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1. Introduction

Best proximity point (BPP) theory provides basic tools to find the approximate solutions of
problems in applied mathematics and in nonlinear analysis whose exact solution does not exist. Let
L : M → S be a nonself mapping, whereM and S two nonempty subsets of a metric space (G, d).
A point m ∈ M is said to be the exact solution or the fixed point (FP) of L if m = Lm. This is only
possible ifM∩L(M) is nonempty, otherwise L does not have a FP. In this situation, the best way to
find a point m ∈ M such that the distance between m and Lm is minimum. That is,

d(m,Lm) = d(M,S),

where
d(M,S) = inf

a∈M
b∈S

d(a, b).
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Such m if exists is called the BPP of L. In case M = S = G, then m becomes a FP of L. So BPP
theory is a generalized structure of FP theory. Probably the first attempt in this connection is due to
Ky Fan [12] in 1969, who provided a remarkable result for the existence of BPPs which is given as
follows.

Theorem 1. Let L : K → G be a continuous mapping, where K a nonempty compact convex subset
of a normed space G. Then there exists κ ∈ K such that

‖κ − Lκ‖ = d(K ,Lκ) = inf{‖Lκ − k‖ : k ∈ K}.

After this, the BPP theory has flourished in one to many directions, for instance, Fallahi et al. [7, 8]
in 2020 developed best proximity points in partially ordered metric spaces and in b−metric spaces
endowed with graph, for further details, interested readers can also explore the references [2,11,16,17].

Banach [5] in 1922, provided one of the fundamental results known as Banach contraction principle
(BCP) in FP theory. Due to the significance of BCP, it has been generalized in different contexts, for
more details, one can see the references [1, 6, 9].

Wardowski [18] in 2012 generalized the BCP by introducing F−contractions and developed some
FP results. After that, many mathematicians generalized F−contractions in one to many directions
and contributed for the development of FP theory (for self mappings) as well as for BPP theory (for
nonself mappings), for more details, interested readers can explore the references [3, 6, 10].

Due to the significance of FP theory, it has been further extended to multivalued mappings. In
1969, Nadler [14] developed the multivalued version of BCP. After that a new horizon has opened and
a number of mathematicians have contributed for the development of FP theory in this direction [15].

On the other hand, Wilson [19] in 1931 developed a generalized structure of metric space as quasi
metric space by relaxing the symmetric condition of metric space. Since quasi metric has asymmetric
characteristic in its domain, so it plays a vital role in computer sciences and other disciplines of
mathematics which are asymmetric in their structure. Since then, FP theory has flourished in the
domain of quasi metric space, for instance [6, 13].

Hancer et al. [9] in 2019 generalized F−contractions to multivalued F− contractions and developed
some FP results in quasi metric spaces.

In 2023, Aslantas et al. [4] introduced left (right) best proximity points and developed some best
proximity results for proximal contractions.

Motivated by the works of Hancer and Aslantas, in this paper, we have introduced new type of
generalized multivalued F−contractions and developed some results for the existence of left (right)
BPPs for these contractions in the domain of quasi metric spaces.

Throughout this article, we denote R+, N, τd, Cd(G),CB(G) and 2G\φ respectively as non-negative
reals, positive integers, topology induced by quasi metric d, family of all nonempty τd−closed subsets
of G, closed and bounded subsets of G and set of nonempty subsets of G.

Definition 1. [9] Let G be a nonempty set. A mapping d : G×G → R+ is said to be a T1−quasi metric
(shortly T1 − Q metric) if it satisfies the following axioms:

(q1) d(%1, %1) = 0,

(q2) d(%1, %3) ≤ d(%1, %2) + d(%2, %3),
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(q3) d(%1, %2) = d(%2, %1) = 0 implies %1 = %2,

(q4) d(%1, %2) = 0 implies %1 = %2,

for all %1, %2, %3 ∈ G. In this case, the pair (d,G) is called Q metric space (Q−MS). If d is a Q metric on
G, then d−1 defined as

d−1(%1, %2) = d(%2, %1)

is a Q metric on G as well. Further,

ds(%1, %2) = max
{
d(%1, %2), d−1(%1, %2)

}
is a metric on G induced by Q metric d.

