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Abstract: In this paper, we investigate a nonlinear discrete prey-predator system with fear effects.
The existence, local stability and boundedness of positive equilibrium point are discussed. Using the
center manifold theorem and bifurcation theory, the conditions for the existence of flip bifurcation
and Neimark-Sacker bifurcation in the interior of R? are established. Furthermore, the numerical
simulations not only show complex dynamical behaviors, but also verify our analysis results. A
feedback control strategy is employed to control bifurcation and chaos in the system.
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1. Introduction

Populations in nature are rarely isolated, and intensively interact with others in the biological
community. All kinds of organisms are divided into different levels according to their physiological
characteristics, food sources, etc. and different levels of populations have a variety of connections.
The predator-prey process is the most fundamental, important and universal process in the study of
population dynamic behavior. Many researchers have studied the dynamic behavior of many
prey-predator systems in ecology and behavioral phenomena between species [1-11]. Some authors
have also explored the complexity, stability, and conditional requirements for spatial pattern
formation in prey-predator systems [12—-14].

Numerous studies have shown that discrete-time systems are more suitable than the continuous
system of small populations, and provide valid evidence for these [15—18]. Cheng et al. [19] studied a
discrete-time ratio-dependent prey-predator system with Allee effect, and obtained the model with
logistic growth function that have somewhat similar bifurcation structures. In the past few years, a
large number of research studies have indicated that discrete prey-predator systems have more
abundant dynamic behaviors than continuous systems, such as chaos. Scientists have also analyzed
the corresponding dynamic behaviors between populations by numerical simulation [20-30].
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Qamar Din [31] studied the following discrete-time system:

{ o1 = up explr(l = ) — 22,

av,
Vn+l = Vn eXp(l - bun:—C - d)’

(1.1)

where r, K,B,v,a,b,c,n and d are greater than zero, r is the intrinsic growth rate of the prey u
population, K denotes environmental carrying capacity of the prey u in a particular habitat, S and a
represent the maximum value of the per capita reduction rate of the prey u and predator v,
respectively. vy and ¢ indicate the extent to which the environment provides protection to prey and
predator. b denotes the quality of food that the prey provides for conversion into predator births, and d
measures the death rate of the predator. n stands for time.

In 2016, Wang et al. [21] showed, through experiments, that prey’s fear of predators would lead
to a decrease in the birth rate of prey, and F(k,v) = ﬁ was used to denote the fear factor. Here, k
reflects the degree of fear that drives prey anti-predator behavior. In the past, many researchers have
only studied the effects of direct killing, no matter how they improve the predator-prey model. In this
paper, we combine fear (indirect effects) and investigate the effects of fear on population dynamics.

To study the effects of fear on population dynamics, on the basis of system (1.1), we introduce
the fear factor F(k,v) = —— and the growth rate « of the predator v population, and consider the

1+kv
discrete-time predator-prey system:

_ r Un an
{ Upt1 = Uy eXP[Tkvn(l kT un+7]’ (1.2)

Vps1 = Vyexpla — % —d).

This article is organized as follows: in Section 2, the existence, stability and boundedness of the

system at different equilibrium points are analyzed. In Section 3, we discuss the specific conditions

for the existence of Neimark-Sacker bifurcation and flip bifurcation. In Section 4, chaos is controlled

by the feedback control method. In Section 5, we carry out numerical simulations, including the

bifurcation diagrams, phase portraits and solution diagrams. Finally, a brief conclusion is given in the
last section.

2. The properties of equilibrium points
In this section, we consider the discrete-time system (1.2) in the closed first quadrant R? of the (u, v)
plane. We study the existence, stability and boundedness of the equilibrium points by the eigenvalues

for the Jacobian matrix of (1.2) at the equilibrium points.

2.1. Existence and stability

To obtain the equilibrium points of (1.2), we calculate the following equations:

— r u Bv
{ u=uexplyn(1-%) - 5,

v=vexp(a — 7o — d).

Through calculation, the following results can be gained directly:
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Proposition 1. (i) For all parameter values, system (1.2) has two equilibrium points Hy = (0,0), H; =
(K, 0);

(ii) If @ > d, then system (1.2) has a boundary positive equilibrium point H, = (0, @);

(iii) System (1.2) has a unique positive equilibrium point Hz = (u*,v*) = (u", %(af —d)(bu* +
c¢)), where @ > d, and u” is the only positive solution to the quadratic equation of one variabie

C0M2+C1M+C2:O R

where
Co="L(@-dPp +r,
Ci =28 @ - dy? + (@ - d) + ry - 1K,
Cr = (e - dPc? + L(a - d) - rKy.

Definition 1. /1] Suppose that A; and A, are two roots of the characteristic equation F(1) = A2 +
MA+ N =0, where M and N are constants. Then equilibrium point (u,v) is called

(i) sink if |[4;| < 1 and |4,| < 1, and it is locally asymptotically stable;

(ii) source or repeller if [1;| > 1 and |4,| > 1, and it is locally unstable;

(iii) saddle if either (J4;] < 1 and |4, > 1) or (|4;| > 1 and |4;]| < 1);

(iv) non-hyperbolic if either |4;| = 1 or |1;| = 1.

The Jacobian matrix for equilibrium point Hy(0, 0) is:

e

Qn, = [ - ] @1

Then, 1, = e", A, = e*~%. Thus, the following proposition holds.

