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Abstract: Let Rl,k = Fpm[u1, u2, · · · , uk]/〈ul
i = ui, uiu j = u jui = 0〉, where p is a prime, l is a positive

integer, (l−1) | (p−1) and 1 ≤ i, j ≤ k. First, we define a Gray map φl,k fromRn
l,k to F((l−1)k+1)n

pm , and study
its Gray image. Further, we study the algebraic structure of σ-self-orthogonal and σ-dual-containing
constacyclic codes over Rl,k, and give the necessary and sufficient conditions for λ-constacyclic codes
overRl,k to satisfy σ-self-orthogonal and σ-dual-containing. Finally, we construct quantum codes from
σ-dual-containing constacyclic codes over Rl,k using the CSS construction or Hermitian construction
and compare new codes our obtained better than the existing codes in some recent references.

Keywords: quantum codes; σ-self-orthogonal; σ-dual-containing; constacyclic codes; CSS
construction; Hermitian construction
Mathematics Subject Classification: 94B05, 94B15

1. Introduction

Constructing quantum codes is an important subject in the quantum information. The CSS
construction and the Hermitian construction were introduced to construct quantum codes from classical
error-correcting codes in [1–4]. Constructing quantum codes needs Euclidean dual-containing or
Hermitian dual-containing codes with respect to the Euclidean or Hermitian inner product using the
CSS construction or Hermitian construction. Fan and Zhang [5] introduced the Galois inner products
to generalize the Euclidean inner product and the Hermitian inner product. In [6], Hermitian LCD λ-
constacyclic codes over Fq were addressed by studying the Galois inner product. Galois hulls of linear
codes over finite fields were addressed by studying the Galois dual in [7]. In [8], σ-self-orthogonal
constacyclic codes over Fpm + uFpm were studied by generalizing the notion of self-orthogonal codes
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to σ-self-orthogonal codes over an arbitrary finite ring. Fu and Liu [9] extended constacyclic codes to
obtain Galois self-dual codes.

Now, many quantum codes have been constructed by studying the algebraic structure of cyclic
and constacyclic codes over finite fields, finite chain rings and finite non-chain ring. Huang
et al. [10] constructed quantum codes from Hermitian dual-containing codes by applying the Hermitian
construction. In [11], some quantum codes were obtained from constacyclic over Fq[u, v]/〈u2−γu, v2−

δv, uv = vu = 0〉 by using the CSS construction. Gowdhaman et al. [12] studied the the structure of
cyclic and λ-constacyclic codes over Fp[u,v]

〈v3−v,u3−u,uv−vu〉 and constructed quantum codes over Fp using the
CSS construction. Islam and Prakash [13] obtained quantum codes from cyclic codes over a finite
non-chain ring Fq[u, v]/〈u2−αu, v2−1, uv− vu〉 using the CSS construction. Kong and Zheng obtained
some quantum codes from constacyclic codes over Fq[u1, u2, · · · , uk]/〈u3

i = ui, uiu j = u jui〉 [14] and
Fq[u1, u2, · · · , uk]/〈u3

i = ui, uiu j = u jui = 0〉 [15] using the CSS construction. As an application, Galois
inner product can be applied in the constructions of quantum codes. Some entanglement-assisted
quantum codes were obtained from Galois dual codes in [16–18].

Motivated by these works, we define a new non-chain ring Rl,k by generalizing [15] and study the
algebraic structure of σ-self-orthogonal and σ-dual-containing constacyclic codes over Rl,k based on
the σ-inner product. Then, we give the necessary and sufficient conditions for λ-constacyclic codes
over Rl,k to satisfy σ-self-orthogonal and σ-dual-containing. Finally, we obtain some new quantum
codes from σ-dual-containing constacyclic codes over Rl,k using the CSS construction or Hermitian
construction and compare these codes better with the existing codes that appeared in some recent
papers.

2. Preliminaries

Let R be a finite commutative ring, I is an ideal of R and I is generated by one element, then I is
called a principal ideal. If all the ideas of R are principal, R is called a principal ideal ring. If R has a
unique maximal ideal, R is called a local ring. If the ideals of R are linearly ordered by inclusion, R is
called a chain ring.

