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Abstract: The skewness of a graph G, sk(G), is the smallest number of edges that need to be removed
from G to make it planar. The crossing number of a graph G, cr(G), is the minimum number of
crossings over all possible drawings of G. There is minimal work concerning the relationship between
skewness and crossing numbers. In this work, we first introduce an inequality relation for these two
parameters, and then we construct infinitely many near-planar graphs such that the inequality is equal.
In addition, we give a necessary and sufficient condition for a graph to have its skewness equal to the
crossing number and characterize some special graphs with sk(G) = cr(G).
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1. Introduction

All graphs considered here are undirected, simple and finite. For graph theory terminology not
defined here, we direct the reader to [3]. For any graph G, let E(G) and V(G) denote its edge set and
vertex set, respectively. A drawing of a graph G is a mapping D that assigns to each vertex in V(G) a
distinct point in the plane, and to each edge uv in G a continuous arc connecting D(u) and D(v), not
passing through the image of any other vertex. For simplicity, we impose the following conditions
on a drawing: (a) if two edges share an interior point p, then they cross at p; (b) any two edges of a
drawing have only a finite number of crossings (common interior points); and (c) no three edges have
an interior point in common. We call a drawing that meets the above conditions a good drawing.

Let crD(G) denote the number of crossings in a good drawing D of G, and the crossing number
of G, denoted by cr(G), is the minimum value of crD(G)’s among all possible good drawings D. A
good drawing is said to be optimal if it minimizes the number of crossings. Computing the crossing
number of a graph is an NP-hard problem [11], even for small graphs, because cr(K13) is still an open
problem [14]. For more about crossing numbers, see Reference [15]. The skewness of a graph, denoted
by sk(G), is the smallest number of edges that need to be removed from G to make it planar. Computing
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the skewness of a graph is an NP-hard problem [13]. For more about skewness, see Reference [12].
Skewness and crossing numbers have drawn much attention in the literature and play important roles
in several other areas of mathematics [5, 7, 12]. Skewness appears to be closely related to the crossing
number, but they may differ widely for special graphs. The following is readily checked:

Observation 1. For any graph G, sk(G) ≤ cr(G).

Note that sk(G) is a lower bound for cr(G), but that cr(G) − sk(G) could be very large [8]. There
are only few results concerning the relationship between the skewness and crossing number of a graph.
In [10], a nice relationship between cr(G) and sk(G) has been established.

Theorem 1. ([10]) For the graph G of order n,

cr(G) ≤
3sk(G)2 + (4n − 17)sk(G)

6
.

G is a planar graph if and only if cr(G) = sk(G) = 0. A graph G is near-planar if and only if
sk(G) = 1. By Theorem 1, for every near-planar graph G of order n, cr(G) ≤ 2n−7

3 . Near-planarity
is a very weak relaxation of planarity; hence, it is natural and interesting to study the properties of
near-planar graphs. Graphs embeddable in the torus and apex graphs are superfamilies of near-planar
graphs. However, computing the crossing number of a near-planar graph is an NP-hard problem [9].

In Section 2 of this work, we construct a new class of near-planar graphs and determine the exact
value of the crossing number, which can be arbitrarily large odd numbers. This implies that there exist
infinitely many near-planar graphs G such that the upper bound for cr(G) given in Theorem 1 is sharp.
In Section 3, we first give a necessary and sufficient condition for a graph to have its skewness equal to
the crossing number. Besides, we conclude that some special classes of graphs G satisfy the equality
sk(G) = cr(G).

2. Infinitely many near-planar graphs

In what follows, we construct infinitely many near-planar graphs G such that the upper bound for
cr(G) given in Theorem 1 is sharp.

The Cartesian product G1�G2 of the graphs G1 and G2 has the vertex set V(G1�G2) = V(G1) ×
V(G2), and two vertices (u, u′) and (v, v′) are adjacent in G1�G2 if and only if either u = v and u′ is
adjacent with v′ in G2, or if u′ = v′ and u is adjacent with v in G1. Let Cn be the cycle of length n,
and let Pn be the path of order n. The vertex set and edge set of the Cartesian product C3�Pk can be
represented as follows:

V(C3�Pk) =
⋃

1≤i≤k

{ai, bi, ci}

and
E(C3�Pk) =

⋃
1≤i≤k

{aibi, bici, ciai} ∪
⋃

1≤i≤k−1

{aiai+1} ∪
⋃

1≤i≤k−1

{bibi+1} ∪
⋃

1≤i≤k−1

{cici+1}.