Proposition 2. Equilibrium point Hy(0, 0) is
(i) source and it is locally unstable if a > d;
(ii) saddle if @ < d.

Proof. According to (2.1), the two eigenvalues of (1.2) at the equilibrium point Hy(0,0) are 4, =
e, Lh=e 4 Ifa—d>0andr > 0, then [4;] > 1, |1,| > 1. Thus from Definition 1, Hy = (0,0) is a
source. If @ < d, then 0 < [1,| < 1. Hy = (0,0) is a saddle. This completes the proof. O

For equilibrium point H, = (K, 0), the Jacobian matrix is described as follows:

QH:[I_r _’f_fy] (2.2)
' 0 e |

the corresponding characteristic roots are 4, = 1 —r, 1, = ¢*~?. Thus, the following proposition holds.
Proposition 3. The eigenvalues at the boundary equilibrium point H; = (K,0) are A, = 1—r, 1, = ¢4,
then

(i) H = (K,0) is sink, if0<r<2and a—d < 0;
(ii) H; = (K, 0) is saddle, if one of the following conditions is true:
(ii-1)) a—d>0and 0 < r < 2;
(ii-2) a—d < Qand r > 2;
(iii) H, = (K, 0) is non-hyperbolic, if either r =2 or @ —d = 0;
(iv) H = (K, 0) is source, if r >2 and @ —d > 0.
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Proof. According to (2.2), the two eigenvalues of (1.2) at the boundary equilibrium point are 4; =
1 —r, A, = e If @ — d are greater than zero, then |1,| > 1. Thus from Definition 1, when || < 1,
then 0 < r < 2. Thus, H; = (K,0) is a saddle. Similarly, when |1, > 1, then r > 2, H; = (K,0)is a
source. Similarly, we can prove (i), (ii1) by the same way. O

For equilibrium point H, = (0, @), the Jacobian matrix is evaluated as follows:

ar Bla—d)c
exp[a ke(a—d) a ] 0
On, = : f(lc(a—)d)2 ! l-(a-d) | (2-3)

a

the corresponding characteristic roots are 4; = exp[
following proposition holds.

a+kc(a ) B(C:yd)c]’ A, = 1 = (a —d). Thus, the

Proposition 4. The eigenvalues of Qp, are A; = exp[ —% +kc(a 5 - (aa_d)c] and 1, = 1 — (o — d), then
(i) H, = (0, (“d)°)zssznkl]‘"0<a d<2and0<r<’w;

a2

(ii) Hy = (0,“=%) is source if« —d > 2 and r > ﬁ““”[—;“”‘”

(iii) Hy = (0, d)c) is saddle if one of the following conditions is true:
(iii-1) o —d = 2and0<r<lw’

(iii-2) 0 < @ — d<2andr>5c(“d)[;—;kc(‘“i)]’

(iv) H, = (0, %) is non-hyperbolic if either & — d = 2 or r = Ble=latkda=d]

a’y

Proof. (i) According to (2.3), the two eigenvalues of (1.2) at the boundary equilibrium point H, are

Ay = expl i — B9, 4y = 1= (e —d). Hy = (0,“2) is sink if and only if |1)] < 1 and |1,] < 1,
When [4;] < 1, then 0 < @ —d < 2. When |4;] < 1,then 0 < r < ’%ﬁf‘(“d” In conclusion,

H, = (0, %) issinkif 0 <a—-d<2and0<r< ’%ﬁf‘mdﬂ Similarly, Proposition 4 (ii)—(iv)
can be proved. |

Lemma 1. [11] Suppose that F(1) = 2> — MA + N, and F(1) > 0, A; and A, are roots of F(1) = 0.
Then the following results hold true:

(i) || < 1 and |A4;| < 1 ifand only if F(—1) > 0 and N < 1;

(ii) || < 1 and |A5] > 1 (or || > 1 and |A5| < 1) if and only if F(—1) < 0;

(iii) |4| > 1 and |A;| > 1 if and only if F(=1) > 0and N > 1;

(iv) 41 = =l and || # 1 ifand only if F(-1) =0and N # 0, 2;

(v) A and A, are complex and |A,| = || = 1 if and only if M> — 4N < 0 and N = 1.

The Jacobian matrix Q(u*, v*) relevant system (1.2) at the positive equilibrium point H3(u*, v*) is as
follows:

ot PV _uly_rket B
QH _ 1 (l+kv*)K2+ (u*+y)? (1 K7 (1+kv*)? u*+y
3 bu*
G 4P I-(a-d

Then the characteristic equation related to Qp, 1s
F() = 2 = m@u*,v)A +n(',v) =0

where
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m@u',v*) = trQu, = 2 - gy + (ﬁTw —(a—d)
and

k) — — Buv* u* rku* Bu abu*?
I’l(l/t »V ) - detQH} - [ m + (u* +7)2][ (CY d)] + [(1 )(1+kv )2 + u*+y](bu*+c)2'
Therefore

F)=1-m@u ,v)+n,v), F(-1)=1+mu ,v)+nu",v).
Using Lemma 1, we have the following proposition:

Proposition 5. Let H;(u*,v*) be the unique positive equilibrium point of system (1.2), then the
following propositions hold:

(i) H3(u*,v") is sink if and only if |m(u*,v*)| < 1 + n(u*,v*) < 2;

(ii) Hy(u*, v*) is saddle if and only if m*(u*,v*) > 4n(u*,v*) and [m@u*,v*)| > |1 + n(u*, v*)|;

(iii) Hs(u*,v*) is source if and only if [n(u*,v*)| > 1 and |m(u*,v*)| < |1 + n(u*,v")|;

(iv) H3(u*,v*) is non-hyperbolic if and only if |m(u*,v*)| = |1 + n(u*,v*)| or n(u*,v*) = 1 and
|m(u*,v*)| < 2.
Proof. (1) According to Lemma 1, H3(u*,v*) is a sink point if and only if F(1) > 0, F(-=1) > 0 and
N < 1, it can be acquired by calculation |m(u*,v*)| < 1 + n(u*,v*) < 2. Consequently, Proposition 5 (i)
holds. Similarly, Proposition 5 (ii)—(iv) can be established. O

2.2. Boundedness

Lemma 2. [20] Assume that u, satisfies uo > 0, and u,.1 < u,explA(1 — Bu,)] for t € [t;, ), where B
is a positive constant. Then lim sup u, < A 5 exp(A — 1).

>0

Theorem 1. Every positive solution {(u,, v,)} of system (1.2) is uniformly bounded.

Proof. Suppose that {(«,, v,)} be an arbitrary positive solution corresponding to system (1.2). Then, by
the first part of (1.2), it is known

Un+1 < Uy €XP[ (1- %)] < u, exp[r(l - M—K")]

’

1+ kv,

foralln =0,1,2,---. Suppose that uy > 0, then according to Lemma 2, we gain
r}l_}tg sup u, < Eexp(r— 1) := M,.

From the second part of (1.2), we acquire
av,

Vntl = Vn exp(a - bu, + c —d)
< v, exp(a — AVn )
bu, + ¢
< v,exp(a — dVn ).
bM, + ¢

Assume that vy > 0, then using Lemma 2, we gain
bM, + ¢

lim sup v, < exp(a — 1) := M,.

n—oo

That is to say that lim sup (u,,v,) < M, where M = max {M,, M,}. This completes the proof. O
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3. Bifurcation analysis

3.1. Flip bifurcation

The characteristic equation related to system (1.2) at the positive interior equilibrium point Hj is
F() = 22 —mu*,v)A+n@w',v) =0, (3.1)

where
m(u*,v’) =1- (1+kv )K +D+0,
n(u'v) = O[1 - g + ©| + ¥,
©:=1-(a~d), ©:= Ly,
Y= [(1 _ %) rku* + Bu* ] abu*?

(1+kv*)? w'+y | (bu*+c)?”

Assume that m?(u*,v*) > 4n(u*, v*), that is,

(1- g + @+ 0) > 401 - 720 + d + 4% (3.2)
and m(u*,v*) + n(u*,v*) = —1, that is to say
r=0T00K 020+ d(1+0)+Y) . (3.3)

u*(1+0)

Then eigenvalue of F(1) = Qare 4y = -land 4, =2+ D + 0O — m The condition |4, # 1
indicates that
Ol - g + O+ W # £1 . (3.4)

Consider the following set

Ay ={(a.b.c.d.K.r.k.a..7) € R’ : (3.2), (3.3) and (3.4) are satisfied } .

Based on the above analysis, we can obtain that when the parameters change on set A;, system (1.2)
will occur flip bifurcation at H3(u*, v*).
We consider the following system

( U ):( ”eXp[Hkv(l - l)_ W] ) (3.5)

v vexp(a - bu+c - )

here (a9 b’ c, d’ K» ry, ka (I,ﬁ, )/) € Al'
Consider a perturbation corresponding to system (3.5) as follows:

()= rerlia-p-]) 5

v vexp(a - bu-iy—c - )

where 7 is a small perturbation parameter and || < 1.
Let p =u—u" and g = v —v*. Then we gain

P _(Su Se)\(rp fi(p,q,71)
(‘])_(521 S )(Q)+(f2(1?,q,7’))’ G-7)
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where

fi(p.q.7) = Si3p? + Suupg + S1sq” + Tup® + Tiup’q + Tispg® + Tiag® + Wi pr + Wagr
+ WaF* + Wapgr + Wsp7 + Wegr + WapF + Wyt + Wor + O((Ipl, Iql, [F)*),

H(p,q,7) = Saap? + S2pq + Sa5q” + Toy p* + Toap?q + Tospg® + Taaq® + O, Igl, 7)),

ru* Buv* u . riku’ Bu”
Sn=l-arok T + )2 Se=-U-) 007 w Ty
r riBuv* Bv* Buv* ru’
Si3=- - + - +
K +kv) (u+y)?K(1+kv) Ww+7y)? W+7y)?> 2K*(1+kv)?
N ﬁZu*v*Z ’
2(ur + y)*
¢ . nkK-w) B nkE-uwu  nkBK-ww B
“TUKA+ k2 wt+y KA+ KA+ k)2 +9)? e +y)?
rikBu*
C W+ KA+ kv
ot (rk(K —u) B 2 nk*(K — u")u*
PT o \KA k)2 +y) K +kv)?
Fye— 1 _ rpv’ By  n
2K2(1+ kv)2  2K(1 + kve)(u* + ) 6(u* + y)* 6K3(1 + kv*)?
Ly By By -2 —y) rguv’
3w +7y)» 6K +kv)(ur +vy)? 3(ur +y)> 2K2(1 + kv )*(u* + y)?
rBout v By
T KA+ o+ @+
rPk(K —2u*)  rkBv:(K — u*) — 2rBu’* rp rik

= + +
PTRA+kv)Y 2KA+ kv 2w +y2 KA+ kv +y) | K(L+ kvt)?

