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Abstract: With the aim of addressing the complexity of decision environments, uncertainty of
decision information and weight determination of mutual influence between decision makers, a
(p,q)-rung interval-valued orthopair fuzzy multi-attribute group decision making algorithm based on
weight optimization is proposed. First, in order to improve the ability of decision makers to capture
their judgment in a wider space, the concept of a (p,q)-rung interval-valued orthopair fuzzy set is
proposed, and its related definition and properties are studied. Second, considering the mutual
influence between decision makers and the relationship between attributes, the analytic network
process (ANP) and entropy method are employed to determine the subjective and objective weights,
respectively. Considering the influence of subjective and objective weights on the combination
weights, the deviation degree and dispersion degree of the subjective and objective weights are taken
as objective functions, and the optimal solution of the combination weights is iteratively solved by
genetic algorithm. Then, based on the (p,q)-rung interval-valued orthopair fuzzy set and weight
optimization model, an improved (p,q)-rung interval-valued orthopair fuzzy ELECTRE method is
proposed. Finally, in order to verify the accuracy and robustness of the algorithm, the algorithm is
applied to the example analysis of investment enterprise evaluation, and the results demonstrate that
the algorithm has definite theoretical and application value.
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1. Introduction

Multi-attribute group decision-making (MAGDM) is a crucial component of contemporary
decision theory, widely applied in various fields such as management, science and technology and
the economy. Traditional MAGDM methods require decision data to be provided in the form of
precise real numbers. However, due to the complex social environment, increasing uncertainty and
the subjective nature of human thinking, solving practical decision problems using traditional
MAGDM methods has become increasingly challenging. In order to solve this issue, scholars put
forward fuzzy numbers as a measure of attributes. In 1965, Zadeh [1] introduced fuzzy sets (FS) and
the utilization of membership degrees to resolve ambiguity in decision-making problems. Then,
Atanassov [2] extended fuzzy sets to intuitionistic fuzzy sets (IFS), considering the degree of
non-membership and hesitation. Yager [3] proposed the Pythagorean fuzzy set (PFS), which extends
the range of membership and non-membership degrees to the sum of their squares not exceeding 1.
Subsequently, Yager [4] proposed orthopair fuzzy sets (q-ROFS) as a new tool to deal with
uncertainty on the basis of IFS and PFS, and extended membership and non-membership degrees to
the space range where the sum of q powers does not exceed 1. Alrasheedi et al. [5] proposed q-rung
orthopair fuzzy aggregation operators based on soft maximum, and applied them to material
selection. Considering that the lack of available information prevents experts from quantifiable their
judgments with an exact value when dealing with real life decision problems, Joshi et al. [6]
proposed the concept of interval-valued q-rung orthopair fuzzy sets (q-RIVOFS), enabling decision
makers to express their satisfaction and dissatisfaction with a set of alternatives in the form of
intervals. Many scholars have done research on this issue. Wang et al. [7] examined the symmetry
between attribute information and 4 distinct types of information aggregation operators applied to
q-rung interval-valued orthopair fuzzy information in multi-attribute group decision-making. Zhang et al. [8]
considered the interaction between decision makers and attributes, extending hesitant fuzzy sets to the
q-rung interval-valued orthopair fuzzy environment. However, due to the complexity of decision
environment and the uncertainty of decision information, it is necessary to further expand the application
range of fuzzy sets, providing decision-makers with a more relaxed decision-making environment.

In multi-attribute group decision making, the rational determination of attribute weights is a key
problem. Due to the difficulty of accurately defining attribute weights in practical problems, various
methods have been proposed by scholars to address this challenge. At present, there are three main
methods for determining attribute weights: subjective weighting, objective weighting and combined
weighting. The single subjective and objective methods often have subjective preferences or
inconsistent objective laws, whereas the combined weighting method can integrate the advantages of
both methods and mitigate their limitations. Common subjective weighting methods include the
Best-Worst Method (BWM), Linear Barycentric Weighting Approach (LBWA), Full Consistency
Method (FUCOM), ANP and so on. The BWM method [9–11] is relatively easy to understand and
implement, but it may oversimplify complex decision scenarios, and only consider the best and worst
attributes, possibly ignoring other crucial factors. The LBWAmethod [12,13] is simple, intuitive and
easy to understand, but it heavily relies on attribute weights and ignores possible relationships and
mutual influences among attributes. The FUCOM method [14,15] is a fuzzy compromise method
that enables decision makers to better weigh different decision criteria in complex situations, but its
calculation is relatively complex and easily affected by parameters, and the interpretation of the
results may be relatively unintuitive. The ANP method [16,17] can be used to deal with complex
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decision-making environments involving the interdependence and feedback between criteria and
alternatives. It enables decision-makers to obtain a clear understanding and analysis of the
interdependencies among criteria, facilitating a more realistic and detailed decision-making process.
It also helps overcome the uncertainty of outcomes caused by changes in personal preferences to
some extent. The Entropy method [18–20] is a commonly used objective weighting method. It
calculates the relative weight of each criterion based on the entropy value of each criterion, avoiding
the problem of subjective weighting. This method allows for a more comprehensive assessment of
the importance of each criterion, taking into account the amount of information it contains. Therefore,
in order to consider the interaction between decision-makers and the relationship between attributes,
the ANP method and entropy method are used in this paper to obtain subjective and objective
weights, respectively. Additionally, considering the influence of subjective and objective weights on
the combination weights, the deviation degree and dispersion degree of the subjective and objective
weights are taken as objective functions to build a weight optimization model, and the optimal
solution of the combination weights is iteratively solved by genetic algorithm. This approach aims to
obtain more reasonable attribute weights by exploring the solution space through repeated selection,
crossover, and mutation operations, gradually converging to the optimal or near-optimal solution.

In order to better solve multi-attribute group decision problems, scholars have proposed various
decision methods, such as VIKOR, Measurement of Alternatives and Ranking according to
Compromise Solution (MARCOS), Multi-Attributive Border Approximation Area Comparison
(MABAC), ELECTRE and so on. The VIKOR method [21–23] is a multi-criteria decision-making
method that is relatively easy to understand and apply, allowing decision makers to combine their
preferences and weights based on different criteria. However, it may not always provide a clear
explanation of how to reach a compromise solution, which can hinder understanding of the
decision-making process. The MARCOS method [24–26] is a decision-making method and software
developed by Thomas L. Saaty. It provides a structured approach to decision-making, helping to
organize and analyze decision-making factors effectively. However, it requires a comprehensive
understanding of the method and its implementation, and obtaining accurate and reliable data can be
challenging. The MABAC method [27,28] is a multi-criteria decision-making method for evaluating
and ranking alternatives based on multiple criteria. It utilizes a geometric representation called the
boundary approximation region, which facilitates visual comparison of alternatives and enhances
understanding and communication in the decision-making process. However, it involves sequencing
the boundary values and calculating the area of the boundary region, resulting in high computational
complexity when dealing with large decision-making problems. Therefore, it may not be suitable for
complex decision problems. The ELECTRE method, introduced by Almeida [29] in 2005, is a
decision-making method that constructs a series of preference relationships and evaluates candidate
solutions to determine the optimal solution. It can handle multiple criteria simultaneously, process
large amounts of information and decision data, allow qualitative descriptions or ranking
comparisons to express criteria relationships and provide clear decision results. It helps
decision-makers understand and explain the final decision choices. Compared to VIKOR, MARCOS,
and MABAC, the ELECTRE method has several advantages. Scholars have conducted research on
the theory and application of the ELECTRE method. Chen [30] utilized a multi-criteria evaluation
and selection approach using interval-valued intuitionistic fuzzy ELECTRE to analyze multi-criteria
choices. Jagtap and Karande [31] proposed an improved Simos and AHP weight calculation method to
improve the accuracy and consistency of weight calculation, and they applied it to the ELECTRE-I
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method based on M-polarity fuzzy sets to solve the selection problem of non-traditional machining
processes. On the basis of existing research, it is evident that the ELECTRE method is an effective way to
solve decision problems. Therefore, it is necessary to enhance and extend the ELECTRE method to a new
fuzzy environment and propose a newmulti-attribute group decision makingmethod.

To sum up, extensive research has been conducted on fuzzy sets and weights both domestically
and internationally, resulting in significant achievements. Scholars have made important
contributions to decision-making methods. However, further expansion of the desirable range of
attribute values in existing studies is warranted. Additionally, there is a lack of research on
decision-making situations that considers the interaction between decision-makers and the
relationships between attributes. Exploring methods to enhance existing decision-making approaches
is also a worthwhile area of study. Therefore, this paper proposes a multi-attribute group
decision-making algorithm based on weight optimization and an improved ELECTRE method in the
context of (p,q)-rung interval-valued orthopair fuzzy environment. The remainder of the paper is
structured as follows. In Section 2, we introduce relevant definitions that will be utilized throughout
this paper. In Section 3, the (p,q)-rung interval-valued orthopair fuzzy set is defined, along with its
relevant concepts. In Section 4, we consider the mutual influence between decision-makers and the
interrelationships between attributes and develop a weight optimization model. Based on the weight
optimization model and the definition of the (p,q)-rung interval-valued orthopair fuzzy set, an
improved (p,q)-rung interval-valued orthopair fuzzy ELECTRE method is presented. In Section 5,
the efficacy and practicability of the proposed algorithm are validated via parametric analysis and
contrastive analysis with related studies using the selection of investment companies as an
illustration. In Section 6, we conclude this paper with a summary.