Let Rl,k = Fpm[u1, u2, · · · , uk]/〈ul
i = ui, uiu j = u jui = 0〉, where p is a prime, l is a positive integer,

(l − 1) | (p − 1) and 1 ≤ i, j ≤ k. It is a commutative non-chain ring with pm(l−1)k+m elements. Since
(l − 1) | (p − 1), then

ul
i − ui = (ui − α1)(ui − α2) · · · (ui − αl),

where αi ∈ Fpm for i = 1, 2, · · · , l.
Let

ςi j =
(u j − α1) · · · (u j − αi−1)(u j − αi+1) · · · (u j − αl)
(αi − α1) · · · (αi − αi−1)(αi − αi+1) · · · (αi − αl)

,

where 2 ≤ i ≤ l and 1 ≤ j ≤ k.
We can get that

∑
i j ςi j = 1, ς2

i j = ςi j and ςi jςi′ j′ = 0, where (i, j) , (i
′

, j
′

).
Let e1 = ς21, e2 = ς22, · · · , ek = ς2k, · · · , e(l−1)k = ςlk, e(l−1)k+1 = ς11. Let s = (l − 1)k + 1, thus,

1 = e1 + e2 + · · ·+ es, e2
i = ei and eie j = 0, where i , j and i, j = 1, 2, · · · , s. By the Chinese Remainder

Theorem, then

Rl,k =

s⊕
j=1

e jRl,k =

s⊕
j=1

e jFpm .
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For any element r ∈ Rl,k, it can be expressed uniquely as

r = r1e1 + r2e2 + · · · + rses,

where ri ∈ Fpm for i = 1, 2, · · · , s.
Let Aut(Rl,k) be the ring automorphism group of Rl,k. If σ ∈ Aut(Rl,k), then we can get a bijective

map

R
n
l,k → R

n
l,k,

(a0, a1, · · · , an−1) 7→ (σ(a0), σ(a1), · · · , σ(an−1)).

Let a = (a0, a1, · · · , an−1) and b = (b0, b1, · · · , bn−1) ∈ Rn
l,k, the σ-inner product [8] of a, b is defined

as
〈a, b〉σ = a0σ(b0) + a1σ(b1) + · · · + an−1σ(bn−1).

When Rl,k = Fpm and σ is the identity map of Fpm , then σ-inner product is the Euclidean inner
product. When Rl,k = Fpm and m is even, ∀a ∈ Fpm , if σ(a) = ap

m
2 , then σ-inner product is the

Hermitian inner product. When Rl,k = Fpm and ∀a ∈ Fpm , σ(a) = apl
, 0 ≤ l ≤ m − 1, then σ-inner

product is the Galois inner product [5].
When 〈a, b〉σ = 0, a and b are called σ-orthogonal, for any code C over Rl,k, the σ-dual code of C

is defined as
C⊥σ = {x|〈x, y〉σ = 0,∀y ∈ C}.

If C ⊆ C⊥σ , C is σ-self-orthogonal, if C⊥σ ⊆ C, C is σ-dual-containing, and if C = C⊥σ , C is
σ-self-dual.

Let θt be an automorphism of Fpm , θt: Fpm → Fpm defined by θt(a) = apt
, where 0 ≤ t ≤ m − 1. We

can define the automorphism of Rl,k as follows:

σ : Rl,k → Rl,k,
s∑

j=1

a je j 7→

s∑
j=1

e ja
pt

j .

Let c = (c0, c1, · · · , cn−1) ∈ Rn
l,k and λ be a unit of Rl,k, then the constacyclic shift δλ of c is defined

as δλ(c) = (λcn−1, c0, · · · , cn−2). If δλ(C) = C, C is called a λ-constacyclic code of length n over Rl,k. In
particular, when λ = 1, C is called cyclic code and negative cyclic code when λ = −1.

Let f (x) = a0 + a1x + a2x2 + · · · + ar−1xr−1 + xr be a monic polynomial, the reciprocal polynomial
of f (x) is denoted by f ∗(x) = xr f (x−1).