Definition 2. [9] A sequence {=η} in G is

i) d−convergent to = with respect to τd that is =η →d = if and only if d(=,=η)→ 0, as η→ ∞.

ii) d−1−convergent to = with respect to τd−1 that is =η →d−1
= if and only if d(=η,=)→ 0, as η→ ∞.

iii) Left K−Cauchy if for every ε > 0, there exists ℘ ∈ N such that

∀ı, , ı ≥  ≥ ℘, d(= ,=ı) < ε.

iv) Right K−Cauchy if for every ε > 0, there exists ℘ ∈ N such that

∀ ı, , ı ≥  ≥ ℘, d(=ı,= ) < ε.

Definition 3. [9] Let (G, d) be a quasi metric space (shortly as Q−MS). Then (G, d) is said to be

i) left K−complete if every left K−Cauchy sequence is d−convergent,

ii) right K−complete if every right K−Cauchy sequence is d−convergent.

Wardowski [18] introduced the family of the functions given in the following definition.

Definition 4. [18] Let the family F of all functions F : (0,∞)→ R satisfying the following conditions;

(F1) For all ρ, σ ∈ (0,∞) such that ρ < σ, F (ρ) < F (σ).

(F2) For every sequence {ℵη} of positive numbers limη→∞ ℵη = 0 if and only if

lim
η→∞
F (ℵη) = −∞.

(F3) There exists µ ∈ (0, 1) such that
lim
ρ→0+

ρµF (ρ) = 0.

Definition 5. [9] Let (G, d) be a Q−MS and L : G → 2G\φ and F ∈F , then L is said to be a
multivalued Fd−contraction if there exists τ > 0 such that for each l,m ∈ M with d(l,m) > 0 and for
each u ∈ Ll, there exists v ∈ Lm satisfying either d(u, v) = 0 or d(u, v) > 0 such that

τ + F (d(u, v)) ≤ F (d(l,m)).
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Theorem 2. [9] Let (G, d) be a left K−complete T1 − Q−MS, L : G → Cd(G) a multivalued mapping
and F ∈F. If L is multivalued Fd−contraction, then L has a fixed point provided that f (x) = d(x,Lx)
is lower semicontinuous with respect to τd.

Definition 6. [10] Let (G, d) be a metric space. The pair (M,S) has the p−property if{
d(m1, s1) = d(M,S)
d(m2, s2) = d(M,S)

implies d(m1,m2) = d(s1, s2),

for all m1,m2 ∈ M, s1, s2 ∈ S.

Define
S0 = {s ∈ S : d(m, s) = d(M,S) for some m ∈ M} and
M0 = {m ∈ M : d(m, s) = d(M,S) for some s ∈ S} .

Aslantas et al. [4] in 2023 introduced left (right) best proximity points of a nonself mapping L :
M→ S. We define left (right) best proximity points of a multivalued mapping as follows.

Definition 7. LetL :M→ 2S\φ be a nonself multivalued mapping, whereM and S are two nonempty
subsets of a Q−MS (G, d). Then a point m ∈ M is said to be a

i) left BPP (LBPP) if
d(m,Lm) = d(M,S),

ii) right BPP (RBPP) if
d(Lm,m) = d(S,M).

Remark 1. If we replaceQ−metric by metric then LBPP is same as RBPP. Note that LBPP with respect
to d−1 is RBPP with respect to d.

In this paper, we have introduced pd−property and pd∗−property as follows.

Definition 8. Let (G, d) be a Q−MS andM, S be two nonempty subsets of G, then the pair (M,S) has

i) pd−property if {
d(m1, s1) = d(M,S)
d(m2, s2) = d(M,S)

implies d(m1,m2) = d(s1, s2),

for all m1,m2 ∈ M and s1, s2 ∈ S.

ii) pd∗
−property if {

d(m1, s1) = d(M,S)
d(m2, s2) = d(M,S)

implies d(m1,m2) = d(s2, s1),

for all m1,m2 ∈ M and s1, s2 ∈ S.