Let Gk denote the graph obtained from C3�Pk by adding two new vertices x and y and adding new
edges in the following set:

{aici+1, biai+1, cibi+1 : 1 ≤ i ≤ k − 1} ∪ {xa1, xb1, xc1, yak, ybk, yck} ∪ {xy}.
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A drawing of Gk is shown in Figure 1. Clearly, sk(Gk) = 1 for k ≥ 1. The following result
determines cr(Gk) for k ≥ 1.

1a

1b
1c

2a

2b 2c

y

ka

kb kc

x

Figure 1. A drawing of Gk.

Theorem 2. For k ≥ 1, cr(Gk) = 2k − 1.

Proof. Consider the subgraph H of Gk as shown in Figure 2(1). Simultaneously smoothing all vertices
in H with degree two, we get the graph shown in Figure 2(2), denoted by H∗.

Figure 2. The graphs H and H∗.

Let G −V refer to the graph obtained from G by removing the vertex set V , and let G\E refer to the
graph obtained from G by removing the edge set E. For convenience, let G\{e} = G\e and G − {u} =

G − u. We first prove the following claims for any good drawing D of H∗.

Claim 1. For any e ∈ E(H∗ − y), H∗\e is not planar.

Proof. For the graph H∗ − y, we need to consider the following cases.
Case 1: Let e be an edge of the 3-cycle a1b1c1. Without loss of generality, assume that e = b1c1;

then, the graph H∗ \ e contains a subgraph which is homeomorphic to K3,3. Let (X,Y) be the partition
of K3,3, where X = {x, a2, b2} and Y = {y, a1, b1}.
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Case 2: Let e ∈ {xa1, xb1, xc1}. Without loss of generality, assume that e = xc1; then, the graph
H∗ \ e contains a subgraph which is homeomorphic to K3,3. Let (X,Y) be the partition of K3,3, where
X = {x, a2, c2} and Y = {y, a1, b1}.

Case 3: Let e ∈ {a2a1, a2b1, b2b1, b2c1, c2c1, c2a1}. Without loss of generality, assume that e = a2b1;
then, the graph H∗ \ e contains a subgraph which is homeomorphic to K5, where the vertex set is
{x, y, a1, b1, c1}.

Thus, Claim 1 follows. �

For any good drawing D of H∗ and any edge e in H∗, let CRD(e) denote the set of crossings of D
that happens on e.

Claim 2. For any good drawing D of H∗, there exist two different edges e1, e2 ∈ E(H∗ − y) such that
(a) CRD(ei) * CRD(e3−i) for i = 1, 2;
(b) {e1, e2} , {a2a1, a2b1}, {b2b1, b2c1} or {c2c1, c2a1}.

Proof. Since D is a good drawing of H∗, the four edges in H∗ incident with vertex y do not cross each
other, implying that each crossing of D belongs to CRD(e) for some e ∈ E(H∗ − y).

Let S = {e1, · · · , ek} be a set of edges in E(H∗ − y) with the minimum size such that each crossing
of D is contained in CRD(ei) for some i, implying that H∗\S is planar. By Claim 1, k ≥ 2. By the
minimality of S , each pair of edges in S has the property (a).

If k ≥ 3, the result follows by choosing two suitable edges in S . Now, assume that k = 2. By
the assumption on S , H∗\{e1, e2} is planar. It is routine to verify that, if {e1, e2} is any one of the sets
{a2a1, a2b1}, {b2b1, b2c1} or {c2c1, c2a1}, then H∗\{e1, e2} contains a subdivision of K3,3. Without loss of
generality, consider that {e1, e2} = {a2a1, a2b1}; then, the graph H∗ \ {e1, e2} contains a subgraph which
is homeomorphic to K3,3. Let (X,Y) be the partition of K3,3, where X = {x, b2, c2} and Y = {y, b1, c1}.
This implies that H∗\{e1, e2} is not planar, which is a contradiction.

Thus, Claim 2 holds. �

We now proceed to prove Theorem 2 by applying Claim 2. The result is true for k = 1, as G1 is
actually the complete graph K5.

Suppose that k ≥ 2, and that for any l < k, cr(Gl) ≥ 2l − 1 holds. Note that Figure 1 shows that
cr(Gk) ≤ 2k − 1. Thus, it suffices to show that crφ(Gk) ≥ 2k − 1 holds for any good drawing φ of Gk.