2. Preliminaries

This section provides an introduction to the fundamental concepts of fuzzy sets and the
operational rules of fuzzy numbers.

Definition 1. [2] Let Ω serve as the domain of discussion. An intuitionistic fuzzy set on Ω is
denoted by { , ( ), ( ) | Ω}I II a f a h a a    , where :Ω [0,1]If  and :Ω [0,1]Ih  denote the
membership and non-membership degrees, respectively, of an element a in Ω and satisfy the
condition 0 ( ) ( ) 1I If a h a   . The hesitation degree of element a belonging to set I is denoted by

( ) 1 ( ) ( )ψ a f a h a  I I I .

Definition 2. [32] Let Ω serve as the domain of discussion. A Pythagorean fuzzy set on Ω is
denoted by { , ( ), ( ) | Ω}R RR a f a h a a    , where :Ω [0,1]Rf  and :Ω [0,1]Rh  denote the
membership and non-membership degrees, respectively, of an element a in Ω and satisfy the
condition 2 20 ( ( )) ( ( )) 1R Rf a h a   . The hesitation degree of element a belonging to set R is denoted
by

2 2( ) 1 ( ( )) ( ( ))R R Rψ a f a h a   .

Definition 3. [4] Let Ω serve as the domain of discussion. A q-rung orthopair fuzzy set on Ω is
denoted by { , ( ), ( ) | Ω}Q QQ a f a h a a    , where : Ω [0,1]Qf  and : Ω [0,1]Qh  denote the
membership and non-membership degrees, respectively, of an element a in Ω and satisfy the
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condition 0 ( ( )) ( ( )) 1q q
Q Qf a h a   , where q is a positive integer. The hesitation degree of element

a belonging to set Q is denoted by

( ) 1 ( ( )) ( ( ))q qq
Q Q Qψ a f a h a   ,

and for convenience, ( , )Q QQ f h are called q-rung orthopair fuzzy numbers.

Definition 4. [33] Let Ω serve as the domain of discussion. A Fermatean fuzzy set on Ω is
denoted by { , ( ), ( ) | Ω}F FF a f a h a a    , where :Ω [0,1]Ff  and :Ω [0,1]Fh  denote the
membership and non-membership degrees, respectively, of an element a in Ω and satisfy

3 30 ( ( )) ( ( )) 1F Ff a h a   . The hesitation degree of element a belonging to set F is defined as

3 33( ) 1 ( ( )) ( ( ))F F Fψ a f a h a   .

Definition 5. [6] Let Ω serve as the domain of discussion. A q-rung interval-valued orthopair fuzzy
set on Ω is denoted by 

 { , ( ), ( ) | Ω}Q QQ a f a h a a    , where  :Ω [0,1]Qf  and  :Ω [0,1]Qh 

denote the membership and non-membership degrees, respectively, of an element a in Ω , where
  ( ) [ ( ), ( )] [0,1]L R

Q QQf a a af f  and   ( ) [ ( ), ( )] [0,1]L R
Q QQh a a ah h  , and for any Ωa , ( ) 0q

Q af  ，

( ) 0q
Q ah  , and for natural numbers q, we have  0 ( ( )) ( ( )) 1R q qR

Q Qa af h   . The hesitation degree

that an element a belongs to set Q is defined as

        ( ) ( ), ( ) 1 ( ( )) ( ( )) , 1 ( ( )) ( ( ))R LL R q q q qR Lq q
Q Q Q Q QQ Qa a a a a a af fh h        ,

and for convenience, 
   ([ , ],[ , ])L R L R
Q Q Q Qf f h h is referred to as a q-rung interval-valued orthopair

fuzzy number. Let  represent the set of all q-rung interval-valued orthopair fuzzy numbers.
Given two q-rung interval-valued orthopair fuzzy numbers, denoted by


   ([ , ],[ , ])L R L Rf f h h     and 

   ([ , ],[ , ])L R L Rf f h h     , their operational rules can be

represented as below [4]:

(1)  
           

1 1([(( ) ( ) ( ) ( ) ) , (( ) ( ) ( ) ( ) ) ],[ , ]);L L R R L Rq q q q q q q q q qL L R R L Rf f f f f fh h h h h h                

(2)  
           

1 1([ , ],[(( ) ( ) ( ) ( ) ) , (( ) ( ) ( ) ( ) ) ]);L R L L R Rq q q q q q q q q qL R L L R Rf f f f f fh h h h h h                

(3) 
   

1 1([(1 (1 ( ) ) ) , (1 (1 ( ) ) ) ],[( ) , ( ) ]), 0;L Rq q q q L Rf f h h        
    

(4) 
   

1 1( ) ([( ) , ( ) ],[(1 (1 ( ) ) ) , (1 (1 ( ) ) ) ]), 0;L R q q q qL Rf f h h         
    

(5) 
   ([ , ],[ , ]).

c L RL R f fh h   

Example 1 is used to illustrate the limitations of the existing q-rung interval-valued orthopair
fuzzy set.

Example 1. Suppose that ([0.71,0.8], [0.61,0.8]) is a q-rung interval-valued orthopair fuzzy number,
where q is a positive real number. When applying definition 5, it is found that 0.83+0.83>1. This
calculation reveals that the fuzzy number does not meet the value range defined by the q-rung
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interval-valued orthopair fuzzy set. This discrepancy indicates the need for expanding the desirable
range of attribute values to effectively address real-world situations.

3. (p,q)-rung interval-valued orthopair fuzzy set

Example 1 highlights the inadequacy of the existing definition and the limited desirable range of
attribute values for q-rung interval-valued orthopair fuzzy sets. In the following, the definition of a
(p,q)-rung interval-valued orthopair fuzzy set ((p,q)-RIVOFS) is proposed to make up for the
deficiency, and its desirable range is further extended, which can deal with the uncertainty of
multi-attribute group decision more effectively than a q-rung interval-valued orthopair fuzzy set.

Definition 6. Let Ω serve as the domain of discussion. A (p,q)-rung interval-valued orthopair fuzzy
set on Ω is denoted by { , ( ), ( ) | Ω}x f x h x x      , where ( ) [ ( ), ( )]L Rf x f x f x   and

( ) [ ( ), ( )]L Rh x h x h x   are interval numbers belonging to the interval [0,1], denoting the membership
and non-membership degrees, respectively, of an element x in Ω . For any Ωx , and for natural
numbers p and q, we have 0 ( ( )) ( ( )) 1R p R qf x h x    . The hesitation degree that an element x
belongs to set  is defined as

( ) ( ), ( ) 1 ( ( )) ( ( )) , 1 ( ( )) ( ( ))L R R p R q L p L qk kπ x π x π x f x h x f x h x      
           .

For convenience, ([ , ],[ , ])L R L R
α α α αα f f h h is referred to as a (p,q)-rung interval-valued

orthopair fuzzy number.
If ([ , ],[ , ])L R L R

α α α αα f f h h and ([ , ],[ , ])L R L R
β β β ββ f f h h are two (p,q)-rung interval-valued

orthopair fuzzy numbers, then the following arithmetic rules hold:

(1) ([ ( ) ( ) ( ) ( ) , ( ) ( ) ( ) ( ) ],[ , ]);L p L q L p L q R p R q R p R q L L R Rk k
α β α β α β α β α β α βα β f h f h f h f h f h f h     

(2) ([ , ],[ ( ) ( ) ( ) ( ) , ( ) ( ) ( ) ( ) ]);L L R R L p L q L p L q R p R q R p R qk k
α β α β α β α β α β α βα β f h f h f h f h f h f h     

(3) 1 1([(1 (1 ( ) ) ) , (1 (1 ( ) ) ) ],[( ) , ( ) ]), 0;L p λ k R p λ k L λ R λ
α α α αλα f f h h λ     

(4) 1 1([( ) , ( ) ],[(1 (1 ( ) ) ) , (1 (1 ( ) ) ) ]), 0;λ L λ R λ L q λ k R q λ k
α α α αα f f h h λ     

(5) ([ , ],[ , ]).c L R L R
α α α αα h h f f

To illustrate the necessity of extending the desirable range of attribute values and the validity of
definition 6, we provide an illustrative example.

Example 2. Suppose that ([0.71,0.8], [0.61,0.8]) is the attribute value of an element on set  . When
computed using q-RIVOFS, it is found that 0.83+0.83>1. However, when computed using
(p,q)-RIVOFS, it yields 0.83+0.84<1. This comparison shows that (p,q)-RIVOFS can deal with a
wider range of attribute values than q-RIVOFS.

It can be seen from example 2 that the value of this attribute is not satisfied with the desirable
spatial range of the q-rung interval-valued orthopair fuzzy set. Consequently, this case cannot be
adequately addressed by the q-RIVOFS. However, the (p,q)-rung interval-valued orthopair fuzzy set
can successfully capture this set of attribute values. Therefore, it is apparent that incorporating the
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parameter p into the (p,q)-rung interval-valued orthopair fuzzy set enhances its effectiveness in dealing with
the uncertainty of multi-attribute group decision problems encountered in real-life scenarios.