+ B N Bly—u)  nkBv(K—u)(y—u) B ~ rik(K — u*)u*
2w +y)?  2(1+kv)?  2K(1 + kv)*>(u* +y)> 2w +7y)} 2K3(1 + kv)?
- ik +— thBu v (K —u’) ¥ rpruv*
2K2(1 + kv)?(u* +y) K>+ kv)3(ur +y)?2 K+ kv)(u* + )3
kB2 v (K — ") B2
2K(1+ kv 2wt +y)* 2 +9)°
rlzkz(K - u)NK-Q2+Ku) nkB(K-3u)K( +kv') - 2r12k,8(K —u")u*
3= 2K2(1 + ko) - 2K+ kP + )
N B +y)* + BPuv = 25%u (u* +y) N nk*(K — 2u*) _ k(K — u*)*u’
2(ur + )t K(1+kv)?  2K3(1 + kv
N rszﬁ(K —u)utv* N nkB*(K — u*)*u*v* B nkBK — u*)?u(1 + kv*)
2K2(1 + kv)* (s +y)>  2K(1 + kv )?(u* +y)3 2K(1 + k)3 (u + 7)?
rSu* rkB(K — u*)u*
C2K(L+ k)t + ) 2K+ k)Rt + )%
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_rfk3(K —u)u ~ rnkp*(K — u*)u* B rik* K — u*)u’ _ Bu
6K3(1 + kv)®  2K(1 + kv)2(u* +y)?  2K*(1 + kv)*(u* +7y)  6(u* +7v)3
_ (K — u*)u* Nk —uut nk (K - u
K2(1 + kv*)? K1+ kv)3(u +y) (1 +kv)*

14

W - K - 2u* . (K — u*)u* ( g i ) _ (K — u*)*u*
T KA+ ) KA+ \@ +y2 KA +km) T 2K+ kv)?
W = (K = u)u* (—rlk(K -u) B )_ k(K — u"u*
T KA+ \ KA+ wr+y) K+ k)2
e _ B = = BK = 20w +y) | kK — 'V — KKK = 201+ k')’
! K(1 + kv)u* + ) K3(1 + kve)*
N 3rik(K — u)u* — rik(K — u*)? B nkB(K — u)u*v* rB(K — u")u*
K2(1 + kv*)3 K2(1 + kv)3(ur +y)?  K2(1 + kv)%(u* +y)
BA(K — u)u*v* kB(K — u*)u*v*
KA+ k) +yy? KA+ kv Rt +y)?
Woo nQu oK) BK-3wwt L BK )y
K21+ kv)? 2K+ kv)w* +y)*> KA +kv) 2K(1 + kv +y)3
.\ r(K — u")u* B —uutv BAK — u)uv?
2K3(1 + kv K2(1 + kv)2(u +v)2  2K(1 + kv)(u* +y)*’
W = rik* (K —wy’u’ N BAHK — u)u’ rikB(K — u*)’u* N (K —u")u”
2K3(1 + kv 2K(1 + kv)(w* +y)?  2K*2(1 + kv)3(w +y) 2K + kv¥)
N nk*(K — u")u* N kB(K — u™)u* N K (K — u*)u*
K1+ k)t 2KA+ k2w +y) - K+ k)
Wo = (K —u*)> = 2K — u"u* B (K — u*)*u* N BKK — u)urv*
7T TR+ k) 26531+ vy | 2K2(1+ kv 2w + )2
We = —rk(K — u)u* B BKK — u)u* B k(K — u*)*u*
ST+ )t 2K+ kv 2w + ) K21+ k)
(K — u*)*u* abv*? ab*>v?(av* = 2bu* — 2c)
Wo= St oy 52 T o S =1 @md Sn = 2(bu + o) ’
G alav* = 2bu* — 2c) _ab’ v (6b*u? — 6abuv* + a’>v'? + 12bcu” — 6acv* + 6¢?)
2T 2w+ T 6(bu* + c)S ’
S = abv(2bu® + 2¢ — av®) 3 —ab®>v*(4b*u? — Sabu*v* + a®>v** + 8bcu* — Sacv* + 4c?)
#o (bu +cyp 7 2(bu* + ¢)’ :
T — abQb’u*? — 4abu*v: + a*v*? + 4bcu* — 4acv* + 2¢?) 3 a’(3bu* — av* + 3¢)
S 2(bu* + c)’* T 6wt + o)

We construct a nonsingular matrix D; and translate it as follows:

)2 )

Si2 Sz
D, = .
: (—1—511 /12—511)

where
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Taking D' on both sides of Eq (3.8), we obtain