Remark 2. If we replace Q−metric by metric then all above properties reduces to p−property.

In this paper, we have introduced generalized multivalued Fd−contraction and generalized
multivalued Fd∗−contraction as follows.
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Definition 9. Let (G, d) be a Q−MS and M,S nonempty subsets of G, L : M → 2S\φ and F ∈F ,
then L is said to be

(1) a generalized multivalued Fd−contraction if there exists τ > 0 such that for each l,m ∈ M with
d(l,m) > 0 and for each u ∈ Ll, there exists v ∈ Lm satisfying either d(u, v) = 0 or

τ + F (d(u, v)) ≤ F (M(l,m)), (1.1)

(2) a generalized multivalued Fd∗−contraction if there exists τ > 0 such that for each l,m ∈ M with
d(l,m) > 0 and for each u ∈ Ll, there exists v ∈ Lm satisfying either d(v, u) = 0 or

τ + F (d(v, u)) ≤ F (M(l,m)), (1.2)

where

M(l,m) = max

 d(l,m), d(l,Ll) − d(M,S),d(m,Lm) − d(M,S),
d(m,Ll) + d(l,L m)

2
− d(M,S)

 .
2. Main results

The following is the first main result.

Theorem 3. Let (G, d) be a left K−complete T1 − Q metric. L : M → CB(S) be a generalized
multivalued Fd−contraction satisfying the following axioms:

i) For each m ∈ M0, we have L(m) ⊆ S0, and the pair (M,S) satisfies the pd−property.

ii) For m0,m1 ∈ M0, there exists s1 ∈ Lm0 such that

d(m0,m1) > 0 and d(m1, s1) = d(M,S).

Then L has a LBPP provided that the function f (m) = d(m,Lm) is a lower semicontinuous with
respect to τd.

Proof. From the given assumption (ii), we have m0,m1 ∈ M0, there exists s1 ∈ Lm0 such that

d(m0,m1) > 0 and d(m1, s1) = d(M,S). (2.1)

For m1 ∈ M0, pick s2 ∈ Lm1 ⊆ S0 that is s2 ∈ S0, it implies that there exists m2 ∈ M0 such that

d(m2, s2) = d(M,S), (2.2)

by pd−property, (2.1) and (2.2) imply

d(m1,m2) = d(s1, s2). (2.3)

If d(s1, s2) = 0 then s1 = s2 and so from (2.1) we have

d(m1,Lm1) ≤ d(m1, s2) = d(M,S) ≤ d(m1,Lm1),
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that is,
d(m1,Lm1) = d(M,S),

it implies m1 is the LBPP of L and the theorem completes. So, let

d(s1, s2) > 0,

then

τ + F (d(s1, s2)) ≤ F (M(m0,m1))

= F

max


d(m0,m1),d(m0,Lm0) − d(M,S),
d(m1,Lm1) − d(M,S),
d(m1,Lm0) + d(m0,Lm1)

2
− d(M,S)




≤ F

max


d(m0,m1),d(m0, s1) − d(M,S),
d(m1, s2) − d(M,S),
d(m1, s1) + d(m0, s2) − 2d(M,S)

2




≤ F

max


d(m0,m1),
d(m0,m1) + d(m1, s1) − d(M,S),
d(m1,m2) + d(m2, s2) − d(M,S),
d(m0,m1) + d(m1,m2)

2




≤ F

max

 d(m0,m1),d(m0,m1),d(m1,m2),
d(m0,m1) + d(m1,m2)

2




≤ F
(
max

{
d(m0,m1),d(m1,m2)

})
,

if
max

{
d(m0,m1),d(m1,m2)

}
= d(m1,m2),

then
τ + F (d(s1, s2)) ≤ F (d(m1,m2).

From (2.3) we have
F (d(m1,m2)) = F (d(s1, s2)),

so we get
τ + F (d(m1,m2)) ≤ F (d(m1,m2),

implies τ ≤ 0, a contradiction. Hence

max
{
d(m0,m1), d(m1,m2)

}
= d(m0,m1).