Each codeword (a0, a1, · · · , an−1) ∈ Rn
l,k can be represented by a polynomial a0+a1x+· · ·+an−1xn−1 ∈

Rl,k[x]/〈xn − λ〉,

ψ : Rn
l,k → Rl,k[x]/〈xn − λ〉,

(a0, a1, · · · , an−1) 7→ a0 + a1x + · · · + an−1xn−1.

In polynomial representation, a λ-constacyclic code of length n over Rl,k is defined as an ideal of
Rl,k[x]/〈xn − λ〉.
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We define a Gray map φl,k : Rl,k → F
s
pm by a =

∑s
i=1 aiei 7→ (a1, a2, · · · , as), and we extend φl,k as

φl,k : Rn
l,k → F

sn
pm ,

(a0, a1, · · · , an−1) 7→ (a1,0, · · · , a1,n−1, a2,0, · · · , a2,n−1, · · · , as,0, · · · , as,n−1),

where ai = a1,ie1 + a2,ie2 + · · · + as,ies ∈ Rl,k, i = 0, 1, · · · , n − 1.
∀r ∈ Rl,k, the Gray weight of r is defined as wG(r) = wH(φl,k(r)), where wH(φl,k(r)) is the Hamming

weight of the image of r under φl,k.
∀x = (x1, x2, · · · , xn), y = (y1, y2, · · · , yn) ∈ Rn

l,k, the Gray weight of x − y is defined as wG(x − y) =∑n
i=1 wG(xi − yi), the Gray distance of x, y is defined as dG(x, y) = wG(x − y), and the Gray distance of

C is defined as dG(C) = min{dG(a, b), a, b ∈ C, a , b}.
For a linear code C of length n over Rl,k. Let

C j = {x j ∈ F
n
pm |

s∑
i=1

xiei ∈ C, xi ∈ F
n
pm},

where j = 1, 2, · · · , s.
Then, C1,C2, · · · ,Cs are linear codes of length n over Fpm , C =

⊕s
j=1 e jC j and | C |=

∏s
j=1 | C j |.

Lemma 2.1. An element (λ1e1 + λ2e2 + · · ·+ λses) ∈ Rl,k is a unit in Rl,k if and only if λi is a unit in Fpm

for i = 1, 2, · · · , s.

Proof. This proof is the same as Lemma 3.1 in [14]. �

3. λ-constacyclic codes over Rl,k

In this section, let λ =
∑s

j=1 λ je j be a unit in Rl,k, then λ−1 =
∑s

j=1 λ
−1
j e j, where s = (l − 1)k + 1,

λ j ∈ F
∗
pm for j = 1, 2, · · · , s.

Lemma 3.1. (See [8]) Let R be a finite commutative Frobenius ring with identity, σ, σ̃ ∈ Aut(R) and
C be a liner code of length n over R, then

(1) C⊥σ is a linear code over R.
(2) C⊥σ = σ−1(C⊥) and | C || C⊥σ |=| R |n.
(3) (C⊥σ)⊥σ̃ = σ̃−1σ−1(C).

Theorem 3.1. C =
⊕s

j=1 e jC j is a λ-constacyclic code of length n over Rl,k if and only if C j is a
λ j-constacyclic code of length n over Fpm for j = 1, 2, · · · , s.

Proof. This proof is the same as Theorem 1 in [15]. �

Theorem 3.2. Let C =
⊕s

j=1 e jC j be a linear code of length n over Rl,k. Then C⊥σ =
∑s

j=1 e jC
⊥σ
j ,

where C⊥σj is the σ dual code of C j for j = 1, 2, · · · , s.

Proof. Let C̃ =
∑s

j=1 e jC
⊥σ
j , ∀x =

∑s
j=1 e jx j ∈ C and ∀x̃ =

∑s
j=1 e j x̃ j ∈ C̃, then

〈x, x̃〉σ =

s∑
j=1

(x jσ(x̃ j))e j = 0,
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where x j ∈ C j, x̃ j ∈ C⊥σj .
So

C̃ ⊆ C⊥σ .

For Rl,k is a Frobenius ring, by Lemma 3.1,

| C || C⊥σ |=| Rl,k |
n .