=00 20 (aeen)
v 0 4 J\v & (p.q.1) )’
where
- [Si5(-81)- S128231p* | [S1u(da—S11) = S1Sulpg - Widy = S1)pr
81(p-q.7) = Sn(L+1) " Snb+1) TS+ D
12(A2 12(A2 12(A2
N [S15( — S11) — S 12825147 N [T1(A2 = S11) — S 12T 1p’ N Wa(do = S11)gr
S+ 1) S+ 1) S+ 1)
[T12( = S11) — S 12T1p*q N [T13( = S11) = S 12T2s1pg? N Wi(dy = S1)F
S+ 1) S+ 1) S+ 1)
N [T14(A2 = S11) — S 12T24lg’ N Wi(da = S11)pgr N Ws( — S1)p°F
S+ 1) S+ 1) S+ 1)
Wollo = S\GT  Waldo =S10pF | Wslda = S11)g7  Woldy = S 1)7
S+ 1) S+ 1) Sp+1) S+ 1)
+0((pl. Iql, [F)*),
S +81)+S0Sxs1p” | (Sl +S1) +S1Sulpg - Wi(d +S1)pr
82(p-q.7) = Su(b+ 1) " S(b+ 1) TSt )
12(A2 12(A2 12(A2
[S15( + S 11) + S 12825147 N [T1(A2 + S11) + S 12T 1p? N Wa(Aa + S11)gr
S+ 1) S+ 1) Sp+1)
N [T12(A2 + S11) + S 12T21p%q N [T13(A2 + S11) + S 12T21pg? N Wiy + S 1)F
S+ 1) S+ 1) S+ 1)
N [T14(A2 + S11) + S 12T2lg’ N Wa(Ao + S11)pgr N Ws( + S1)p°r
S+ 1) S+ 1) S+ 1)

Woldo + S\GT  Waldo +S10pF  Welda +S11)g7  Wolda + S 1)7
S+ 1) S+ 1) S+ 1) S+ 1)
+ O((Ipl. lql, IF)*),
p=Spu+v), g=L+Si)v-~10+81Du

(3.9)

Applying the center manifold theorem W¢(0) of system (3.9) at the trivial equilibrium point (0, 0)

in a limited field of 7 = 0. Then there exists a center manifold W¢(0) as follows:
W) = {(p.q.P) € R* : q(p,F) = eoF + e1p” + eapF + €57 + O((Ipl + 7))
and satisfies

H(q(p,7) = q(-~u+ gi(p,q(p,7), 7)) — L2q9(p,7) — 82(p, q(p,7),7) = 0,
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and we have

€o :0,
o) = [Si3(1+811)+ 85125231812 = [S1a(1 +S811) + S 128 24](1 + 85 11)
-2
N [S15(1+811) + 81282511 + 8 11)?
(1-2)S1 ’
0 = [SoWi = Wo(1 + S )I(1 +S11)
(1= 2y)? ’
Wi +851)
ey = —/———————.
Sl = )?

Therefore, we consider the map restricted to the center manifold W¢(0) as below:

G:p— —p+mp* +mpr+nmp’r +npr +nsp® + O((Ipl + [F)*),

where
IS =S1) - S185x61S1 [S1u(d—S11) = S1Sul(l+S51)
n = —
1+/12 1+/12
N [S15( = S11) = S128251(1 + S 11)?
Sl + ) ’
1, :Wl(/lz =S _ Wo(, = S0 +511)’
1+ /12 S12(1 + /12)
- :[513(/12 —S511) = 512823]2e25 12 N [S14(A2 = S11) — S 1285 2](A2 = S11)ez
1+ 4, 1+,
_ 2[S15(A2 = S11) =S 128251 + 512 = Siex + Wi, = S11)e
512(1 + /12) 1+ /12
N (b —S11)%e N S =S 11)Ws N We(lo = S11)(1 + S11)?
Slz(l + /12) 1+ /12 (1 + /lz)Slz
[S14(A2 = S11) = S12S24lex(1 + 8 11) + Waldo = S + 511)
B 1+, ’
" :[513(/12 =811 = 512823]2e25 12 N [S14(A2 = S11) = S1252](A2 — S11)e3
1+, A +1
_ [S14(A2 = S11) = S 1285 2](1 + S 11)e3 + (A2 = S11)(Wiex + W7)
A+ 1 A+ 1
_ [S15(A2 = S11) =S 1252511 + §11)(A2 — S11)es + (A — 511)2W2€2
/12 +1 S]z(/lz + 1)
W =85S+ D
S+ 1) '
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[Tll(/12 - Sll) - SlZT21]S%2 _ [T12(/12 - Sll) - SIZT22](1 + Sll)SIZ

s = 1+, L+1
_2[515(/12 = S11) = 81282511 + 8112 = S11)ey + [S13(A2 = S§11) — S 12823]2e28 12
1+ )81 1+
_[514(/12 = S11) = S12Sul(l +S11)e 4 [S14(A2 = 811) = S12524](A2 — S11)ey
A +1 A +1
+[Tl.%(/lz = S11) = STl +81)? _ [T14(A = S11) = S 12T24l(1 + S 11)°
A+ 1 S +1) '

According to flip bifurcation, we define the following two nonzero real numbers 6; and ¢,, where

s [1 PG +( 62G)2]
= Ny, = | —-——
00 » 72 6 0p’ 2 0p?

From the above analysis, we get the following theorem:

P 0*G 1(9G6‘2
b 8p(9r 2 Or dp?