Thus we have
F (d(s1, s2)) ≤ F (d(m0,m1)) − τ. (2.4)

From (2.3) and (2.4) we get
F (d(m1,m2)) ≤ F (d(m0,m1)) − τ.
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Now for s3 ∈ Lm2 ⊆ S0, that is s3 ∈ S0 it implies there exists m3 ∈ M0 such that

d(m3, s3) = d(M,S), (2.5)

by pd−property (2.2) and (2.5) imply

d(m2,m3) = d(s2, s3). (2.6)

If d(s2, s3) = 0 then m2 is the LBPP of L and the proof is completed. So, let

d(s2, s3) > 0,

then

τ + F (d(s2, s3)) ≤ F (M(m1,m2))

≤ F

max


d(m1,m2), d(m1,Lm1) − d(M,S),
d(m2,Lm2) − d(M,S),
d(m2,Lm1) + d(m1,Lm2)

2
−d(M,S)




≤ F (max {d(m1,m2), d(m2,m3)}) ,

if
max {d(m1,m2), d(m2,m3)} = d(m2,m3),

then
τ + F (d(s2, s3)) ≤ F (d(m2,m3).

From (2.6), we have
F (d(m2,m3)) = F (d(s2, s3)). (2.7)

So we get
τ + F (d(m2,m3)) ≤ F (d(m2,m3),

implies τ ≤ 0, a contradiction, hence

F (d(s2, s3)) ≤ F (d(m1,m2)) − τ. (2.8)

Using (2.7) in (2.8), we have
F (d(m2,m3)) ≤ F (d(m1,m2)) − τ,

continuing in this way, we get mη−1 ∈ M0, sη ∈ S0 and mη ∈ M0 such that

d(mη, sη) = d(M,S), (2.9)

similarly for mη ∈ M0, sη+1 ∈ S0, and there exists mη+1 ∈ M0 such that

d(mη+1, sη+1) = d(M,S), (2.10)

from (2.9) and (2.10) and by pd−property, we have

d(mη,mη+1) = d(sη, sη+1). (2.11)
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If d(sη, sη+1) = 0 for some η, it implies sη = sη+1, then we havemη is the LBPP. So suppose d(sη, sη+1) >
0, then

τ + F (d(sη, sη+1)) ≤ F
(
M(mη−1,mη)

)
≤ F

max


d(mη−1,mη), d(mη−1,Lmη−1) − d(M,S),
d(mη,Lmη) − d(M,S),
d(mη,Lmη−1) + d(mη−1,mη) − 2d(M,S)

2




≤ F

max


d(mη−1,mη), d(mη,mη+1),
d(mη−1,mη) + d(mη,mη+1)

2




≤ F
(
max

{
d(mη−1,mη),d(mη,mη+1)

})
,

if
max

({
d(mη−1,mη),d(mη,mη+1)

})
= d(mη,mη+1),

then we get a contradiction. Hence we have

F
(
d(sη, sη+1)

)
≤ F

(
M(mη−1,mη)

)
− τ, (2.12)

from (2.11) and (2.12)

F
(
d(mη,mη+1)

)
≤ F

(
M(mη−1,mη)

)
− τ (2.13)

≤ F
(
M(mη−2,mη−1)

)
− 2τ

·

·

·

≤ F (M(m0,m1)) − ητ,

for all η ∈ N. From (2.13), we get

lim
η→∞
F

(
d(mη,mη+1)

)
= −∞.

Now from (F2), we have
lim
η→∞

d(mη,mη+1) = 0.

From (F3) there exists k ∈ (0, 1) such that

lim
η→∞

d(mη,mη+1)kF d(mη,mη+1) = 0,

then by (2.13), the following hold for all η ∈ N,

d(mη,mη+1)k
(
F d(mη,mη+1) − F d(m0,m1)

)
≤ −d(mη,mη+1)kητ.

letting η→ ∞ we get
lim
η→∞

ηd(mη,mη+1)k = 0, (2.14)
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it implies there exists η1 ∈ N such that

ηd(mη,mη+1)k ≤ 1,

for all η ≥ η1. It implies

d(mη,mη+1)k ≤
1
η
, (2.15)

for all η ≥ η1.