Let φ′ denote the restricted drawing of the subgraph H induced by φ, as shown in Figure 2(1). There
are three paths in H: P1 = yakak−1...a2, P2 = ybkbk−1...b2 and P3 = yckck−1...c2. We can “smooth” all of
the 2-degree vertices in H and modify the drawing φ

′

to a good drawing φ∗ of H∗.
Assume that Claim 2 holds for edges e1 and e2 in E(H∗ − y). So, {e1, e2} is a 2-element subset of

{a2a1, a2b1, b2b1, b2c1, c2c1, c2a1, a1b1, b1c1, c1a1},

but {e1, e2} , {a2a1, a2b1}, {b2b1, b2c1} or {c2c1, c2a1}. Thus, e1 and e2 are actually edges in H and none
of them are in paths P1, P2 or P3.

Note that Gk \ {e1, e2} contains a subgraph of Gk which is homeomorphic to Gk−1. Thus, crφ(Gk \

{e1, e2}) ≥ cr(Gk−1) ≥ 2(k − 1) − 1 by the induction hypothesis, implying that crφ(Gk) ≥ crφ(Gk \

{e1, e2}) + 2 ≥ 2(k − 1) − 1 + 2 = 2k − 1. �

Because |V(Gk)| = 3k + 2, sk(Gk) = 1 and cr(Gk) = 2k − 1, it is routine to verify that the equality
given in Theorem 1 holds.
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3. Characterizing graphs with sk(G) = cr(G)

A drawing of a graph is 1-planar if each of its edges is crossed at most once. If a graph has a
1-planar drawing, then it is 1-planar. We now give a necessary and sufficient condition for a graph to
have its skewness equal to the crossing number.

Theorem 3. Let G be a graph; then, sk(G) = cr(G) if and only if any optimal drawing of G is a
1-planar drawing.

Proof. Assume that sk(G) = cr(G). Suppose that there exists an optimal drawing D of G that is not a
1-planar drawing. According to the definition of a 1-planar drawing, there exists an edge e ∈ E(G) that
is crossed at least twice in D. Since D is an optimal drawing of G, then cr(D) = cr(G). It is readily
checked that cr(D\e) ≤ cr(G)−2. Thus, sk(G) ≤ sk(D) ≤ sk(D\e)+1 ≤ cr(D\e)+1 ≤ cr(G)−2+1 =

cr(G) − 1, which is a contradiction.
Suppose that any optimal drawing of G is a 1-planar drawing. Note that sk(G) ≤ cr(G). We now

prove that sk(G) ≥ cr(G). Suppose that sk(G) ≤ cr(G)−1. Let D be any optimal drawing of G, namely,
cr(D) = cr(G). We note that sk(G) ≤ cr(G) − 1 = cr(D) − 1; thus, there exists one edge e ∈ E(G) that
is crossed at least twice in D, which is a contradiction. �

A drawing of a 1-planar graph partitions the plane into empty regions called faces. A face is defined
by the cyclic sequence of edges and edge segments that forms its boundary, which is described by
vertices and crossings. A face is a triangle if its size is three. A graph G is called maximal in a graph
class if no edge can be added to G without violating the defining class. Any maximal 1-planar graph
G and its 1-planar drawing D have the following Properties 1–3, from [4].

Property 1. In G, the smallest degree is at least two. If degG(u) = 2, uv1 and uv2 are edges; then, uv1

and uv2 are not crossed in D.

Property 2. If ab and cd are edges which cross each other; then, {a, b, c, d} spans a K4 in D.

Remove all vertices of degree two from D. The resulting D̂ is the skeleton of D. Notice that each
vertex of D̂ has a degree of at least three.

Property 3. If one edge is not part of a K4 in D̂, then the edge is called exceptional. Assume that the
edge uv of D̂ is exceptional. Let f1 and f2 be the faces bounded by uv in D̂. Then, the following holds:

(i) f1 , f2;
(ii) For i = 1, 2, fi has exactly three vertices on its boundary, and let vi denote the third vertex.

Furthermore, v1 = v2;
(iii) Both uvi and vvi are not exceptional in D̂.

Property 4. Let G be a maximal 1-planar graph; there exists a 1-planar drawing D of G. The following
are equivalent:

(i) Every face of D is a triangle; and
(ii) G is 3-connected.

Proof. (i) ⇒ (ii): Let DP be the planarization of D obtained by turning all crossings of D into new
vertices. Since every face of D is a triangle, it follows that DP is maximal planar, and that is 3-
connected.
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Suppose that G is not 3-connected; then, there exist u, v ∈ V(G) such that G−{u, v} is not connected.
Consider that the vertex a, b ∈ V(G) and are in separate components of G − {u, v}. Since DP was 3-
connected, DP − {u, v} is still connected; thus, there exists paths from a to b in DP − {u, v}. Let P be
a path from a to b in DP − {u, v} that uses the smallest number of crossings. We know that P must
contain at least one crossing; otherwise, it is as desired. Furthermore, we know that P cannot contain
two consecutive crossings due to the 1-planar drawing of D.

