
) 2rg; — ka*C @ 2rg; — ka*C, ® (4.12)
(g 0 8%y) < 2E(1), (4.13)
IVyll* < 2E(), 4.14)
and

! 2
f f lz(x, 0, )|*dOdx < —E(¢). (4.15)

Q Jo &1

From these estimations and (4.4), we get, for some ¢4 > 0,
o+2 2 2 ! 2
yellyia + 2O, ) + (8 0 °y) + IIVyll™ + f f |z(x, 0, D"dOdx < ¢, E(0),
o Jo
which ends the proof. O
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5. Stability result

Let N > 0,N; > 0 and N, > 0O be constant that will be chosen later, and define

L(f) = NE(?) + Ny D) + N,¥(2) + Y(0),
1
O(t) = ——(yil’yi,y) + (Vy,, Vy)
p+1

1 ! !
V(@) =——— | gt— )yl y,y@® —y(s)ds - f gt — 5)(Vy:, Vy(2) — Vy(s))ds,
p+1Jo 0

1
(1) = 7o f f o0 l2(x. 6. )P dbdx.
QJO

In the sequel, we denote ¢ > 0 and ¢; > 0 a generic constant different from line to line even in the
same line.

and

Lemma 5.1. Assume the conditions of Lemma 4.2 hold. Then, L(t) is equivalent to E(t).

Proof. Using (2.4), (4.12) and (4.4), one sees

(@) = y)lr; < cllVy@) - Vy(s)lP*?

< c(IVyOIP + 93P N1Vy(0) = Vy()IP
< O} (O, 5(0) + bO(), YO = (5), 3(D) = ¥(5))
< c(m_—’;azCSE(m)gb(y(w = ¥(5), y(1) = ¥(s)) (5.1)
and
p+2 4n 5
Y@L < of Tre—TaC. E(0))" b(y (1), y(1)). (5.2)

Applying Young’s inequality, (5.2), (5.1), (2.4), we have

1 1 1 1
D@ < ——IylP? + ——————— P + <V + <V
@) < - SIS+ T IS * S IE + 5I
1 C
< g N — SV + =2b 5.3
< I + STDET O * I+ S0 (5.3)
and
W)l < p—m paed [ s- b0 -y
+3I9P + 5 f (= IV - Vy(s)lds|
0
1 2 p+1 ! 0+2
< m||y,||ﬁ12+c(1—gz) fo g(t = 9)ly(®) - ()| 72ds
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1 1- !
+ 19yl + Zgl f g(t = 9IIVy(®) — Vy(s)|Pds
0
L o(1-g) (WE@) (g0 &)
1 (1-g)C,
+2 1193 + %(g o 8%y).
So, we find
N] + N2 N] + N2

W33 + eNib(y,y) + ( NIVl

+2

IL(t) - NE(©)| < (p >

1
+cNy(g o (92y) + 79 f f |z(x, 6, t)|2d9dx
a Jo
< CE().

Taking N large enough, we obtain the desired result.

Lemma 5.2. The function ® satisfies

’ 1 2 2 2 81
V) < DIV k[ 3 nbldx- ooy

+c(g 0 0%y) + cagllyl* + catllz(1, DI

Proof. From (2.10), we get

V) = bl I - (1 [ Gds)br) +k [ mix

() = a0 + | g0t = 9BO(S) 30, (0.

Using (2.4), we see that
—a0(y) = @ @(1.0.3) < T03) + cajlyl’ + ealll=L oI,

From (2.2), we observe that

al gt — 90(5) — 3OV, | 4t = 90(5) ~ yO)ds)dx

<al | 4t = 900 - ¥ NdslPry

<at-g | 4t = IO — Y

< M(g 0 0%y).

¢

From this latter, we infer that

(5.4)

(5.5

(5.6)
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fo g(t = 5)b(y(s) — y(t), y)ds

< &by + —b(f gt = $)(y(s) = y(0)ds, f gt = )(y(s) = y(1)ds

co(l —gp)

(g 0 ).
2gc §oay

8
<=b +
<3 O,y

Substituting these above estimations into (5.6), we obtain (5.5). O

Lemma 5.3. Forany 0 < n < 1, the function ¥ satisfies

’ 1 ' -+ '
V() < —{m( fo g(s)ds) = nlydl:; - ( fo g(s)ds = n)IVylP
+2nb(y(0), () + llyl* + nllz(1, )|