The related properties of (p,q)-rung interval-valued orthopair fuzzy sets are described below.

3.1. Ranking of (p,q)-rung interval-valued orthopair fuzzy sets

Their scoring functions and precision functions are constructed to compare the magnitudes of
two (p,q)-rung interval-valued orthopair fuzzy numbers.

Definition 7. For any (p,q)-rung interval-valued orthopair fuzzy number ([ , ],[ , ])L R L R
α α α αα f f h h , the

function (1) is called the score function of α .

( ) ( ) ( ) ( )1( ) (1 ( ) ( ) ( ) ( ) )12 1 (( ) ( ) )
3

L p R p L q R q
α α β βL p R p L q R q

α α β β
L k R k
α α

f f h h
S α f f h h

π π

  
     

 
. (1)

( ) ( ) ( ) ( )1( ) (1 ( ) ( ) ( ) ( ) )12 1 (( ) ( ) )
3

L p R p L q R q
α α β βL p R p L q R q

α α β β
L k R k
α α

f f h h
H α f f h h

π π

  
     

 
. (2)

The function (2) is called the precision function of α .
Given

1 1 1 11 ([ , ],[ , ])L R L R
α α α αα f f h h ,

2 2 2 22 ([ , ],[ , ])L R L R
α α α αα f f h h , the following conditions hold:

(1) If 1 2( ) ( )S α S α , then 1α is said to be greater than 2α , as indicated by 1 2α α .
(2) If 1 2( ) ( )S α S α , then 1α is said to be equal to 2α when 1 2( ) ( )H α H α ; otherwise, 1α

is said to be less than 2α when 1 2( ) ( )H α H α .

3.2. Weighted average operator for (p,q)-rung interval-valued orthopair fuzzy sets

Definition 8. Let ([ , ],[ , ])
j j j j

L R L R
j α α α αα f f h h be a (p,q)-rung interval-valued orthopair fuzzy number,

1 2( , , ..., )Tnω ω ω ω be a vector of weights for jα , [0,1]jω  and
1

1n
jj

ω


 . If

 
1

,
n

j j
j

p q RIVOFWA ω α


  ,

(p,q)-RIVOFWA is then referred to as the (p,q)-rung interval-valued orthopair fuzzy weighted
average operator.

Theorem 1. Let ([ , ],[ , ])
j j j j

L R L R
j α α α αα f f h h be a (p,q)-rung interval-valued orthopair fuzzy number,

1 2( , , ..., )Tnω ω ω ω be a vector of weights for jα , [0,1]jω  and
1

1n
jj

ω


 . Then,

   

   

   

1 2
1

1 1,

1,2,...,

1 1,

, , ,...,

1 1 , 1 1 ,

,

j j

j j
L R
α αj j

j j

j j
L R
α αj j

n

n j j
j

ω ωn np p
L Rp p
α α

j jf f

j n

ω ωn nq q
L Rq q
α α

j jh h

p q RIVOFWA α α α ω α

f f

h h



  
  


 

 

                  
       

           
       



 

 



1,2,...,j n


  


 

(3)
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Proof. Theorem 1 is demonstrated via mathematical induction.
When n=1, the theorem is visibly correct.
When n = 2, we have

�1�1 ⊕�2�2 =
���
� ,���

�

�=1,2

�

1 −
�=1

2

1 − ���
�

� ��
� ,�

�

1 −
�=1

2

1 − ���
�

� ��
� ,

ℎ ��
� ,ℎ ��

�

�=1,2

�

�=1
2 ℎ ��

�
� ��

� ,
�

�=1
2 ℎ ��

�
� ��

�� .

Assuming the theorem holds when n = k, we have

�=1

�
⊕ ���� =

���
� ,���

�

�=1,2,...,�

�

1 −
�=1

�

1 − ���
�

� ��
� ,�

�

1 −
�=1

�

1 − ���
�

� ��
� ,

ℎ ��
� ,ℎ ��

�

�=1,2,...,�

�

�=1
� ℎ ��

�
� ��

� ,
�

�=1
� ℎ ��

�
� ��

�� .

When n = k+1, we have

   

   

1

1 1
1 1

1 1,

1,2,...,

1 1,

1 1 , 1 1 ,

,

j j

j j
L R
α αj j

j j

j j
L R
α αj j

k k

j j j j k k
j j

ω ωk kp p
L Rp p
α α

j jf f

j k

ω ωk kq q
L Rq q
α α

j jh h

ω α ω α ω α

f f

h h



 
 

  
  


  


 

                       

                   

 

 

 



     

     

   

1 1

1 1

1 1

1 1

1,2,...,

,

,

1 1

1 1

1 1 , 1 1 ,

,

1 1 , 1 1

j j

k k
L R
α αk k

j j

k k
L R
α αk k

j j

j j

j k

ω ωp pL Rp p
α α

f f

ω ωq qL Rq q
α α

h h

ω ωk kp p
L Rp
α α

j j

f f

h h

f f

 

 

 

 




 
 

 
 

 

 



          
    

      
    

           
    







   

,

1,2,..., 1

1 1

1 1,

1,2,..., 1

,

,

L R
α αj j

j j

j j
L R
α αj j

p

f f

j k

ω ωk kq q
L Rq q
α α

j jh h

j k

h h

 
  
 

 

  
  
 

     
    

                   
 





.

Therefore, when n = k+1, the equation holds, and hence it holds for any value of n. The proof is
complete.

The following are the relevant properties satisfied by the (p,q)-RIVOFWA operator:

Theorem 2. (Boundedness) Let ([ , ],[ , ])
j j j j

L R L R
j α α α αα f f h h , j=1,2,…,n, be (p,q)-rung interval-valued
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orthopair fuzzy numbers, where 1 2min( , ,..., )nα α α α  and 1 2max( , ,..., )nα α α α  . Then

   1 2, , ,..., nα p q RIVOFWA α α α α    .

Theorem 3. (Idempotence) Let ([ , ],[ , ])
j j j j

L R L R
j α α α αα f f h h , j=1,2,…,n, be (p,q)-rung interval-valued

orthopair fuzzy numbers. If for any jα , jα α and 1 1 1( , ,..., )Tω
n n n

 , then

   1 2, , ,..., np q RIVOFWA α α α α  .

Theorem 4. (Monotonicity) Let ([ , ],[ , ])
j j j j

L R L R
j α α α αα f f h h and ' ' ' '

' ([ , ],[ , ])
j j j j

L R L R
j α α α α
α f f h h , j=1,2,…,n,

be (p,q)-rung interval-valued orthopair fuzzy numbers such that 1,2,...,j n  , '
j jα α ,

' '[ , ] [ , ]
j jj j

L R L R
α αα α

f f f f and ' '[ , ] [ , ]
j jj j

L R L R
α αα α

h h h h . Then,

       ' ' '
1 2 1 2, , ,..., , , ,...,n np q RIVOFWA α α α p q RIVOFWA α α α   .

3.3. Entropy measure of (p,q)-rung interval-valued orthopair fuzzy sets

In the context of fuzzy set theory and multi-attribute decision-making issues, entropy is a
crucial measure of information that may be utilized to quantify the degree of fuzziness of attributes
and establish attribute weights.

Definition 9. A real function E: (p,q)-RIVOFS(X)→[0,1] is referred to as the entropy of a (p,q)-rung
interval-valued orthopair fuzzy set, if it satisfies the following criteria:

(1)   0E   if and only if the (p,q)-rung interval-valued orthopair fuzzy set is a crisp set.

(2)   0E   if and only if for all x∈X ,  0,0f h   .
(3) When 2 2( ) ( )L Lf x h x  and 2 2( ) ( )R Rf x h x  , there is 1 2( ) ( )L Lf x f x  , 1 2( ) ( )R Rf x f x  ,

1 2( ) ( )L Lh x h x  , 1 2( ) ( )R Rh x h x  ; when 2 2( ) ( )L Lf x h x  and 2 2( ) ( )R Rf x h x  , there is

1 2( ) ( )L Lf x f x  , 1 2( ) ( )R Rf x f x  , 1 2( ) ( )L Lh x h x  , 1 2( ) ( )R Rh x h x  . Then,    1 2E E   is
established.

(4)    CE E   .

Below is a formula for calculating the entropy of (p,q)-rung interval-valued orthopair fuzzy sets
that satisfies the four constraints mentioned above:

Definition 10. Let  serve as a (p,q)-rung interval-valued orthopair fuzzy set on a fixed set Ω.
Then, the formula

 
2 2 2 2

1

(2 ) ( ) (2 ) ( )1 [cos cos
2 2 2

2 ( ) ( )]

L L L L R R R Rn

i
L L R R

f h f h f h f hE π π
n

f h f h

       



   

       
  

    

 (4)

is a (p,q)-rung interval-valued orthopair fuzzy entropy formula that satisfies the axiomatic definition 9.

Proof. (1) When  is a definite set, that is,  1,1f  ，  0,0h  or  0,0f  ,  1,1h  ,



AIMS Mathematics Volume 8, Issue 10, 23997–24024.

24006

  1 cos cos 2 1 1 0
2 2 2

π πE         
 

. Conversely, if   0E   , we can conclude that either

 1,1f  or  0,0f  , which implies that VB is a definite set.