Now to show {mη} is a left K−Cauchy sequence in M, consider m, η ∈ N such that m > η ≥ η1,

then by triangular inequality and by (2.15), we get

d(mη,mm) ≤ d(mη,mη+1) + d(mη+1,mη+2) + · · · + d(mm−1,mm),

that is

d(mη,mm) ≤
m−1∑
i=η

d(mi,mi+1) ≤
∞∑

i=η

d(mi,mi+1) ≤
∞∑

i=η

1

i
1
k

.

For any given ε > 0 there exists N ∈ N such that

d(mη,mm) ≤
∞∑

i=η

1

i
1
k

< ε, for all η ≥ N.

Hence {mη} is a left K−Cauchy sequence inM. Similarly, we can prove that {sη} is a left K−Cauchy
sequence in S. So there exists z ∈ M such that d(z,mη) → 0 as η → ∞. On the other hand, since
sη+1 ∈ Lmη, so we get

d(mη,Lmη) ≤ d(mη, sη+1)
≤ d(mη,mη+1) + d(mη+1, sη+1)
≤ d(mη,mη+1) + d(M,S),

letting η→ ∞, we get
lim
η→∞

d(mη,Lmη) = (M,S).

Since f is lower semi-continuous with respect to τd, so

d(z,Lz) = f (z) = lim inf
η→∞

( f (mη)) = lim inf
η→∞

d(mη,Lmη).

that is,
d(z,Lz) = d(M,S).

Hence z is the LBPP of L. This completes the proof. �

Example 1. Let G =

{
1,

1
2
,

1
3
,

1
4
,

1
5

}
,M =

{
1,

1
2

}
, S =

{
1
4
,

1
5

}
. Define Q−metric as follows

d(m, s) =

 m − s if m ≥ s
1
3

if m < s

 .
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Then d(M,S) =
1
4
,M0 =

{
1
2

}
, S0 =

{
1
4

}
. Define L :M→ 2S\φ as follows

L(1) =

{
1
4
,

1
5

}
, and L

(
1
2

)
=

{
1
4

}
.

Take F (α) = ln(α) and τ = 0.01. Now we check L is Fd−contraction. For this we discuss all possible
cases.

Case 1: m1 = 1, m2 =
1
2
, d

(
1,

1
2

)
> 0 implies for u =

1
5
∈ L(1) there exists v =

1
4
∈ L

(
1
2

)
such

that

d(u, v) =
1
3
> 0,

it implies τ + F (d(u, v)) = −1.089 < −0.69 = F (M(m1,m2)).

Case 2: m1 =
1
2
, m2 = 1, d

(
1
2
, 1

)
> 0 implies for u =

1
4
∈ L

(
1
2

)
there exists v =

1
5
∈ L(1) such

that

d(u, v) =
1

20
> 0,

it implies τ + F (d(u, v)) = −2.9857 < −1.0986 = F (M(m1,m2)).
From above all cases it is clear that L is Fd−contraction. So all axioms of Theorem 3 hold. There

exists m =
1
2
∈ M such that

d
(
1
2
,L

(
1
2

))
=

1
4
.

Hence m =
1
2

is a LBPP of L.

Remark 3. If we replace d by d−1 in the Definition (1.1) then we can get the following result for the
existence of RBPP.

Theorem 4. Let (G, d) be a rightK−complete T1 −Q metric space. L :M→ CB(S) be a generalized
Fd−1−contraction satisfying the following axioms:

i) For each m ∈ M0 we have L(m) ⊆ S0, and the pair (S,M) satisfies the p
d−1−property.

ii) For m0,m1 ∈ M0 there exists s1 ∈ Lm0 such that

d−1(m0,m1) > 0 and d(s1,m1) = d(S,M).

Then L has a RBPP provided that the function f (m) = d(Lm,m) is a lower semicontinuous with
respect to τd−1 .