Theorem 2. If 6, # 0,0, # 0, then system (1.2) passes through a flip bifurcation at the fixed point
H;(u*,v*) when the parameter r alters in the small region of ry. In addition, if 6, > 0 (resp., 6, < 0),
then the period-two orbits that bifurcate from fixed point H3(u*,v*) are stable (resp., unstable).

3.2. Neimark-Sacker bifurcation

When the parameters change on set A,, system (1.2) will undergo Neimark-Sacker bifurcation at
the unique positive interior equilibrium point Hs(u*, v*), where

A, = {(a,b,c,d,K,a,,B,y,k,rz) 1= EEKO©+ 00+ ¥ - 1[I - e + 0 +6] < 2]
Consider a perturbation related to system (1.2) as follows:
(r2+7) u
uy _ uexp[#};v(l £) - M+y] (3.10)
v vexp(a — ;2= - d) ’

where 7 is a limited perturbation parameter and |r| < 1.
The characteristic equation of system (3.10) at H3(u*, v*) is as follows:

2 —=m(PA+n@) =0

where
_ (I”z + I_")I/t*
—1- 2T L p4h0
m(r) (1 + kv)K
and
_ (ry + P’
—@|1- 2T L ol sy
n(r) d+omk "
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Since parameters (a,b,c,d,K,a,B,y,k,r) € A,, the characteristic values of system (3.10) at
Hs(u*,v*) are a pair of complex conjugate numbers A and A with || = |A] = 1 as follows
m(r) + i \4n(r) — m>(r)

A, A= :
2

Therefore we have
Ou*
=— <0
70 2(1 + kv*) vn(0)

When 7 changes in limited field of 7 = 0, then A, A = x + iy, where

_ m(0) _ V4n(0) — m2(0)
2 0T 2

In addition, Neimark-Sacker bifurcation requires that 7 = 0, A%, A # 1 (z=1, 2, 3, 4), which
is equivalent to m(0) # -2, 0, -1, 2. Because parameters (a,b,c,d, K, a,B,v,k, ;) € A,, therefore

m(0) # -2, 2. We only require m(0) # 0, -1, so that

d|a|
ﬁ

_dAl

Al =12 = n()""?,
Al = [4] = n(r)) T E

*

1+<I>+®¢L 1+d+0 £ rou

A+ kv)K’ (1 + kv)K -1 (.11)

Letp=u—-u"andg=v-v".
After the transformation of the equilibrium point H3(u*, v*) of system (3.10) to the origin, we have

P\_(Su Se\(pr)\, (/ilpa
(‘1)_(521 Szz)(q)-i_(fz(p,q))’ (3.12)

A (P.q@) =S13p* +S1apq + S15q* + Tuup’ + Tiap*q + Tizpg* + Tug® + Opl, g™,
£ (@) = Sup” + Supq + Sasq” + Tup’ + Tap®q + Tospq” + Trug® + O((|pl, lgh"),

where

and S11,512,813,8 14,815 T11, T12, T13, Tha, S 21, S 22, 8 23, S 24, S 25, Ta1, Tap, Taz, Toy, are given in (3.7)
by substituting ry for r, + 7.

Besides that, we analyse the normal form of system (3.12) when r = 0.

Consider the translation as follows:

where

Sz 0
D, = .
? (X—Sn —)’)

Taking D' on both sides of system (3.12), we acquire

(=00 )0 ) )
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where
Sisp?  Supqg  Sisq® Tup’ Top’q Tupg®  Tug 4
(u,v) = + + + + + + + O((Ipl, lgD™),
/ S Suo  Sn | Sno . Sn | So | Sn Py
IS =81) = S1Sxu1p? | [S1a(x=S1) = S1Sulpg  [Sis(x—S11) = S12825]g°
g(u,v) = + +
S 12y Slzy SlZy
N [T11(x=S11) = S12T21p? N [T12(x — S11) — S12T221p%q N [T13(x — S11) = S12T231pq
S 12y Sy S 12y
T -S1)-=-SpT 3
# S0 =SBl o gy
12Y

p=Snu, qg=(x—-S)u—yv.
System (1.2) occurs the Neimark-Sacker bifurcation if the following quantity # is not zero,

(1202 1 _
¥ = —Re [—Qu@zo -3 llonll® = llooall* + Re(A021),

1-2
where .
on = 7| Upp + fug) + i + 8a9)]
020 = ¢ [Uh = fia + 2800) + 8p = 80g = 2710
002 = 5 |G = i = 2800) + 8y~ 840+ 23],
021 = 1_16 [(fppp + foaq + &ppq + 8aaq) + &ppp + &pag = Jppg — quq)] .

If ¥ # 0, Neimark-Sacker bifurcation will undergo in system (1.2), and the following theorem holds:

Theorem 3. System (1.2) undergoes a Neimark-Sacker bifurcation at the positive equilibrium point
H;(u*,v") if conditions (3.11) are satisfied and ¥ # 0. In addition, if ¥ > 0 (resp., ¥ < 0), then
an repelling (resp., attracting) invariant closed curve bifurcates from fixed point H3(u*,v*) for r < r,
(resp., r > ry).