Hence

| C̃ |=
s∏

j=1

| C⊥σj |=

s∏
j=1

pmn

| C j |
=
| Rl,k |

n

| C |
=| C⊥σ | .

So

C⊥σ = C̃ =

s∑
j=1

e jC
⊥σ
j .

�

Theorem 3.3. Let C =
⊕s

j=1 e jC j be a λ-constacyclic code of length n over Rl,k. Then C⊥σ =∑s
j=1 e jC

⊥σ
j is a σ(λ−1)-constacyclic code of length n over Rl,k, and C⊥σj is a σ(λ−1

j )-constacyclic code
over Fpm for j = 1, 2, · · · , s.

Proof. Let C =
⊕s

j=1 e jC j be a λ-constacyclic code of length n over Rl,k. ∀x = (x0, x1, · · · , xn−1) ∈ C⊥σ

and ∀y = (y0, y1, · · · , yn−1) ∈ C, then

δn−1
λ (y) = (λy1, λy2, · · · , λyn−1, y0) ∈ C

and
δσ(λ−1)(x) = (σ(λ−1)xn−1, x0, · · · , xn−2).

We can get that

0 = 〈x, δn−1
λ (y)〉σ

= σ(λ)x0σ(y1) + σ(λ)x1σ(y2) + · · · + σ(λ)xn−2σ(yn−1) + xn−1σ(y0)
= σ(λ)(x0σ(y1) + x1σ(y2) + · · · + xn−2σ(yn−1) + σ(λ−1)xn−1σ(y0)).

So
〈δσ(λ−1)(x), y〉σ = σ(λ−1)xn−1σ(y0) + x0σ(y1) + · · · + xn−2σ(yn−1) = 0.

We have δσ(λ−1)(x) ∈ C⊥σ , so C⊥σ is a σ(λ−1)-constacyclic code.
By Lemma 2.1, λ−1 = λ−1

1 e1 + λ−1
2 e2 + · · · + λ−1

s es, it implies that C⊥σ is a σ(λ−1)-constacyclic code
of length n over Rl,k. By Theorem 3.1, we can have C⊥j is a σ(λ−1

j )-constacyclic code over Fpm for
j = 1, 2, · · · , s. �

Theorem 3.4. Let C =
⊕s

j=1 e jC j be a λ-constacyclic code of length n over Rl,k, then there exists a
polynomial g(x) ∈ Rl,k[x] such that C = 〈g(x)〉, where g(x) =

∑s
j=1 e jg j(x) is the divisor of xn − λ,

g j(x) ∈ Fpm[x] is the generator polynomial of λ j-constacyclic over C j, and g j(x) divides xn − λ j for
j = 1, 2, · · · , s.
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Proof. This proof is the same as Theorem 2 in [15]. �

Corollary 3.1. Let C = 〈g(x)〉 be a λ-constacyclic code of length n over Rl,k. Then C⊥σ =

〈
∑s

j=1 e jσ
−1( f ∗j (x))〉 and | C⊥σ |= pm

∑s
j=1 deg(g j), where f j(x)g j(x) = xn − λ j, j = 1, 2, · · · , s.

Proof. Let C⊥j = 〈 f ∗j (x)〉. By Lemma 3.1, Theorem 3.3 and Theorem 3.4, we can have

C⊥σj = σ−1(C⊥j ) = 〈σ−1( f ∗j (x))〉

and

C⊥σ =

s∑
j=1

e jC
⊥σ
j ,

where j = 1, 2, · · · , s.
Then

| C⊥σ |=
s∏

j=1

| C⊥σj |=

s∏
j=1

| C⊥j |= pm
∑s

j=1 deg(g j)

and C⊥σ has the form
C⊥σ = 〈e1σ

−1( f ∗1 (x)), · · · , esσ
−1( f ∗s (x))〉.

Let

D̃ = 〈

s∑
j=1

e jσ
−1( f ∗j (x))〉,

it is easy to see that, D̃ ⊆ C⊥.
On the other hand, for j = 1, 2, · · · , s,

e j

s∑
j=1

e jσ
−1( f ∗j (x)) = e jσ

−1( f ∗j (x)).