(2) When  0,0f h   ,    1 cos0 cos0 2 0 0 1
2

E        .

(3) Let


2 2 2 2

1 2 1 2 1 2 1 2
1 1 2 2 1 2 1 2

(2 ) ( ) (2 ) ( )1( , , , ) [cos cos 2 ( ) ( )
2 2 2

x x x x y y y yf x y x y π π x x y y       
      

be a function defined as above, where 1 1 2 2, , , [0,1]x y x y  . We will compute the partial derivatives of

1 1 2 2( , , , )f x y x y with respect to 1x , 1y , 2x , 2y :

2 2
1 1 2 2 1 2 1 2

1 2 1 2 1
1

( , , , ) (2 ) ( ) 1( )(2 )(1 )sin
2 2

f x y x y x x x xx x x x x π
x

    
      


,

2 2
1 1 2 2 1 2 1 2

1 2 1 2 1
1

( , , , ) (2 ) ( ) 1( )(2 )(1 )sin
2 2

f x y x y y y y yy y y y y π
y

    
      


,

2 2
1 1 2 2 1 2 1 2

1 2 1 2 2
2

( , , , ) (2 ) ( ) 1( )(2 )( 1)sin
2 2

f x y x y x x x xx x x x x π
x

    
      


,

2 2
1 1 2 2 1 2 1 2

1 2 1 2 2
2

( , , , ) (2 ) ( ) 1( )(2 )( 1)sin
2 2

f x y x y y y y yy y y y y π
y

    
      


.

When 1 2x x , 1 2y y , 1 1 2 2

1

( , , , ) 0f x y x y
x





, 1 1 2 2

2

( , , , ) 0f x y x y
x





, 1 1 2 2

1

( , , , ) 0f x y x y
y





and 1 1 2 2

2

( , , , ) 0f x y x y
y





,

the function 1 1 2 2( , , , )f x y x y is monotonically increasing with respect to 1x , 1y , and monotonically
decreasing with respect to 2x , 2y . Therefore, when 2 2( ) ( )L Lf x h x  and 2 2( ) ( )R Rf x h x  , we
have 1 2( ) ( )L Lf x f x  , 1 2( ) ( )R Rf x f x  , 1 2( ) ( )L Lh x h x  , 1 2( ) ( )R Rh x h x  . Then,    1 2E E   .

Similarly, when 2 2( ) ( )L Lf x h x  , 2 2( ) ( )R Rf x h x  , we have 1 2( ) ( )L Lf x f x  , 1 2( ) ( )R Rf x f x  ,

1 2( ) ( )L Lh x h x  , 1 2( ) ( )R Rh x h x  .
(4) The proof of (4) is obvious.

3.4. The distance measure of (p,q)-rung interval-valued orthopair fuzzy sets

An essential tool in fuzzy set theory and a common application in decision-making problems is
the distance measure between (p,q)-rung interval-valued orthopair fuzzy vectors.

Definition 11. Let ([ , ],[ , ])L R L R
a a a aa f f h h , ([ , ],[ , ])L R L R

b b b bb f f h h and ([ , ],[ , ])L R L R
c c c cc f f h h be

three (p,q)-rung interval-valued orthopair fuzzy numbers. A function d is considered to be a
(p,q)-rung interval-valued orthopair fuzzy distance measure between a and b if it satisfies the
conditions outlined below:

(1) ( , ) 0d a b  ;
(2) ( , ) ( , )d a b d b a ;
(3) ( , ) 0d a b a b   ;
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(4) If a b c  , then ( , ) ( , ) ( , )d a c d c b d a b  .
Based on four conditions, this definition establishes a (p,q)-rung interval-valued fuzzy orthopair

fuzzy distance measure between a and b, referred to as d(a,b). These conditions ensure that the
distance measure satisfies basic properties such as non-negativity, symmetry and the triangle
inequality.

Among the various distance measures, Hamming distance and Euclidean distance are the most
commonly used.

Definition 12. Given two (p,q)-rung interval-valued orthopair fuzzy numbers
([ , ],[ , ])L R L R

a a a aa f f h h and ([ , ],[ , ])L R L R
b b b bb f f h h , we have the following.

(1) (p,q)-rung interval-valued orthopair fuzzy Hamming distance ( , )Hd a b :

��(�, �) =
1
6

��� � − ���
� + ��� � − ���

� + ℎ �
�

�
− ℎ �

�
�
+ ℎ �

�
�
− ℎ �

�
�

+ ��� � − ���
�
+ ��� � − ���

�
. (5)

(2) (p,q)-rung interval-valued orthopair fuzzy Euclidean distance ( , )Ed a b :

               

       

1
6( , )

p p p p q q q qL L R R L L R R
a b a b a b a b

E k k k kL L R R
a b a b

f f f f h h h h
d a b

π π π π

       
    

. (6)

These distance measures provide a way to quantify the similarity or dissimilarity between
(p,q)-rung interval-valued orthopair fuzzy numbers in decision-making questions.

The purpose of this study is to demonstrate that the two distance measures presented satisfy the
conditions of a distance measure as defined in Definition 12.

The Hamming distance measure will be used as an example.
Proof. (1) To prove the above, we will begin by showing that condition (1) is evident. The Hamming
distance is defined as the number of elements that differ in two vectors in the same position.
Therefore, the Hamming distance is always a non-negative value.
(2)

                       

                       

( , )
1
6
1
6
( , )

H

p p p p q q q q k k k kL L R R L L R R L L R R
a b a b a b a b a b a b

p p p p q q q q k k k kL L R R L L R R L L R R
b a b a b a b a b a b a

H

d a b

f f f f h h h h π π π π

f f f f h h h h π π π π

d b a

              

              


.

From the nature of absolute value, ( , ) ( , )H Hd a b d b a . Therefore, condition (2) is proved.
(3)

                       
                       

( , ) 0
1 0
6

0, 0, 0

, , , , ,
.

H

p p p p q q q q k k k kL L R R L L R R L L R R
a b a b a b a b a b a b

p p p p q q q q k k k kL L R R L L R R L L R R
a b a b a b a b a b a b
L L R R L L R R L L R R
a b a b a b a b a b a b

d a b

f f f f h h h h π π π π

f f f f h h h h π π π π

f f f f h h h h π π π π
a b



               
            

      
 

Therefore, condition (3) is proved.
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(4)

                       
                       
                   

1( , )
6
1
6

p p p p q q q q k k k kL L R R L L R R L L R R
H a b a b a b a b a b a b

p p p p p p p p q q q qL L L L R R R R L L L L
a c c b a c c b a c c b

q q q q k k k k k kR R R R L L L L R R
a c c b a c c b a c c

d a b f f f f h h h h π π π π

f f f f f f f f h h h h

h h h h π π π π π π π

              
            

             
                       
                       
                   

1
6

1
6

k kR R
b

p p p p p p p p q q q qL L L L R R R R L L L L
a c c b a c c b a c c b

q q q q k k k k k k k kR R R R L L L L R R R R
a c c b a c c b a c c b

p p p p q q q q k kL L R R L L R R L L
a c a c a c a c a c

π

f f f f f f f f h h h h

h h h h π π π π π π π π

f f f f h h h h π π

 
            

            
         

   
                       
( , ) ( , )

k kR R
a c

p p p p q q q q k k k kL L R R L L R R L L R R
c b c b c b c b c b c b

H H

π π

f f f f h h h h π π π π

d a c d c a

  

            
  .

Therefore, condition (4) is proved.
By applying the same logic, it can be demonstrated that the Euclidean distance meets the criteria

for a distance measure as specified in Definition 12.

Definition 13. Assume 1 2( , ,..., )Tnα α α α and 1 2( , ,..., )Tnβ β β β be (p,q)-rung interval-valued
orthopair fuzzy vectors, where ([ , ],[ , ])

i i i i

L R L R
i α α α αα f f h h and ([ , ],[ , ])

i i i i

L R L R
i β β β ββ f f h h , i=1,2,…,n. The

distance between α and β is thus specified as

               

       
1

1( , )
6 i i i i i i i i

i i i i

n p p p p q q q qL L R R L L R R
H α β α β α β α β

i

k k k kL L R R
α β α β

d α β f f f f h h h h
n

π π π π



       

    

 . (7)

The term ‘standard Hamming distance’ for (p,q)-rung interval-valued orthopair fuzzy vectors
refers to this distance.

Theorem 5. Let α , β and γ be three (p,q)-rung interval-valued orthopair fuzzy vectors, and let
( , )Hd α β , ( , )Hd β γ and ( , )Hd α γ denote the (p,q)-rung interval-valued orthopair fuzzy standard

Hamming distances between α and β , β and γ and α and γ , respectively. Then,
(1) ( , ) ( , )H Hd α β d β α , which implies that the distance measure is symmetric.
(2) If α γ β  , then ( , ) ( , ) ( , )H H Hd α β d β γ d α γ  , which implies that the distance measure
satisfies the triangle inequality.
(3) ( , ) 0Hd α β  , which implies that the distance measure is non-negative and zero only when
comparing identical vectors.
(4) If ( , ) 0Hd α β  , then α β holds, indicating that the distance measure satisfies the identity of
indiscernibles.