+(cm + g(gles )(=g" 0 &y) + (c + cp)(g 0 &%)

+c(, €)(g 0 7y) 7. (5.7)

Proof. From (2.10), we get

’ 1 ' + '
o) = ([ swas)ifZ - ( [ sos)iva

t

—ﬁ ) ' (t = )yl ys, y(1) = y(s))dss

- = Ty, V0 - Vy(s)ds

o | 4t = 00~ y(s)ds, | (= 00 - y(s))ds)

- [ 4(s)ds) | 4t = DO, (D) - ¥

wan [ (= 00D - ¥(Nds + ay | 40t = (1, 1,50 — Y(s))ds

_ fo gt = $)(kyInyl, y(0) — y(s))dx

= ‘,ﬁ( fotw)dS)llyzllZii—( f g(S)dS)||Vyt||2+ZD (5.8)

i=3

Using (5.1), we have

1 !
Dy = —— f g'(t = )yl ys, y(1) = y(s))ds

IA

iy |p+2+c(n)H f SEDUORRTONE I
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IA

nlyillys — cm(gO)y™! fo gt = s)lly@ - (o)l 5ds

+ + 8 % ' ’
< i3 = cn(g0)y 1(zﬂgl_—’ZMZCSE(O)) fo g'(t = )b(y(1) = (5), y(®) = y(s))ds
= nllyll; + cOn(=g 0 &y). (5.9)
Making use of (2.4), we obtain
Dy = = [ =T 90 - Vrieds
1 !
< vyl + | f (1= 5)(Vy(t) ~ Vy(s))ds|
nt Jo
0 t
< vyl - B2 [ g - 9Ivyo) - Vyis)IPds
4n Jo
0C, (",
< n||Vyt||2—% fo g'(t = $)b(y(1) = y(5), (1) = Y(s))ds
= ¥+ By o0y, (5.10)

From (2.2), we find

Ds = b fo gt = )Y(1) = y(s)ds, fo 8t = (1) = y(5))ds)

IA

2
HX(Q)

ex [ e9ds) [ gt =50 = 56

2(1-g) f g(t = $)b((1) = ¥(), Y1) = Y(5))ds
C1 0

= c(gody).

o fo 8(t = ) = ¥(s))ds

IA

IA

(5.11)

Using the inequality b(u, v) < nb(u, u) + #b(v, V), we get

Dy = (1- fo g(s)ds) fo g(t = )b(y(1), Y(1) = y())ds

nb(y(t), y(1)) + c(17)(g 0 *y) (5.12)

IA

and

Dy

agp j; gt — )y, y(1) — y(s))ds

nlly > + c(m)(g o 8%y). (5.13)

IA
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Moreover, we have

Dy

a fo g(t — 5)(z(1,0), y(t) — y(5))ds
nliz(L, I + c(m)(g © 8%y). (5.14)

Using (2.11) and the relation 142 + 152 = 1, it holds that

IA

Dy = - fo g(t — s)(kyInlyl, y(t) — y(s))ds

IA

k j; gt = )(Y* + aqy' ", y(t) — y(s))ds

IA

Ky, fo 8(t = () = Y(5))ds) + kae,(y' ™, fo g(t = (1) = (5))ds)

t 2
< I + c@)(g 0 %) + Bl + (61, )| f 8(t = () = y(s)as||
0 l+60
< ¢81b(y,y) + c(61)(g © 8°Y) + (61, €)(g © 52y)ﬁ, (5.15)
where we used the fact that ||y||ﬁ < ¢b(y,y). Thus, we obtain
1 ! !
’ o+2 2
V() < —{m( fo g()ds) = iyl — ( fo g(s)ds —n)lIVy
+(n + €61 )pO(0), y(0)) + iyl + llz(1, DI
(O)CS ’
+(em + E2)(=g 0 8 + (e + e + @) (g 0 &)
+¢(81, €)(g 0 8y) . (5.16)
Taking 6, > 0 so that ¢, = n, we have (5.7).
Oa
Lemma 5.4. The function Y satisfies
1
T (1) < ||y,f||2 —T1pe f f l2(x, 0, 1)|*dOd . (5.17)
QJO
Proof. Using (2.10) and z(x, 0, 1) = y,(x, 1), we get
1
(@) = 27 f f e (x, 0, 0)z,(x, 0, )dOdx
Q JO
! 0 6 2
= - =070 |z(x, 0, )*d6d
fgfo e %Iz(x )| “dOdx
1
= — f e z(x, 1, 1) dx + f z(x, 0, H)]*dx — 7 f f e \z(x, 0, 1)|>d6dx
Q Q Q JO
1
< lyP - Toe™ f f (e, 6, ) dodx.
Q Jo
O
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Lemma 5.5. Let ty > 0. Then, there exists y > 0 and cs > 0 satisfying

L'(t) < —xE@) +cs(g0 %) +c(&)(gody) ™ fort> f.