If the subpath (v1, c, v2 ) is in P, where c is a crossing, in view of every face of D being a triangle,
then we can construct a path from a to b in G − {u, v} that uses fewer crossings than in P by replacing
the subpath (v1, c, v2 ) with (v1,w, v2), where w is not a crossing; this is in contradiction with P being a
path with smallest number of crossings.

(ii) ⇒ (i): Assume that G is a 3-connected maximal 1-planar graph. By Properties 1–3, there
exists a 1-planar drawing D of G, D has no vertices of degree two and each edge of D is part of a K4.
Thus, every face of D is a triangle. Otherwise, D has a face f with a size of at least four, as D is a
1-planar drawing and there cannot be two consecutive incident crossings. Then, there exist at least two
vertices on the boundary of f , and they are adjacent, denoted by e = uv ∈ E(G). In D, the edge e
can be introduced through f , splitting f into two faces. If not, G − {u, v} is disconnected, which is a
contradiction. �

The girth of a graph is the length of its shortest cycle, or infinity, if the graph does not contain any
cycles (i.e., an acyclic graph). All girths considered in this paper are finite without special indication.
Below, we give the lower bound of the skewness for a connected graph from [6].

Lemma 1. ([6]) Let G be a connected graph on n vertices and m edges with girth g. Then, sk(G) ≥
dm − g

g−2 (n − 2)e.

A graph is called NIC-planar if it has a 1-planar drawing so that two pairs of crossed edges share
at most one vertex [16], and a graph is called IC-planar if it has a 1-planar drawing so that each vertex
is incident to at most one crossed edge [1]. Bachmaier et al. [2] has showed that an NIC-planar
drawing of any maximal NIC-planar graph with at least five vertices is a triangulation. Moreover, the
result also holds for any maximal IC-planar graph by a similar argument. Let M denote the set of
any maximal NIC-planar (or IC-planar) graph with at least five vertices and any 3-connected maximal
1-planar graph.

Observation 2. Let G ∈ M; then, there is a 1-planar drawing D of G such that every face of D is a
triangle and sk(G) = cr(G). Moreover, D is also an optimal drawing of G.

Proof. Combining this with Property 4, there exists a 1-planar drawing D of G such that every face of D
is a triangle. Let X be the set of crossings in D; then, sk(G) ≤ cr(G) ≤ cr(D) = |X| due to Observation 1.
Recall that DP is the planarization of D. Observe that, since every face of D is a triangle, DP is a
triangulated plane graph. It follows that DP has 2|V(DP)| −4 = 2n + 2|X| −4 faces. Further, the number
of faces in DP is equal to the number of faces in D, so D has 2n + 2|X| − 4 faces. Since every face of D
is a triangle, every crossing has four incident crossed faces. Also note that every crossed face must be
incident to exactly one crossing. It follows that D has 4|X| crossed faces and, as a result, has 2n−2|X|−4
uncrossed faces. Then, |E(DP)| = |V(DP)| + |F(DP)| − 2 = n + |X| + 2n + 2|X| − 4 − 2 = 3n + 3|X| − 6,
which implies that |E(G)| = |E(DP)| − 2|X| = 3n + |X| − 6. Each face of D is a triangle, which is either
a 3-cycle or incident to exactly one crossing, and this crossing is also associated with four triangles.
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Thus, G has a girth of three. By Lemma 1, we have that sk(G) ≥ |X|. Then, sk(G) = cr(G) = |X| and D
is an optimal drawing of G. �

Call a face whose boundary is a simple cycle of length four a quadrangle. We have the following
results, which are also clearly demonstrable.

Observation 3. Let G be a simple plane graph with l quadrangles, and let each remaining face of G
be a triangle. A new graph G∗ is obtained as follows: connect two new diagonal edges inside each of
these l quadrangles. Then, sk(G∗) = cr(G∗) = l.

Observation 4. Let G be a connected graph with m edges. If k is the maximum number of edges in a
planar subgraph of G and there exists a drawing D of G with m − k crossings, then sk(G) = cr(G) =

m − k.

4. Conclusions

The main accomplishment of this research is to construct infinitely many near-planar graphs with
n vertices such that the inequality cr(G) ≤ 3sk(G)2+(4n−17)sk(G)

6 is equal. In addition, we give a necessary
and sufficient condition for a graph to have its skewness equal to the crossing number.
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