These characteristics demonstrate that the (p,q)-rung interval-valued orthopair fuzzy standard
Hamming distance is a valid distance measure for comparing (p,q)-rung interval-valued orthopair
fuzzy vectors.

4. (p,q)-rung interval-valued orthopair fuzzy multiple attribute group decision-making
algorithm based on weighted optimization

This section primarily introduces the steps of a fuzzy multi-attribute group decision-making
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algorithm on the basis of weighted optimization and (p,q)-rung interval-valued orthopair fuzzy sets.
First, each decision expert expresses the ambiguous evaluation information of alternative solutions
under distinct attributes. Second, the subjective and objective weights are then determined using
network analysis and entropy methods, and a model for weight optimization is developed. The
(p,q)-RIVOFWA operator is then employed for transforming a (p,q)-rung interval-valued orthopair
fuzzy decision information matrix into a comprehensive decision matrix. Finally, the improved
ELECTRE method is used to calculate the total advantage value, total disadvantage value and total
evaluation value of each solution. In order to determine the best option, the solutions are ranked
based on the total evaluation value.

Let 1 2{ , ,..., }mA A A A be the set of alternative solutions, 1 2{ , ,..., }nM M M M be the set of
attributes and there be t decision experts. Let ( )k

ijc denote the k-th expert's assessment value for the

alternative solution Ai in attribute Mj, where ( ) ( ) ( )( ( ) , ( ) )k k k
ij ij ijc f x h x is a (p,q)-rung interval-valued

orthopair fuzzy number. Let the weight vector for each index attribute be ω= ω1,ω2,…,ωn ,
where 0≤ωj≤1 and j=1

n ωj� =1 . The following are the decision-making stages of the algorithm
proposed in this paper:

Step 1: Constructing the (p,q)-rung interval-valued orthopair fuzzy decision matrix.
The fuzzy evaluations of the candidate alternatives by distinct decision makers under different

attributes are represented using (p,q)-rung interval-valued orthopair fuzzy numbers
([ , ],[ , ])L R L R

α α α αα f f h h , and the (p,q)-rung interval-valued orthopair fuzzy decision matrix
( )ij m nC c  ( 1,2,..., ; 1,2,..., )i m j n  is constructed on the basis of these evaluations.

Step 2: Utilize the ANP/Entropy method for calculating the weights of each attribute.
Using the ANP, the subjective weights of the decision-makers are determined for each attribute.

ANP is an enhanced version of the AHP for making decisions. ANP substitutes a network structure
for the hierarchical structure of AHP and establishes more complex influence relationships between
decision elements, taking into account the interdependence of factors and levels and emphasizing
subjectivity. The particular procedures are as follows:

(1) Build the network simulation model. By systematically analyzing what factors were
influential through a literature review and interviews with experts, the mutual influence relationships
between elements are determined, and a network structure diagram for the ANP is constructed.

(2) Build the evaluation matrix. The Delphi method is used to compile expert opinions, and the
relative importance of each indicator is expressed as a matrix. In light of the 1–9 scale rule [34], the
relative significance values are determined, and the priority vector is calculated.

(3) Calculate the eigenvalue and eigenvector, and perform a consistency check. After
completing the comparison matrix, the eigenvalue method and Eq (8) are utilized to calculate the
eigenvectorW, where maxλ is the evaluation matrix's maximal eigenvalue.

maxAW λ W . (8)

Based on Eq (9), the conformance of the judgment matrix is verified,

max 1/ 1λ nCR
RI
 

 (9)

where n stands for the order of the evaluation matrix, CI stands for the consistency index, CR stands
for the consistency ratio, and RI stands for an average random index. If CR  0.1, the consistency
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check is passed. Otherwise, it requires rechecking.
(4) Calculate the limit supermatrix W  . The eigenvectors of each indication that passes the

consistency test combine to form a supermatrix without weights. Normalizing the unweighted
supermatrix results in the weighted supermatrix, and then stabilizing the weighted supermatrix
results in the limit supermatrix, as computed by Eq (10). When i , the limit supermatrix is
unique and convergent, and the evaluation indicator weights ωj' can be determined.

lim( )k
k

W W


 . (10)

The entropy approach, a kind of objective weighing method that determines attribute weights on
the basis of the quantity of decision information, is used to calculate the objective weights of each
attribute. Entropy is a measurement of informational nondeterminacy. The indicator matrix X's
degree of dispersion increases with decreasing entropy value, which has a stronger effect on the
assessment as a whole. Consequently, the attribute objective weight model below is established using
the entropy formula of (p,q)-rung interval-valued orthopair fuzzy sets:

''

1

1 j
j n

j
j

E
ω

n E






. (11)

Due to the complexity of actual problems, the subjectivity and diversity of subjective
understanding and the instability of data, the network analysis method has some subjective
limitations, whereas the entropy method cannot make corresponding subjective judgments according
to the actual situation and has some objective limitations based on the original data. Therefore, a
method of combination weighting is required. The goal of the weight optimization model is to
minimize the deviation and maximize the dispersion when taking into account the divergence
between the combination weight and the subjective and objective weights and assuming that the
combination weight equals ωj.The model for weight optimization is

2
' 2 '' 2

1 1 1 1 1
min (( ) ) ( ) ) ( )

m n n m m

j j ij j j ij ij hj j
i j j i h

F ξ ω ω s ω ω s ς s s ω
    

        

. .s t
1

1

0, 1, 2,...,

n

j
j

j

ω

ω j n




 

 . (12)

ξ and ς are constants, indicating the degree of importance, ωj' stands for the subjective weight,
ωj'' stands for the objective weight, and sij represents the evaluation value of the j-th attribute of the
i-th evaluation object, while m stands for the total number of evaluation objects. We iteratively solve
Eq (12) using a genetic algorithm since the optimization model is a nonlinear model, and genetic
algorithms have the advantages of global optimization, rapid randomness and excellent convergence.

Step 3: Calculate the exhaustive decision information matrix using the (p,q)-RIVOFWA operator.
The (p,q)-rung interval-valued orthopair fuzzy decision information matrices ( )ij m nC c  are

aggregated into a comprehensive decision information matrix Φ ( )ij m n  utilizing its
(p,q)-RIVOFWA operator as described in Definition 3.
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Step 4: Calculate the score function.
Using Eq (1), the scores ( )ijρ  corresponding to each element of the exhaustive decision

information matrix are calculated, and a score matrix Ρ ( ( ))ij m nρ   is constructed. The scores of
various schemes for a given attribute are sorted, and the median score is chosen as the reference point φij.

Step 5: Structure the weighted standard decision matrix.
The distance ( , )ij ijd φ between each scheme and the reference point under the same attribute is

calculated using the standard Hamming distance Eq (7), and it is then used to produce a normalized
decision matrix ( )ij m nD d  , where

 
 
, ,

, ,

ij ij ij ij

ij

ij ij ij ij

d φ φ
d

d φ φ

 

 

  
 

. (13)

The standardized decision matrix is multiplied by the weight ω for obtaining the weighted
standard decision matrix ( )ij m nR r  .

Step 6: Calculate the consistency matrix and inconsistency matrix.
By comparing each pair of alternatives, the consensus set and the contradiction set are

determined. For alternatives Ak and Al, the consensus set comprises all criteria for which the
preference of Ak is not inferior to that of Al, i.e., { | }kl kj ljR j r r   , whereas the contradiction set

comprises all criteria for which the preference of Ak is worse than that of Al, i.e., { | }kl kj ljR j r r   .
Compute the consistency matrix H= hkl m×m and the inconsistency matrix T= tkl m×m

using Eqs (14) and (15).

1

kl
jj R

kl n
jj

ω
h

ω









(14)

max

max
kl

kj lj
j R

kl
kj ljj J

d d
t

d d








. (15)

Step 7: Determine the comprehensive matrix.
In light of the consistency matrix and the inconsistency matrix, one determines the

comprehensive matrix E= ekl m×m , which reflects the relative superiority or inferiority of each
alternative under various criteria. The matrix element ekl is determined using the following equation:

kl kl kle h t  . (16)

Step 8: Calculate the total advantages, total disadvantages and total dominance values of each
alternative.

The total advantage value and total disadvantage value of each alternative are calculated by
adding the values in each row and column of the exhaustive matrix, separately:

1
, 1, 2,...,

m

k kl
l

η e k m


  (17)
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1

, 1, 2,...,
m

l kl
k

χ e l m


  (18)

Then, each alternative's cumulative dominance value is computed using the formula:

,k k lμ η χ k l   . (19)

Finally, the schemes are sorted by their cumulative dominance values.
The multi-attribute group decision-making algorithm for (p,q)-rung interval-valued orthopair

fuzzy sets can be summarized.