Proof. Summarizing (4.4), (5.5), (5.7) and (5.17), we obtain

( fo g(s)ds =) = — |yl

%g’ 2Nanfb(y, y) + Nik f ¥ Inlyldx

a
a
+{Nic + No(c + c()}(g 0 )
{
a
a

L' <

zg

| =

— Na(c(m) + g( < S)}(g’oazy)

Nc - Nycag — Nzn—l}ny,n — {Ne = Nica? - Nonliz(L. DI

+

f
Ny f g(s)ds =) = NiJlIVy,IP?
1
+N2C(r]’ 60)(g ° 82)’)% - TOe_TO f f |Z(x7 97 l)lszdx
QJOo

By (H;), for any #, > 0, we get

! )
f g(s)ds > f g(s)ds := gy fort > t.
0 0

Applying this, (2.3) and (2.12) to (5.19), we deduce, for 0 < y < 2Ny,

{Nzgo - N 0+2

L) < B0~ (- N = b

+Nyc + Nz(C +c(m) + }(g 0 8%y)

= No(c(p) + g(oz )i’ 0 8%y)

Nago =) = Ny = SNV + Nactn, @)(g © )™

S —X—fn’ f f I2(x, 6, )2 d6dx

kN1~ —}(1n||y|| =1 =TI

-1
{
{
—~{Ne = Niea§ = Non = Hlyd? - {Ne = Nicat = Nanlllz(1, )|
a
~(

First, we pick N, satisfying
2N,
Ny, > —.
80

(5.18)

(5.19)

(5.20)

(5.21)
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Second, we select 7 > O properly so that

80 Nigi
0 d — 2N, 0.
<n<2(p+1) an 2 n >
Then, we get
N
Na(go—n(p + 1)) =Ny > =82 _ N, > 0, (5.22)
and
Ny(go —1n) — N1 > Na(go — n(p + 1)) = Ny > 0. (5.23)
Third, we take N > 0 suitably large so that
N g(0)Cy
3 Nz(c(n) + p ) > 0,

Nc—Nlca(z)—Ngn— 1>0,

and
Nc — Nlcaf - Nonp > 0.

Finally, we choose y and k small enough to get

L@ < —E@®)+cs(go &) +c(e)(g 0 8y)"
+h{Vy = 5 )(In Iyl = 1 = Ina) P

From (4.8), we obtain

In|y|-1-Ina<In(x*)—1-1Ina =0, (5.24)
which completes the proof. O
Now, we define
!
Ao(1) = %] f b(y(t) — y(t = ), y(t) = y(t = 5))ds, (5.25)
0

where g > 0.

Lemma 5.6. Let (H,) and (H,) hold. Then, there exists g > 0 such that

o 0 < G (L 02
(800 < -G (m< g 0 ")), (5.26)

where G is an extension of G.

Remark 5.1. For the proof of the above lemma, we need the folowing Jensen’s inequality: Assume F is

a concave function on [a,b], f: Q — [a,b] and g are in L'(Q), with g(x) > 0 and f gx)dx=m> 0,
Q

then

1 1
—~ f FIf()]g(x) dx < F|— f f(@g() dx|
m Jo m Jo
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Proof. From (4.4) and (4.12), we get
do(r) = % f b(y(t) = y(t = $),9(t) — y(t — $))ds
0

2 f
< 4 fo (bG@. Y1) + b0t ~ ), )t ~ 5)))ds

8ng !
< E@®) + E(t—5)d
= f(2ﬂgl—kazcs).fo (B B = 9)ds

1 !
< brg E(0)ds

t2rg; — ka*Cy) Jo
16mgE(0)

< - 5.27
T 2mg — ka*Cy ( )

With suitable choice of ¢, we can have
Ao(®) <1 fort>0. (5.28)

By using (2.6), (5.28), the relation G(ks) < kG(s) for 0 < k < 1 and 0 < s < ry, and Jensen’s
inequality, we find