Thus C⊥σ ⊆ D̃, it implies that,

C⊥σ = D̃ = 〈

s∑
j=1

e jσ
−1( f ∗j (x))〉.

�

Theorem 3.5. Let C =
⊕s

j=1 e jC j be a λ-constacyclic code of length n over Rl,k, then C is a σ-self-
orthogonal code over Rk if and only if C1,C2, · · · ,Cs are σ-self-orthogonal codes over Fpm .

Proof. By Theorem 3.2, C⊥σ =
∑s

j=1 e jC
⊥σ
j , so C ⊆ C⊥σ if and only if C j ⊆ C⊥σj , it implies that C is a

σ-self-orthogonal code overRl,k if and only if C1,C2, · · · ,Cs are σ-self-orthogonal codes over Fpm . �

Lemma 3.2. Let C be a λ-constacyclic code of length n over Fpm , its generator polynomial is g(x).
Then C is a σ-self-orthogonal code if and only if f (x)σ−1( f ∗(x)) is the divisor of xn − λ, λ = ±1, where
f ∗(x) is the generator polynomial of C⊥.
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Proof. We can assume that σ(λ−1) = λ.
Since C is a λ-constantcyclic code of length n over Fpm , and C⊥σ is a σ(λ−1)-constantcyclic code of

length n over Fpm , so C is a σ-self-orthogonal code must satisfy the condition C ⊆ C⊥σ .
Let C⊥ = 〈 f ∗(x)〉, where f (x)g(x) = (xn − λ) and λ = ±1. C⊥σ = σ−1(C⊥) = 〈σ−1( f ∗(x))〉, C is a σ-

self-orthogonal code if and only if there exists a polynomial h(x) ∈ Fpm[x], such that σ−1( f ∗(x))h(x) =

g(x), if and only if f (x)σ−1( f ∗(x))h(x) = f (x)g(x) = (xn−λ) if and only if f (x)σ−1( f ∗(x)) is the divisor
of xn − λ. �

By Theorem 3.5 and Lemma 3.2, it is easy to get the following theorem.

Theorem 3.6. Let C =
⊕s

j=1 e jC j be a λ-constacyclic code of length n over Rl,k, then C is a σ-self-
orthogonal code over Rl,k if and only if f j(x)σ−1( f ∗j (x)) is the divisor of xn − λ j, where f ∗j (x) is the
generator polynomial of C⊥j and σ(λ−1

j ) = λ j for j = 1, 2, · · · , s.

4. Quantum codes from σ-dual-containing constacyclic codes over Rl,k

Theorem 4.1. Let C =
⊕s

j=1 e jC j be a linear code of length n over Rl,k, which order | C |= pmk
′

and
the minimum Gray distance of C is dG, where s = (l − 1)k + 1. Then φl,k(C) is a linear code [sn, k

′

, dG]
and φl,k(C)⊥σ = φl,k(C⊥σ). If C is a σ-self-orthogonal code over Rl,k, then φl,k(C) is a σ-self-orthogonal
code over Fpm . Specifically, if C is a σ-self-dual code over Rl,k, then φl,k(C) is a σ-self-dual code over
Fpm .

Proof. By the definition of φl,k, it is easy to know that φl,k is both a distance preserving map and a linear
map from Rn

l,k to Fsn
q , it implies that φl,k(C) is a linear code [sn, k

′

, dG].
If C is a σ-self-orthogonal code, ∀x =

∑s
j=1 e jx j ∈ C, ∀y =

∑s
j=1 e jy j ∈ C, where x j, y j ∈ F

n
pm ,

because C ⊆ C⊥σ , so the σ-inner product of x, y is 〈x, y〉σ =
∑s

j=1 e j〈x j, y j〉σ = 0, which implies
〈x j, y j〉σ = 0, so

〈φl,k(x), φl,k(y)〉σ =

s∑
j=1

〈x j, y j〉σ = 0.