Algorithm:Multiple attribute group decision-making algorithm
Input parameters:
D-Normalized decision matrix A-Set of alternative H-Consistency matrix
R-Weighted decision matrix M-Set of attributes T-Inconsistency matrix
ANP-Analytic Network Process C-Decision matrix E-Comprehensive matrix
WA-Weighted average operator S-Score value G-Genetic algorithm
w'-Subjective weight matrix P-Score matrix EM-Entropy method
w"-Objective weight matrix φ- Reference point η-sum for rows of E
w-Weight matrix Z-Sorting algorithm χ-sum for columns of E Z-Sorting algorithm
μ-Cumulative dominance values Φ-Comprehensive decision information matrix
1: For i=1, …, m
2: For j=1, ..., n
3: Set Cij based onMj and Ai
4: Calculate Φij and Sij based on Cij andWA
5: Calculate Pij based on Φij

6: End For
7: Set φ based on P
8: End For
9: Calculate w' and w" based on C by ANP and EM
10: Calculate w based on w', w" and S by G
11: Calculate R based on φ, Φ and D
12: For k=1, …, m
13: For l=1, …, m
14: Update j based on R
15: Calculate Hkl and Tkl based on wj, Dkj and Dlj

16: End For
17: End For
18: Calculate E based on H and T
19: Calculate μ based on η and χ
20: Update μ by Z
21: Return μ
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5. Example

5.1. Case analysis

Suppose that an investment company plans to select the best local enterprises in two cities
(City 1 and City 2) respectively for investment, and select the one with the best development
prospects from five companies in both cities: A1 Financial Company, A2 Food Company, A3 Real
Estate Company, A4 Internet Company and A5 Automotive Company. The company evaluates the
alternatives based on 4 attributes: M1 Economic Capability, M2 Social Evaluation, M3 Risk
Resistance and M4 Development Potential. For the purpose of accurately describing the
ambiguity of the evaluation information, the investment company invited three experts with
extensive experience to evaluate the options from a variety of perspectives. The evaluation
information was provided in the form of (p,q)-rung interval-valued orthopair fuzzy sets, and
decision-makers' interactions with one another and the interrelationships between attributes were
taken into account. On the basis of weight optimization, a (p,q)-rung interval-valued orthopair
fuzzy multi-attribute group decision-making algorithm is used for evaluating the options.
Without sacrificing generality, p=q=5 is used in this instance. The following are the particular
steps and results:

Step 1: The experts assessed the candidate schemes based on different attributes and obtained the
(p,q)-rung interval-valued orthopair fuzzy decision information matrix

( )ij m nC c  ( 1,2,..., ;i m 1,2,..., )j n , as depicted in Table 1.

Step 2: Using the ANP and entropy weight method, the subjective weights of decision experts
and the objective weights of each attribute were calculated. A genetic algorithm was utilized to
optimize the weight and iteratively solve the model (12), taking into account the discrepancy
within the combined weight and the subjective and objective weights. The initial population was
set to 100, and the crossover operator was configured as two-point crossover with a probability
of 0.6. The mutation operator was configured for uniform mutation with a 5% chance. As shown
in Table 2, after 86 iterations, the calculation converged, and the optimal weight vector was
obtained.

Step 3: The (p,q)-RIVOFWA operator was utilized to calculate the integrated decision
information matrix, as illustrated in Table 3.

Step 4: The outcomes of the scoring function were sorted after being computed using Eq (1). The
middle value was selected as the reference point. as can be seen in Table 4.

Step 5: Construct the weighted standard decision matrix. Calculate the distance according to Eq
(7), construct the standardized decision matrix, and multiply it by the weights to obtain the
weighted standard decision matrix illustrated in Table 5.

Step 6: Use Eqs (14) and (15) to calculate the consistency matrix and the inconsistency matrix,
respectively. The results of the calculations are shown in Tables 6 and 7.
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Table 1. The evaluation information of each project.

Decision
Matrix

Attributes
1M 2M 3M 4M

(1)

 1C

1A ([0.6,0.7], [0.1,0.2]) ([0.5,0.6], [0.2,0.3]) ([0.2,0.3], [0.5,0.6]) ([0.7,0.8], [0.1,0.2])

2A ([0.5,0.6], [0.2,0.3]) ([0.6,0.7], [0.3,0.4]) ([0.7,0.8], [0.3,0.4]) ([0.4,0.5], [0.2,0.3])

3A ([0.5,0.7], [0.4,0.5]) ([0.3,0.4], [0.4,0.5]) ([0.5,0.6], [0.3,0.4]) ([0.7,0.8], [0.2,0.3])

4A ([0.6,0.7], [0.3,0.4]) ([0.7,0.8], [0.2,0.3]) ([0.5,0.6], [0.4,0.5]) ([0.5,0.6], [0.3,0.4])

5A ([0.6,0.7], [0.2,0.3]) ([0.6,0.7], [0.3,0.4]) ([0.3,0.4], [0.6,0.7]) ([0.6,0.7], [0.1,0.2])

 2C

1A ([0.5,0.6], [0.3,0.4]) ([0.6,0.7], [0.2,0.3]) ([0.3,0.4], [0.4,0.5]) ([0.5,0.6], [0.3,0.4])

2A ([0.7,0.8], [0.2,0.3]) ([0.5,0.6], [0.3,0.4]) ([0.7,0.8], [0.4,0.5]) ([0.4,0.5], [0.3,0.5])

3A ([0.5,0.6], [0.1,0.2]) ([0.2,0.3], [0.5,0.6]) ([0.6,0.7], [0.2,0.3]) ([0.8,0.9], [0.1,0.2])

4A ([0.7,0.8], [0.3,0.4]) ([0.3,0.4], [0.4,0.5]) ([0.5,0.6], [0.2,0.4]) ([0.4,0.5], [0.5,0.6])

5A ([0.3,0.4], [0.5,0.6]) ([0.7,0.8], [0.1,0.2]) ([0.6,0.8], [0.2,0.3]) ([0.5,0.6], [0.1,0.2])

 3C

1A ([0.6,0.7], [0.2,0.3]) ([0.7,0.8], [0.1,0.2]) ([0.3,0.4], [0.3,0.4]) ([0.6,0.7], [0.1,0.2])

2A ([0.5,0.6], [0.4,0.5]) ([0.6,0.7], [0.4,0.5]) ([0.8,0.9], [0.1,0.2]) ([0.5,0.6], [0.2,0.3])

3A ([0.6,0.7], [0.3,0.4]) ([0.3,0.4], [0.4,0.6]) ([0.5,0.6], [0.2,0.3]) ([0.8,0.9], [0.2,0.3])

4A ([0.5,0.5], [0.5,0.6]) ([0.5,0.6], [0.5,0.6]) ([0.5,0.7], [0.2,0.4]) ([0.3,0.4], [0.5,0.6])

5A ([0.4,0.5], [0.6,0.7]) ([0.5,0.6], [0.2,0.3]) ([0.4,0.5], [0.5,0.6]) ([0.7,0.8], [0.1,0.2])

(2)

 1C

1A ([0.6,0.7], [0.3,0.4]) ([0.5,0.6], [0.2,0.3]) ([0.6,0.7], [0.1,0.2]) ([0.5,0.6], [0.3,0.4])

2A ([0.3,0.4], [0.2,0.3]) ([0.6,0.7], [0.3,0.4]) ([0.5,0.6], [0.2,0.3]) ([0.4,0.5], [0.3,0.4])

3A ([0.7,0.8], [0.2,0.3]) ([0.6,0.7], [0.4,0.5]) ([0.6,0.7], [0.4,0.5]) ([0.7,0.8], [0.2,0.3])

4A ([0.5,0.6], [0.3,0.4]) ([0.7,0.8], [0.2,0.3]) ([0.6,0.7], [0.3,0.4]) ([0.5,0.6], [0.4,0.5])

5A ([0.4,0.5], [0.2,0.3]) ([0.6,0.7], [0.3,0.4]) ([0.6,0.7], [0.2,0.3]) ([0.3,0.4], [0.2,0.3])

 2C

1A ([0.7,0.8], [0.2,0.3]) ([0.6,0.7], [0.2,0.3]) ([0.5,0.6], [0.3,0.4]) ([0.7,0.8], [0.3,0.4])

2A ([0.4,0.5], [0.3,0.4]) ([0.5,0.6], [0.3,0.4]) ([0.7,0.8], [0.2,0.3]) ([0.5,0.6], [0.3,0.4])

3A ([0.5,0.6], [0.3,0.4]) ([0.7,0.8], [0.5,0.6]) ([0.5,0.6], [0.1,0.2]) ([0.5,0.6], [0.3,0.4])

4A ([0.6,0.7], [0.4,0.5]) ([0.3,0.4], [0.4,0.5]) ([0.7,0.8], [0.3,0.4]) ([0.6,0.7], [0.5,0.6])

5A ([0.7,0.8], [0.2,0.3]) ([0.7,0.8], [0.1,0.2]) ([0.3,0.4], [0.5,0.6]) ([0.4,0.5], [0.5,0.6])

 3C

1A ([0.5,0.6], [0.2,0.3]) ([0.7,0.8], [0.1,0.2]) ([0.6,0.7], [0.2,0.3]) ([0.5,0.6], [0.3,0.4])

2A ([0.6,0.7], [0.3,0.4]) ([0.6,0.7], [0.4,0.5]) ([0.5,0.6], [0.4,0.5]) ([0.3,0.4], [0.2,0.3])

3A ([0.5,0.6], [0.4,0.5]) ([0.5,0.6], [0.4,0.6]) ([0.6,0.7], [0.3,0.4]) ([0.5,0.6], [0.2,0.3])

4A ([0.7,0.8], [0.2,0.3]) ([0.5,0.6], [0.5,0.6]) ([0.5,0.5], [0.5,0.6]) ([0.7,0.8], [0.3,0.4])

5A ([0.6,0.7], [0.3,0.4]) ([0.5,0.6], [0.2,0.3]) ([0.4,0.5], [0.6,0.7]) ([0.5,0.6], [0.3,0.4])

Table 2. The weight of each attribute.