4. Chaos control
In this section, we will adopt the feedback control method [26-28] to stabilize the chaotic orbit

at an unstable equilibrium point by adding a feedback control term to the system (1.2). Therefore,
system (1.2) makes the following form:

r u, Vi
Upy1 = Uy eXP[ (1 - _) - ﬂ ] - X(l/tn, Vn) = f(un» Vn),
1+ kv, K u, +vy 4.1
Viel = Vi exp(a' - bl/ZV: c - d) = g(una Vn),

where x(u,, v,) = hy(u,—u*)+hy(v,—v") is feedback controlling force, i, and &, are feedback gains, and
(u*, v¥) is the unique positive equilibrium point of (1.2). Furthermore, f(u*,v*) = u*, and g(u*, v*) = v*.
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The Jacobian matrix of system (4.1) at positive equilibrium point (u#*, v*) is as follows:

— Sll_hl SIZ_hZ

Jw*,v* ,
( ) Sai S

where

=1 - BV = —(] = ¥y_nk _ Bu”
Su=1 Tk T w2 Sp=-(1-% A+ )2~ wy?

Sy =L 8., =1-(a-d).

(bu*+c)??

Thus, the characteristic equation related to J(u*, v*) is:
A =(S1+Sn—h)A+ (S 1 —h)S»—(S1—h)S =0. 4.2)
Let A; and A, be the eigenvalues of characteristic equation (4.2), then
A+ =Su+Sn—-—h, Lb=Eu-h)Sn-(Sn-M)Su. (4.3)

Next, we must solve equations 4; = =1 and 4;4, = 1 to gain the critical stability line. At the same
time, it also ensures that the absolute value A4; and A, are less than one.
Suppose that 1,4, = 1, then we gain

Ly:S1Sn—8nSa—1=8nh - Sah.
Assume that A; = 1, then we have
Ly:S1i+8Sn-SuSn+SnSa—1=0-SSn)h +S2h.
Assume that A, = —1, then we obtain
Ly :Su+Sn+SuSn—-SnSa+1=>0+S»n)h - Sauh.

Thus, the stable eigenvalues lie within the triangular area with the boundaries of the straight lines
Ly, L,,L;. In addition, when the control parameters h; and h, take values in the triangular region,
system (4.1) will not generate chaos.

5. Numerical simulations

In this section, we draw the bifurcation diagrams, phase portraits, solution of the figures and
maximum Lyapunov exponents for system (1.2) to verify the above theoretical analysis and show the
new interesting complex dynamical behaviors and the stability of the predator-prey system at the
equilibrium point by using numerical simulations.

5.1. System (1.2) without fear factor (k = 0)

First, in Figure 1, we consider that the fear factor k = 0 and take r as the bifurcation parameter to
discuss the dynamic behavior of (1.2) at Hi(u*,v*). We consider the parameter values as
(a,b,c,d,a,B,y,K) =(1.8,2.8,3.5,0.6,1.27,1.1,2.7,1.5) € A; with the initial value of (ug, vo)=(2, 1)
and r € [2.8, 4.6]. Flip bifurcation emerges from the unique positive equilibrium point and loses its
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stability as r goes through a critical value r = 3.102, and it is stable when r < 3.102, and when
r > 3.102, system (1.2) oscillates with periods of 2,2%,23,... . It can be obtained from Figure 1(c)
and Figure 2(a—c) that chaos will happen in system (1.2) as the bifurcation parameters r continue to
increase.

o 2 .
28 3 32 34 36 38 4 42 44 46 28 3 32 34 36 38 4 42 44 48 28 3 32 34 36 38 4 42 44 46
r

(@) (b) ©

Figure 1. (a,b) Bifurcation diagram of system (1.2) with r € [2.8,4.6],a = 1.8,b = 2.8,¢c =
35,d =0.6,a =127,=1.1,y = 2.7,k = 0, K = 1.5 the initial value is (u, vo)=(2, 1). (c)
Maximum Lyapunov exponents corresponding to (a,b).
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Figure 2. Phase portraits and solution portraits for various values of r corresponding to
Figure 1.

In Figure 3, taking (a, b, c,d,a,B8,y,K) = (1.7,1.6,3.1,0.01, 1.2,2.6, 1.2,3.5) € A, with the initial
value of (ug, vo)=(1, 2) and r € [4.6, 6.2]. Neimark-Sacker bifurcation emerges from the unique positive
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equilibrium point and loses its stability as r goes through a critical value r = 5.05. It can be seen from
Figure 3(a) that when r < 4.7, the equilibrium point of (1.2) with respect to prey does not exist.
Not only does the system have an attractive-invariant loop and periodic solutions, but it also exhibits
dynamical chaos as the bifurcation parameters r continue to increase. Figure 3(c) is the maximum
Lyapunov exponent diagram related to Figure 3(a,b). It can be seen from the MLE that system (1.2)
will appear chaotic. By observing the Figure 4(a—c), it can be found that when r > 5.05, a limit cycle,

a periodic window and chaos appear in system (1.2).
e
ull

(b) I (:)'56 B
Figure 3. (a,b) Bifurcation diagram of system (1.2) with r € [4.6, 6.2],a = 1.7,b = 1.6,¢c =
31,d =001, =1.2,=2.6,y = 1.2,k = 0, K = 3.5 the initial value is (1, vo)=(1, 2). (c)
Maximum Lyapunov exponents related to (a, b).
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Figure 4. Phase portraits and solution portraits for various values of r corresponding to
Figure 3.
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5.2. System (1.2) with fear factor (k > 0)