So φl,k(C) is a σ-self-orthogonal code over Fpm .
Let a = (a0, a1, · · · , an−1) ∈ C and b = (b0, b1, · · · , bn−1) ∈ C⊥σ , where a j =

∑s
i=1 ai, jei and b j =∑s

i=1 bi, jei ∈ Rl,k for j = 0, 1, 2, · · · , n − 1, a(i) = (ai,0, ai,1, · · · , ai,n−1) and b(i) = (bi,0, bi,1, · · · , bi,n−1) for
i = 1, 2, · · · , s.

Then

〈a, b〉σ =

n−1∑
j=0

〈a j, b j〉σ =

n−1∑
j=0

s∑
i=1

ei〈ai, j, bi, j〉σ =

s∑
i=1

ei〈a(i), b(i)〉σ = 0.

So 〈a(i), b(i)〉σ = 0 for i = 1, 2, · · · , s.
Since φl,k(a) = (a(1), a(2), · · · , a(s)) and φl,k(b) = (b(1), b(2), · · · , b(s)). It follows that

〈φl,k(a), φl,k(b)〉σ =

s∑
i=1

〈a(i), b(i)〉σ = 0.

So we have
φl,k(C⊥σ) ⊆ φl,k(C)⊥σ .
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As φl,k is a bijection, and | C |=| φl,k(C) |.
Then

| φl,k(C⊥σ) |=| φl,k(C⊥) |=
pmsn

| C |
=

pmsn

| φl,k(C) |
=| φl,k(C)⊥ |=| φl,k(C)⊥σ | .

We have
φl,k(C)⊥σ = φl,k(C⊥σ).

Suppose C is a σ-self-dual code and C = C⊥σ , then

φl,k(C)⊥σ = φl,k(C⊥σ) = φl,k(C).

Therefore, φl,k(C) is a σ-self-dual code over Fpm . �

Lemma 4.1. Let C be a λ-constacyclic code of length n over Fpm , whose generator polynomial is g(x).
Then, C is a σ-dual-containing code if and only if xn − λ is the divisor of σ−1( f ∗(x)) f (x), where f ∗(x)
is the generator polynomial of C⊥ and σ(λ−1) = λ.

Proof. Let C⊥ = 〈 f ∗(x)〉, where f (x)g(x) = (xn − λ) and σ(λ−1) = λ. Then C⊥σ = σ−1(C⊥) =

〈σ−1( f ∗(x))〉, so C is a σ-dual-containing code if and only if there exists a polynomial h(x) ∈ Fpm[x],
such that σ−1( f ∗(x)) = h(x)g(x), if and only if σ−1( f ∗(x)) f (x) = h(x)g(x) f (x) = h(x) f (x)g(x) =

h(x)(xn − λ) if and only if xn − λ is the divisor of σ−1( f ∗(x)) f (x). �

Theorem 4.2. (CSS construction [4]) Let C = [n, k, d] be a linear codes over Fq with C⊥ ⊆ C, then
there exists a quantum code [[n, 2k − n, d]]q.

Theorem 4.3. (Hermitian construction [4]) Let C = [n, k, d] be a linear code over Fq2 with C⊥H ⊆ C,
then there exists a quantum code [[n, 2k − n, d]]q.

By Lemma 4.1 and Theorem 3.3, we can have the following theorem.

Theorem 4.4. Let C =
⊕s

j=1 e jC j be a λ-constacyclic code of length n over Rl,k, where s = (l−1)k+1.
Then C⊥σ ⊆ C if and only if xn − λ j is the divisor of σ−1( f ∗j (x)) f j(x), where σ(λ−1

j ) = λ j and f ∗j (x) is
the generator polynomial of C⊥j for j = 1, 2, · · · , s.

By Lemma 4.1 and Theorem 4.4, we can have the following corollary and theorem.

Corollary 4.1. Let C =
⊕s

j=1 e jC j be a λ-constacyclic code of length n over Rl,k. Then C⊥σ ⊆ C if
and only if C⊥σj ⊆ C j for j = 1, 2, · · · , s.