1M 2M 3M 4M
1ω 0.4346 0.3404 0.0879 0.1374
2ω 0.3558 0.0916 0.2362 0.3164
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Table 3. Integrated decision information matrix.

1M 2M 3M 4M

(1)

1A
([0.6405,0.7075],
[0.1082,0.1977])

([0.6259,0.7260],
[0.1527,0.2547])

([0.2147,0.2892],
[0.7809,0.8300])

([0.5252,0.6135],
[0.4501,0.5666])

2A
([0.6334,0.7358],
[0.1658,0.2598])

([0.5767,0.6765],
[0.3225,0.4233])

([0.5789,0.6727],
[0.6779,0.7536])

([0.3724,0.4557],
[0.5446,0.6531])

3A
([0.5713,0.7075],
[0.1463,0.2469])

([0.2814,0.3789],
[0.4233,0.5578])

([0.4171,0.4958],
[0.6779,0.7466])

([0.6605,0.7633],
[0.4683,0.5758])

4A
([0.6555,0.7478],
[0.2598,0.3612])

([0.5901,0.6871],
[0.3343,0.4406])

([0.3839,0.4958],
[0.6953,0.8009])

([0.3605,0.4414],
[0.7005,0.7662])

5A
([0.5250,0.6226],
[0.2944,0.4065])

([0.6259,0.7260],
[0.1753,0.2809])

([0.3826,0.5196],
[0.7809,0.8335])

([0.5252,0.6135],
[0.3871,0.5151])

(2)

1A
([0.6312,0.7318],
[0.2073,0.3064])

([0.4849,0.5675],
[0.6030,0.6921])

([0.5371,0.6317],
[0.2987,0.4144])

([0.5962,0.6949],
[0.3189,0.4191])

2A
([0.5048,0.5993],
[0.2395,0.3395])

([0.4457,0.5261],
[0.7375,0.7935])

([0.5634,0.6583],
[0.3765,0.4807])

([0.4257,0.5204],
[0.2805,0.3826])

3A
([0.6098,0.7099],
[0.2653,0.3675])

([0.4849,0.5675],
[0.7935,0.8546])

([0.5371,0.6317],
[0.3518,0.4675])

([0.5962,0.6949],
[0.2467,0.3493])

4A
([0.6312,0.7318],
[0.2653,0.3675])

([0.4563,0.5348],
[0.7446,0.8021])

([0.5836,0.6697],
[0.4807,0.5749])

([0.6173,0.7166],
[0.4106,0.5113])

5A
([0.6223,0.7218],
[0.2073,0.3064])

([0.4849,0.5675],
[0.6259,0.7106])

([0.4656,0.5536],
[0.5145,0.6131])

([0.4257,0.5204],
[0.3297,0.4350])

Table 4. Scoring matrix.

(1) 1M 2M 3M 4M

1A 0.7103 0.7430 -0.0780 0.5407

2A 0.7595 0.6534 0.3460 0.3864

3A 0.6933 0.4533 0.2248 0.7485

4A 0.7861 0.6663 0.1209 0.1597

5A 0.5972 0.7424 -0.0510 0.5664

Ranking 4 2 1 3 5A A A A A    1 5 4 2 3A A A A A    2 3 4 5 1A A A A A    3 5 1 2 4A A A A A   

The reference
point 1A 4A 4A 1A

(2) 1M 2M 3M 4M

1A 0.7517 0.3745 0.6059 0.6805

2A 0.5846 0.1011 0.6197 0.5339

3A 0.7097 -0.0903 0.5953 0.6886

4A 0.7478 0.0808 0.5933 0.6904

5A 0.7342 0.3422 0.4604 0.5263
Ranking 1 4 5 3 2A A A A A    1 5 2 4 3A A A A A    2 1 3 4 5A A A A A    4 3 1 2 5A A A A A   

The reference
point 5A 2A 3A 1A
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Table 5.Weighted standard decision matrix.

(1) 1M 2M 3M 4M (2) 1M 2M 3M 4M

1A 0 0.0083 -0.0056 0 1A 0.0025 0.0090 0.0010 0

2A 0.0088 -0.0026 0.0048 -0.0046 2A -0.0212 0 0.0032 -0.0202

3A -0.0030 -0.0244 0.0034 0.0122 3A -0.0029 -0.0081 0 0.0011

4A 0.0150 0 0 -0.0163 4A 0.0031 -0.0010 -0.0093 0.0075

5A -0.0180 0.0083 -0.0061 0.0015 5A 0 0.0078 -0.0075 -0.0195

Table 6. The consistent matrix.

(1) 1A 2A 3A 4A 5A (2) 1A 2A 3A 4A 5A

1A 0 0.4778 0.7750 0.4778 0.8629 1A 0 0.7638 0.6836 0.3278 1.0000

2A 0.5225 0 0.8629 0.2253 0.5225 2A 0.2362 0 0.3278 0.3278 0.2362

3A 0.2253 0.1374 0 0.2253 0.6599 3A 0.3164 0.6722 0 0.2362 0.5526

4A 0.5225 0.7750 0.7750 0 0.5225 4A 0.6722 0.6722 0.7638 0 0.6722

5A 0.1374 0.4778 0.3404 0.4778 0 5A 0 0.7638 0.4474 0.3278 0

Table 7.The contradiction matrix.

(1) 1A 2A 3A 4A 5A (2) 1A 2A 3A 4A 5A

1A 0 0.2805 0.9326 1.0000 1.0000 1A 0 1.0000 1.0000 1.0000 1.0000

2A 1.0000 0 0.5238 1.0000 1.0000 2A 0.6514 0 1.0000 0.6025 0.5308

3A 1.0000 1.0000 0 1.0000 1.0000 3A 0.0181 0.7594 0 0.5087 0.3750

4A 0.5400 0.1687 0.3454 0 0.5886 4A 0.2182 1.0000 1.0000 0 0.8877

5A 0.2563 0.3536 0.8855 1.0000 0 5A 0 1.0000 1.0000 1.0000 0

Step 7: Calculate the exhaustive matrix using Eq (16), as given in Table 8.

Step 8: Determine each option's total advantage value, total disadvantage value and total evaluation
value using Eqs (17)–(19), respectively. As demonstrated in Table 9, the greater the total evaluation
value is the better the option.

Table 8. Synthesis matrix.

(1) 1A 2A 3A 4A 5A (2) 1A 2A 3A 4A 5A

1A 0 0.1973 -0.1576 -0.5222 -0.1371 1A 0 -0.2362 -0.3164 -0.6722 0

2A -0.4775 0 0.3391 -0.7747 -0.4775 2A -0.4152 0 -0.6722 -0.2747 -0.2946

3A -0.7747 -0.8626 0 -0.7747 -0.3401 3A 0.2983 -0.0872 0 -0.2725 0.1776

4A -0.0175 0.6063 0.4296 0 -0.0661 4A 0.4540 -0.3278 -0.2362 0 -0.2155

5A -0.1189 0.1242 -0.5451 -0.5222 0 5A 0 -0.2362 -0.5526 -0.6722 0
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Table 9.Decision outcome.

(1) 1A 2A 3A 4A 5A (2) 1A 2A 3A 4A 5A
η -0.6196 -1.3906 -2.7521 0.9523 -1.0620 η -1.2248 -1.6566 0.1162 -0.3254 -1.4610
χ -1.3886 0.0652 0.0659 -2.5938 -1.0208 χ 0.3372 -0.8874 -1.7774 -1.8916 -0.3324
μ 0.7690 -1.4559 -2.8180 3.5461 -0.0412 μ -1.5620 -0.7692 1.8936 1.5662 -1.1286

Ranking 4 1 5 2 3A A A A A    Ranking 3 4 2 5 1A A A A A   

The optimal
choice 4A

The optimal
choice 3A

According to the proposed weighted optimization-based (p,q)-rung interval-valued orthopair
fuzzy multi-attribute group decision-making algorithm described above, it can be seen that the
ranking of 5 alternative schemes for City 1 is A4 > A1 > A5 > A2 > A3, with Internet company A4 being
the optimal choice. The ranking of the five alternatives for City 2 is A3 > A4 > A2 > A5 > A1, in which
Real Estate Company A3 is the best choice.

5.2. Parametric analysis

To validate the efficacy of our research, we conduct sensitivity analysis on the parameters p and
q in section 5.2. The outcomes are demonstrated in Tables 10–13 and Figures 1 and 2, along with a
concise analysis.

Table 10.Different p values correspond to the ranking results of each program (q =5).