(=g 0 &°y)(1) - fo g'(t = 9)b(y(t) — y(s), y(t) — y(s))ds

= - f g ()b(y(t) — y(t = 5),y(t) — ¥(t = 5))ds
0

1 A
= - f Ao(D)g ()gb(y(t) — y(t = 5),y(t) — y(t — 5))ds
qo(0) Jo

f A(DE(D)G(g()gb(y(t) — y(t — ), y(t) — y(t — 5))ds
qAo(®) Jo
£(@)

qAo(1)
f{;t) ( f ()b(y(1) = y(t = $),y(t) = ¥(t = 5))ds)

\%

G(ﬂo(t)g(S))qb(y(t) = y(t = ), y(t) = y(t — s5))ds

W%

\%

- ’“”G( f SEIDO) = Y1 = ), ¥(0) = ¥t = $))ds)

fé<f> f 80t = B — (5). Y1) ~ y(s)ds)

a(;
’{() G(dg o Py (5.29)

which yields (5.26). O

Theorem S5.1. Suppose that the conditions of Lemma 4.2 hold. Then, there exist constants Cy > 0,
co > 0 and € > 0 satisfying

Co

E@®) < 1
(1+ J £'*=(s)ds)”

if G is linear (5.30)
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and

Co

E(r) < CotﬁKgl _
<t1+lfo flfg(s)ds

if G is nonlinear (5.31)
— -1

fort >t = max{ty, 1}, where K,(s) = sK’'(es), K = ((G 1)ﬁ) .

Proof. Due to (4.4) and (4.13), we observe

(g0 0%)(1) = (g 0 6%y) ™ (g 0 3%y) ™% < c(g 0 3y)™a. (5.32)

Case 1: G is linear
From (2.6), (4.4), (5.18) and (5.26), we infer that

XEWE®) + es£(1)(g © 8Y) + @) (1)(g 0 )™

XL + e5(=g 0 (1) + (&)l (0) 5L (1)(g © V) ™5

—xDE®) = 2¢5E' (1) + c(&){(—g o (92y)}ﬁ

~X{DE(t) — 2¢5E'(1) + C(Eo){—E'(t)}ﬁ, t> 1, (5.33)

{OL' (1)

(AN VAN VAN VAN

where we used that {(¢) < {(¢ — s) in the third inequality.
Applying Young’s inequality, we get

{TOMEC ()L (1)
< —x"TODET (1) = 2es U (DEC(DE' (1) + c(e){ *(NE(1)(=E' (1))
< ¢ FUDE" (1) = 2esL°(0)EV(0)E (1) + () (VEX(1)(—E' (1)) %
< —x"TODE (1) - 25 (0)EV(0)E' (1)

+e(){024 O (OE (1) + c(6)(—E (1))}

(i = cle)52)Z O DE (1) = (265 (0)E(0) + c(en)c() ) E' (1) (5.34)

IA

for 6, > 0.
Taking 6, small enough, we have

{TUDEC (L (1) < —col TUNET(1) — ¢1E'(1). (5.35)
Thus, we find

(LOMEC ()LL) + c1E(D)
= (1 + )ME@)* (OL() + & ™ (OE (OE (OL(t) + L (ME“ ()L () + c7E' (1)
< —cel"TODEO®), t > 1. (5.36)
Let
Li(@t) = {MODE (L) + ¢, E(2),

then
L) ~ E().
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This latter and (5.36) yield to
L) < —cs "0 LTOW), 12 1, (5.37)

which gives (5.30).
Case 2 : G is nonlinear . 1
Using (5.18), (5.26), (5.32), and the facts that G  is increasing, and ™o < ¢ for t > 1, we derive

L,(t) < —)(E(l) + C5(g o (92);) + C(fo)(g o 62)})%
< —xE() + cs(g 0 8*y) ™0 + c(&)(g 0 0%y) o

t—1, ¢q , Ty
< —xE@) + (cs + C(Eo)){aG (%eg 0 &y)(1))}
L= q , g
< —xE(®) + (cs + (&)™ {G (t%(—g 0 &”y)(1))}
< —XE@W) +(cs + TG (—L—(=g' 0 &)}
["*'EO é’(l»)
= YE®) + (cs + c(@) ™o K\ (), 1 > 1, (5.38)
where
f, = max{to, 1}, a(t) = — (=g’ 0 Py)(®), K~' = (G )™a. (5.39)
1m0 (1)
We define, for ¢ > 14,
L) = K'( £ E(t))L(1) + E(), (5.40)
t1+eo
where € < ry and E(r) = %, then we note 5—&(¢) < rp and L,(¢) ~ E(2).