In Figure 5, we consider that the fear factor &k > 0. Taking
(a,b,c,d,a,B,y,k,K) = (2,2.8,3.5,0.6,1.1,1.1,3,0.5,2) € A, with the initial value of (uy, vo)=(2, 1)
and r € [5.2, 7]. Flip bifurcation appears from the unique positive equilibrium point and loses its
stability as r goes through a critical value r = 5.63, and it is stable when r < 5.63 and when r > 5.63,
system (1.2) oscillates with periods of 2,22,23,-.. . It can be acquired from Figure 5(c) that chaos
will happen in system (1.2) as the bifurcation parameters r continue to increase.

58 6 62 6.4 6.6 6.8 7 T2 54 56 58 8 82 6.4 66
v r

Figure 5. (a,b) Bifurcation diagram of system (1.2) with r € [5.2, 7], a = 2,b = 2.8,¢c =
35,d = 06,0 = 1.1, = 1.1,y = 3,k = 0.5,K = 2 the initial value is (i, vo)=(2, 1).
(c) Maximum Lyapunov exponents related to (a, b).

In Figure 6, taking (a,b,c,d,a,B,v,k, K) = (1.7,1.6,3.1,0.01,1.2,2.6,1.2,0.3,3.5) € A, with the
initial value of (ug, vo)=(1, 2) and r € [8, 11]. Neimark-Sacker bifurcation emerges from the unique
positive equilibrium point and loses its stability as r goes through a critical value r = 8.63. We notice
that the equilibrium point of (1.2) is stable for r < 8.63, loses its stability at » = 8.63 and not only a
limit cycle but also periodic solution emerge when the bifurcation parameter » > 8.63. Other than that,
the value of the MLE related to (1.2) is greater than O as r continues to increase, and thus chaos will
occur, i.e., the solution of (1.2) is arbitrarily periodic.
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s 85 9 95

(a) (b) ©

Figure 6. (a,b) Bifurcation diagram relevent u and v in system (1.2) with r € [8, 11], a =
1.7,b=16,c=3.1,d =001, = 1.2, = 2.6,y = 1.2,k = 0.3, K = 3.5 the initial value is
(up, vo)=(1, 2). (c) Maximum Lyapunov exponents related to (a, b).

In Figure 7, taking (a, b, c,d,a,B,v,r,K) = (1.5,2.8,3.5,0.6,1, 1.1, 3,2, 1.5) with the initial value
of (up,vp)=(2, 1) and k € [0, 6], k is a bifurcation parameter. At this time, the bifurcation phenomenon
of (1.2) will not occur. The population density of prey and predator will continue to decrease and tend
to 0 with the increase of fear factor k. It is important to note that the cost of fear does not lead to the
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extinction of predators, but rather to the extinction of prey.

12 18

1

0.8 15

506

0.4 12

0.2

0 0.9
[ 1 2 3 4 5 6 0 1 2 3 4 5 6

k k
(a) Bifurcation diagram for u (b) Bifurcation diagram for v

Figure 7. Bifurcation diagram of system (1.2) with k € [0, 6], a = 1.5,b = 2.8,c =3.5,d =
0.6, =1,=1.1,y =3,K = 1.5, r = 2 the initial value is (ug, v9)=(2, 1).

5.3. Controlling chaos

In Figure 8, when the parameter value is (a, b, ¢, d, a,B8,v,k,r,K) = (1.7,1.6,3.1,0.01,1.2,2.6, 1.2,
0.3,10.8,3.5) with the initial value of (ug, v9)=(1, 2). In Figure 6(c) when the bifurcation parameter
r = 10.8, system (1.2) will produce chaos. When the 4, and &, are controlled in the triangular region
surrounded by three straight lines L, L,, and L3, the chaos generated by system (4.1) will be controlled
near the equilibrium point and become an asymptotically stable state.

10

5 Stable
Dn

=10

o

h2

=15

=20

-25

(@)

Figure 8. The bounded region for the eigenvalues of the controlled system (4.1) in the (A1, h,)
plane.

6. Conclusions

Studies have shown that discrete systems have richer and more complex dynamic behaviors than
continuous systems. Hence, on the basis of previous research work, this paper discusses the stability,
bifurcation and chaos control of a nonlinear discrete prey-predator system with fear effect. Based on
the results of the study, we can draw the following conclusions:
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(a) System (1.2) has four equilibrium points, where the stable equilibrium point is positive, and
depicts the coexistence of prey and predators.

(b) System (1.2) has flip bifurcation and Neimark-Sacker bifurcation happen at the positive interior
equilibrium point when r alters in A; and A, small fields. (see Figures 1, 3, 5, 6 ). We can also observe
the orbits of periods 2, 4, and 8 periodic windows of flip bifurcation.

(c) When k = 0, system (1.2) at the positive equilibrium point will generate the Neimark-Sacker
bifurcation, flip bifurcation and chaos as the bifurcation parameters r continue to increase.

(d) When the fear parameter k is greater, both predators and prey populations decrease. It is
important to note that the cost of fear does not lead to the extinction of predators, but rather to the
extinction of prey. (see Figure 7).
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