Theorem 4.5. Let C =
⊕s

j=1 e jC j be a a λ-constacyclic code of length n overRl,k, C j is λ j-constacyclic
code over Fpm and C⊥σj ⊆ C j, where s = (l − 1)k + 1, σ(λ−1

j ) = λ j for j = 1, 2, · · · , s. Then φl,k(C)⊥σ ⊆
φl,k(C). If θt is the identity map of Fpm , then there exists a quantum code [[sn, 2k

′

− sn, dG]]pm . If m is
even, ∀a ∈ Fpm , then σ(a) = ap

m
2 , then there exists a quantum code [[sn, 2k

′

− sn, dG]]pm/2 , where dG is
the minimum Gray weight of code C, and k

′

is the dimension of the linear code φl,k(C).

Proof. Let C⊥σj ⊆ C j and σ(λ−1
j ) = λ j. By Corollary 4.1, we have C⊥σ ⊆ C, so φl,k(C⊥σ) ⊆ φl,k(C).

By Theorem 4.1, φl,k(C)⊥σ = φl,k(C⊥σ), therefore φl,k(C)⊥σ ⊆ φl,k(C), and by Theorem 4.1, φl,k(C) is a
linear code [sn, k

′

, d] .
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If θt is the identity map of Fpm , so σ-inner product is the Euclidean inner product, by Theorem 4.2,
there exists a quantum code [[sn, 2k

′

− sn, dG]]pm .
If m is even, ∀a ∈ Fpm , then σ(a) = ap

m
2 , so σ-inner product is the Hermitian inner product. By

Theorem 4.3, there exists a quantum code [[sn, 2k
′

− sn, dG]]pm/2 . �

Example 4.1. Let n = 8 and R2,2 = F17[u1, u2]/〈u2
1 = u1, u2

2 = u2, u1u2 = u2u1 = 0〉. In F17[x],

x8 − 1 = (x + 1)(x + 2)(x + 4)(x + 8)(x + 9)(x + 13)(x + 15)(x + 16),
x8 + 1 = (x + 3)(x + 5)(x + 6)(x + 7)(x + 10)(x + 11)(x + 12)(x + 14).

If θt is the identity map of Fpm , then σ-inner product is the Euclidean inner product. Let C be an
(e1 +e2 + (−1)e3)-constacyclic code of length 8 over R2,2. Let g(x) = e1g1 +e2g2 +e3g3 be the generator
polynomial of C, where g1(x) = (x + 2)(x + 4)(x + 8), g2(x) = g3(x) = (x + 3), then C1 = 〈g1(x)〉 is a
cyclic code of length 8 over F17, C2 = 〈g2(x)〉 and C3 = 〈g3(x)〉 are negacyclic codes of length 8 over
F17.

By Theorem 4.1, φ2,2(C) is a linear code over F17 with parameters [24, 19, 4]. By Theorem 4.5, we
have C⊥ ⊆ C, we get a quantum code [[24, 14, 4]]17.

Example 4.2. Let n = 45 and R2,2 = F5[u1, u2]/〈u2
1 = u1, u2

2 = u2, u1u2 = u2u1 = 0〉. In F5[x],

x45 − 1 = (x2 + x + 1)5(x + 4)5(x6 + x3 + 1)5,

x45 + 1 = (x2 + 4x + 1)5(x + 1)5(x6 + 4x3 + 1)5.

Let C be an (e1 + (−1)e2 + (−1)e3)-constacyclic code of length 45 over R2,2. Let g1(x) = x2 + x + 1,
g2(x) = g3(x) = x + 1, then C1 = 〈g1(x)〉 is a cyclic code of length 45, C2 = 〈g2(x)〉 and C3 = 〈g3(x)〉
are negacyclic codes of length 45 over F5.

By Theorem 4.1, φ2,2(C) is a linear code over F5 with parameters [135, 131, 3]. By Theorem 4.5,
we have C⊥ ⊆ C, we can get a quantum code [[135, 127, 3]]5, which has larger dimension than
[[135, 63, 3]]5 in [12].

Example 4.3. Let n = 30 and R2,2 = F5[u1, u2]/〈u2
1 = u1, u2

2 = u2, u1u2 = u2u1 = 0〉. In F5[x],

x30 − 1 = (x2 + x + 1)5(x + 4)5(x + 1)5(x2 + 4x + 1)5,

x30 + 1 = (x2 + 2x + 4)5(x + 3)5(x + 2)5(x2 + 3x + 4)5.