Parameters  1μ A  2μ A  3μ A  4μ A  5μ A Ranking

p=7 1.5034 -1.2264 -4.0689 3.7734 0.0185 4 1 5 2 3A A A A A   

p =9 2.3397 -1.2818 -4.4914 3.8681 -0.4347 4 1 5 2 3A A A A A   

p =11 2.7629 -1.2712 -4.6702 3.9270 -0.7485 4 1 5 2 3A A A A A   

p =13 2.8024 -1.2966 -4.6584 3.9484 -0.7957 4 1 5 2 3A A A A A   

p =15 2.8024 -1.3585 -4.6069 3.9645 -0.0815 4 1 5 2 3A A A A A   

Table 11.Different p values correspond to the ranking results of each program (q =5).

Parameters  1μ A  2μ A  3μ A  4μ A  5μ A Ranking of (2)

p=7 -1.0441 -0.9375 2.3881 1.0526 -1.4591 3 4 2 1 5A A A A A   

p =9 -1.2615 -1.1624 2.8060 0.4933 -0.8753 3 4 5 2 1A A A A A   

p =11 -1.3977 -1.3085 3.0543 0.7143 -1.0624 3 4 5 2 1A A A A A   

p =13 -1.1798 -0.5228 2.8793 0.0982 -1.2750 3 4 2 1 5A A A A A   

p =15 -0.7101 -1.0968 2.9707 0.1056 -1.2694 3 4 1 2 5A A A A A   
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Table 12.Different q values correspond to the ranking results of each program (p =5).

Parameters  1μ A  2μ A  3μ A  4μ A  5μ A Ranking

q=7 0.6114 -1.4049 -2.3561 2.7922 0.3574 4 1 5 2 3A A A A A   

q=9 0.7387 -1.3575 -2.1852 2.0133 0.7907 4 5 1 2 3A A A A A   

q=11 0.6297 -1.2825 -2.1536 1.9152 0.8913 4 5 1 2 3A A A A A   

q=13 0.5780 -1.2026 -2.1537 1.9108 0.8676 4 5 1 2 3A A A A A   

q=15 -0.1387 -1.1343 -2.1537 1.9092 1.5175 4 5 1 2 3A A A A A   

Table 13.Different q values correspond to the ranking results of each program (p =5).

Parameters  1μ A  2μ A  3μ A  4μ A  5μ A Ranking of (2)

q=7 -1.6980 -1.0379 2.1609 1.8643 -1.2893 3 4 2 5 1A A A A A   

q=9 -1.6029 -0.9511 1.8325 1.6267 -0.9051 3 4 5 2 1A A A A A   

q=11 -1.4615 -0.7443 1.4605 1.2737 -0.5284 3 4 5 2 1A A A A A   

q=13 -1.2168 -0.5546 1.0502 0.8691 -0.1480 3 4 5 2 1A A A A A   

q=15 -0.8620 -0.3997 0.5824 0.4804 0.1989 3 4 5 2 1A A A A A   

Figure 1. Different p values correspond to the results of the ranking of each scheme diagram.

Figure 2. Different q values correspond to the results of the ranking of each scheme diagram.
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According to Tables 10–13 and Figures 1 and 2, the difference between the optimal and
second-best solutions decreases as the other parameter increases when one parameter is held constant.
The decision-maker's risk aversion is reflected in the values of p and q. This indicates that
decision-makers become more risk-averse, and thus the parameters' values should be determined
based on the decision-maker's preferences regarding risk. As shown in Figures 1 and 2, as the values
of p and q vary, so do the total judgement value and ranking of each alternative. However, the
optimal option is always the same, demonstrating the dependability of the decision results obtained
in this investigation.

5.3. Contrastive analysis

This part evaluates the effectiveness and rationality of the proposed algorithm in comparison to
existing multi-attribute decision-making methods. Wang et al. [35] combined fuzzy evaluation,
weighted average and ranking methods to propose a q-rung orthopair fuzzy set based MABAC
method to solve the multi-attribute group decision problem. Garg et al. [36] put forward the notion of
a complex interval-valued q-rung orthopair fuzzy set and investigated the TOPSIS method in order to
assess the work's dependability and efficacy. Ju et al. [37] proposed a definition of an interval-valued
q-rung orthopair fuzzy set along with a few interval-valued q-rung orthopair weighted averaging
operators and then developed an original method for resolving multiple-attribute decision-making
problems. To make the algorithms' comparability better, this part sets the values of the parameters p
and q to 3. As shown in Tables 14 and 15 and Figure 3, these two decision-making techniques are
applied to the case study in this paper, and the resulting decision-making outcomes are compared to
those of the proposed algorithm.

Table 14. Comparing the algorithm applied to City 1 with the decision-making results of
[35–37].

Result of (1)
Ranking

1A 2A 3A 4A 5A

Wang’s [35] method 0.5089 0.5228 0.4574 0.6094 0.4839 4 2 1 5 3A A A A A   

Garg’s [36] method 0.6741 0.6203 0.6169 0.6914 0.6315 4 1 5 2 3A A A A A   

Ju’s [37] method 0.6278 0.5731 0.5295 0.6990 0.5560 4 1 2 5 3A A A A A   

Our proposed method 0.1222 -0.6268 -1.4412 2.7097 -0.7639 4 1 2 5 3A A A A A   

Table 15. Comparing the algorithm applied to City 2 with the decision-making results of
[35–37].

Result of (2)
Ranking

1A 2A 3A 4A 5A

Wang’s [35] method 0.3959 0.4858 0.5994 0.4857 0.4678 3 2 4 5 1A A A A A   

Garg’s [36] method 0.5286 0.5620 0.8369 0.7693 0.7463 3 4 5 2 1A A A A A   

Ju’s [37] method 0.5660 0. 6278 0.6921 0.6619 0.5831 3 4 2 5 1A A A A A   

Our proposed method -1.5620 -0.7692 1.8936 1.5662 -1.1286 3 4 2 5 1A A A A A   
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Figure 3. Comparing the algorithm with the decision-making results of literature [35–37].

The data in Tables 14 and 15 and Figure 3 may be used to derive the following conclusions:
(1) Tables 14 and 15 present the decision results obtained using the proposed algorithm and

existing decision methods for City 1 and City 2, respectively. The ranking results in both tables may
not be exactly the same, but all three decision-making methods ultimately arrive at the same final
choice. This consistency demonstrates that the effectiveness of the proposed algorithm is not
accidental; it holds true universally. Consequently, the proposed algorithm provides a novel and
reliable approach to solving multi-attribute group decision-making problems.

(2) Although there may be slight differences in the ranking results between the approaches
described in [35–37] and the method proposed in this work, the optimal solution remains the same.
This observation confirms the feasibility of the suggested algorithm. Given the inherent fuzziness of
the decision-making environment, the ranking outcomes of the proposed method may vary for
different parameter values. Figure 3 illustrates that the discrepancy between the optimal solution and
the next-best solution obtained by the proposed algorithm is greater, indicating that the
decision-making results are more discernible and persuasive.

(3) In comparison to the existing MABAC method, TOPSIS method and weighted average
operator decision method, this paper not only further expands the desirable range of attribute values
to provide a broader decision-making environment for decision makers but also takes into account
the interaction between decision makers and the relationship between attributes, optimizes the
weights and improves the ELECTRE method based on these considerations to make the decision
results more reasonable. Therefore, the decision method proposed in this paper is more suitable for
solving real-world decision problems. The accuracy and robustness of the proposed algorithm are
also verified by two sets of data and comparison with existing decision-making methods.

Overall, the proposed algorithm not only addresses the limitations of existing methods but also
enhances the decision-making process by incorporating a wider range of attribute values and
considering the interaction between decision-makers and attributes. The results validate the
effectiveness and applicability of the proposed algorithm, making it a valuable tool for
decision-makers facing complex and uncertain decision-making scenarios.

6. Conclusions

In this paper, the (p,q)-rung interval-valued orthopair fuzzy multi-attribute group
decision-making algorithm based on weight optimization was proposed and verified. The main
contributions of this paper are summarized as follows: (1) The definition of (p,q)-rung
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interval-valued orthopair fuzzy sets is proposed. The scoring function, entropy, weighted average
operator and distance measure are defined, and their properties are studied. (2) A weight
optimization model is established to determine the optimal weight. It mainly includes considering
the interaction between decision-makers and the relationship between attributes, and the ANP and
entropy method are used to solve the subjective and objective weights, respectively. Considering
the influence of subjective and objective weights on combination weights, a genetic algorithm is
used to iteratively find the optimal solution of combination weights, taking the deviation degree
and dispersion degree of subjective and objective weights as objective functions. (3) An improved
(p,q)-rung interval-valued orthopair fuzzy ELECTRE method is proposed. This method integrates
the optimal weights obtained from the weight optimization model with the relevant definitions of
(p,q)-rung interval-valued orthopair fuzzy sets, building a novel multi-attribute decision model.
Finally, the accuracy and robustness of the proposed algorithm are verified by the analysis of two
datasets and comparisons with existing decision-making methods. To sum up, the above research
content has demonstrated certain advantages and can find widespread applications in fields such as
investment decision-making, supply chain management, environmental management and human
resource management. However, it should be noted that the genetic algorithm employed in the
weight optimization model may encounter the issue of local optima, potentially resulting in some
deviation from the proposed algorithm. Future research will focus on combining deep learning with
genetic algorithms to further improve the accuracy of the algorithm. In addition, future research
goals of this work include applying improved decision methods to semantic environments [38–42].
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