tl+50
Since K’, K” > 0 on (0, ry], we have, for r > 11,

L = K'(—=&0) = E(1) + ——& (1)) L()
l—1+eo (1 + E())IHEO t1+50
+K'(-80)L (1) + E'(1)
t|+60
< —xK'(==&0)E®)
l’“‘O
Hes + @™ K (——&0)K ™ (a() + E'(1). (5.41)
T
One knows the convex function K satisfies
¢p < K'(¢) + K(p) for ¢ € (0,K'(ro)], ¢ € (0,ro] (5.42)
and
K*(¢) = ¢(K')"(¢) = K(K')"(¢)) for ¢ € (0, K'(r0)], (5.43)
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where K* is the conjugate function of K.

Applying (5.42) and (5.43) with ¢ = K’( = 8(t)) and ¢ = K~ (a(?)) to (5.41), we get

t!

Ly ()

IA

—XK'( 81 8(;))E(t)+(c5+c(60))tﬁ1<'( 81

tl+50 l»1+50

IA

K/ (——EM)E®) + (cs + c(e) ™ a(r)

t I+

1
+(c5 + c(e))t™o X

(K (—em)w) (K (—-em)) -
A T+

—YEOK' (=

tl+60

+(cs5 + c(eo))aK’( 6;

l”f()

IA

8(l))8(t)

= ~(YE(O) ~ (cs + c(e0)e))K'(——E0)E0) + (¢5 + clea)t ™ o).
T+

for t > t;. Taking & > 0 small enough and using (5.39), we have

L < ek (- {0

for t > t,. Now, we set

L) = (L (1) + 2¢10E(t) fort > 1,

then
L,(t) ~ E(¢).

This latter and (5.45) give us

Li(®) C(OLi(t) + (L (t) + 2¢10E' (1)

el (DK

t I+¢y

ol (DK (=

t1+50

=~ (K (=

tH—eo

IA

IA

8(t))8(t), t>1,

which gives

f é(S)K'

d/
alK

Since

~sm)ew) <0

t L+

AIMS Mathematics

(o (¢

E1))E(1) + (c5 + cleo)) ™ 1)

EW)EWD + 2 (=g 0 PY)0)

Lz(fl)

)K-l(a(z)) + E'(f)

&)

t I+

(5.44)

(5.45)

(5.46)

E(1))E(1) + cro(—g’ 0 *y)(1) + 2c10E (1)

8(t))8(t) —2¢10E(8) + 2¢10E (£)

(5.47)

(5.48)
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we obtain
Ly(t
&Mmfmm<ﬂ” (5.49)
t l+60 9
and consequently,
E(t
( ) 8(t) f L(s)ds < (5.50)
l— l+50 l— l+eO l— l+eo
By the definition of K,, we observe that
8 t
( ) { (8)ds < (5.51)
[’1“0 f tl+50
and hence
&) < 17 Ky (——g——). 12 1. (5.52)
1
1o f {(s)ds
1
This proves (5.31). O

Examples 5.1. The following two examples illustrate our results:
1) G is linear

Let g(t) = ae ™Y where b > 0 and a > 0 is small enough so that (H,) is satisfied, then g'(t) =
—£(1)G(g(t)) where G(t) = t and &(t) = b. Therefore, we can use (5.30) to obtain

Co
(1+0)%

E(?) <

2) G is non-linear
Let g(t) =

(1:‘0,], where g > 1 + ) and a is chosen so that hypothesis (H,) remains valid. Then

g () = —bG(g(), with G(s)=s7,

where b is a fixed constant.
(eg+1)(g+1)

Since K(s) =s~ ¢ . Then, (5.31) gives, Vt > t;
C
E(f) < —
f 1+ g+

6. Conclusions

This paper focuses on the existence and the asymptotic stability of solutions for a quasi-linear
Kirchhoff plate equations in a bounded domain of R?, subject to viscoelastic and frictional dissipative
terms and with the presence of rotational forces, delay and logarithmic source terms. This equation
describes the motion of a plate, which is clamped along one portion of its boundary and has free
vibrations on the other portion of the boundary.

As future works, we can change the type of damping by considering, for example, Balakrishnan-
Taylor damping (of the form (Vy, Vy,)Ay) or strong damping (of the form A%y,).
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