Let C be an (e1 + (−1)e2 + (−1)e3)-constacyclic code of length 30 over R2,2. Let g1(x) = x2 + x + 1,
g2(x) = g3(x) = x + 3, then C1 = 〈g1(x)〉 is a cyclic code of length 30, C2 = 〈g2(x)〉 and C3 = 〈g3(x)〉
are negacyclic codes of length 30 over F5.

By Theorem 4.1, φ2,2(C) is a linear code over F5 with parameters [90, 86, 3]. By Theorem 4.5, we
have C⊥ ⊆ C, we get a quantum code [[90, 82, 3]]5, which has larger dimension than [[90, 68, 3]]5

in [11].

Example 4.4. Let n = 8 and R1,2 = F9[u1]/〈u2
1 = u1〉, σ(a) = a3. In F9[x],

x8 − 1 = (x + 1)(x + w)(x + w2)(x + w3)(x + 2)(x + w5)(x + w6)(x + w7).

Let C be an (e1 + e2)-constacyclic code of length 8 over R1,2. Let g1(x) = (x + w)(x + w2) and
g2(x) = x + w3, then C1 = 〈g1(x)〉 and C2 = 〈g2(x)〉 are cyclic codes of length 8 over F9.

By Theorem 4.1, φ1,2(C) is a linear code over F9 with parameters [16, 13, 3]. By Theorem 4.5, we
have C⊥σ ⊆ C, we can get a quantum code [[16, 10, 3]]3 satisfying n − k + 2 − 2d = 2.
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In Table 1, we provide some new quantum codes (in the eighth column) and compare the existing
codes (in the ninth column) better (by means of larger code rate or larger distance) than [11–13].
Further, the fifth column gives the value of units (λ1, · · · , λs), the sixth column gives the generator
polynomials 〈g1(x), · · · , gs(x)〉, where gi(x) = anxn+an−1xn−1+· · ·+a1x+a0 is denoted by anan−1 · · · a1a0,
e.g., “11” represents the polynomial “x2 + x”, the seventh column gives parameters of φl,k(C).

Table 1. New quantum codes from σ-dual-containing constacyclic codes over Rl,k.

pm n k l (λ1, · · · , λs) 〈g1(x), · · · , gs(x)〉 φl,k(C) New codes Existing codes

5 60 2 2 (1, 1,−1) (11, 13, 10301) [180, 174, 3] [[180, 168, 3]]5 [[180, 166, 3]]5 [11]
5 33 2 2 (1,−1,−1) (124114, 114431, 114431) [99, 84, 5] [[99, 69, 5]]5 [[99, 9, 5]]5 [12]
5 93 2 2 (1, 1,−1) (1014, 1014, 1011) [279, 270, 3] [[279, 261, 3]]5 [[279, 225, 3]]5 [12]
17 45 2 2 (1,−1,−1) (15(13)81, 146(16)1, 146(16)1 [135, 123, 5] [[135, 111, 5]]17 [[135, 63, 3]]17 [12]
3 48 2 2 (1, 1, 1) (1211011, 11, 11) [144, 136, 4] [[144, 128, 4]]3 [[144, 36, 3]]3 [12]
5 44 2 2 (1, 1, 1) (114431, 134411, 134411) [132, 117, 5] [[132, 102, 5]]5 [[132, 92, 4]]3 [13]
5 48 2 2 (1, 1, 1) (12, 13, 13) [144, 141, 2] [[144, 138, 2]]5 [[144, 136, 2]]5 [13]
9 14 1 2 (1,−1) (1ww72, 1w) [28, 24, 4] [[28, 20, 4]]9 [[28, 10, 4]]9 [13]

5. Conclusions

In this article, we construct quantum codes by studying the algebraic structure of σ-self-orthogonal
constacyclic codes over a new finite non-chain ring Rl,k, and our results will enrich the code sources of
constructing quantum codes. As an application, we obtain some new quantum codes from σ-dual-
containing constacyclic codes over Rl,k using the CSS construction or Hermitian construction and
compare these codes better with the existing codes that appeared in some recent references.
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