Proof. As (G, d) is a right K−complete, so (G, d−1) is a left K−complete. Further, the pair (S,M) has
the pd−1−property, implies that (M,S) has pd−property. Result follows from Theorem 3. �

AIMS Mathematics Volume 8, Issue 10, 23835–23849.



23845

Example 2. If in the Example 1, we replace Q−metric d by

d(m, s) =

 s −m if s ≥ m,
1
3

if s < m,


then we get m =

1
2

as a RBPP.

Now we derive LBPP and RBPP results using Fd∗−contraction as follows:

Theorem 5. Let (G, d) be a left K−complete T1 − Q metric. L : M → CB(S) be a generalized
multivalued Fd∗−contraction satisfying the following axioms:

i) For each m ∈ M0 we have L(m) ⊆ S0, and the pair (M,S) satisfies the pd∗
−property.

ii) For m0,m1 ∈ M0 there exists s1 ∈ Lm0 such that

d(m0,m1) > 0 and d(m1, s1) = d(M,S).

Then L has a LBPP provided that the function f (m) = d(m,Lm) is a lower semicontinuous with
respect to τd.

Proof. Using pd∗
−property the result follows on the similar lines as in Theorem 3. �

Example 3. Let G =

{
1
3
,

1
6
,

1
9
,

1
12
,

1
15

}
,M =

{
1
3
,

1
6

}
, S =

{
1

12
,

1
15

}
. Define Q−metric as follows

d(m, s) =

 m − s if m ≥ s,
1
9

if m < s

 .
Then d(M,S) =

1
12
,M0 =

{
1
6

}
, S0 =

{
1

12

}
Define L :M→ 2S\φ as follows

L(
1
3

) =

{
1

12

}
, and L

(
1
6

)
=

{
1

12
,

1
15

}
.

Take F (α) = ln(α) and τ = 0.1. Now we check L is Fd∗−contraction. For this we discuss all possible
cases.

Case 1: m1 =
1
3
, m2 =

1
6
, d

(
1
3
,

1
6

)
=

1
6
> 0 implies for u =

1
12
∈ L(

1
3

) there exists v =
1

15
∈ L

(
1
6

)
such that

d(v, u) =
1
9
> 0,

it implies τ + F (d(v, u)) = −2.0972 < −1.7917 = F (M(m1,m2)).

Case 2: m1 =
1
6
, m2 =

1
3
, d

(
1
6
,

1
3

)
=

1
9
> 0 implies for u =

1
15
∈ L

(
1
6

)
there exists v =

1
12
∈ L(

1
3

)

such that
d(v, u) =

1
60

> 0,
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it implies τ + F (d(v, u)) = −3.9943 < −1.7917 = F (M(m1,m2)).
From above all cases it is clear thatL is Fd∗−contraction. So all axioms of Theorem 5. There exists

m =
1
6
∈ M such that

d
(
1
6
,L

(
1
6

))
=

1
12
.

Hence m =
1
6

is a LBPP of L.

Remark 4. If we replace d by d−1 in the Definition (1.2) then we have the following result for the
existence of RBPP.

Theorem 6. Let (G, d) be a rightK−complete T1 −Q metric space. L :M→ CB(S) be a generalized
Fd−1

∗
−contraction satisfying the following axioms:

i) For each m ∈ M0 we have L(m) ⊆ S0, and the pair (S,M) satisfies the p
d−1
∗

−property.

ii) For m0,m1 ∈ M0 there exists s1 ∈ Lm0 such that

d−1(m1,m0) > 0 and d(s1,m1) = d(S,M).

Then L has a RBPP provided that the function f (m) = d(Lm,m) is a lower semicontinuous with
respect to τd−1 .

Proof. Proof follows the similar lines as in Theorem 4. �

Example 4. If in the Example 3, we replace Q−metric d by

d(m, s) =

 s −m if s ≥ m,
1
9

if s < m

 ,
then we get m =

1
6

as a RBPP of L.

Now we derive some results of best proximity points and fixed points from our main results.

Corollary 1. Let (G, d) be a complete metric space. L : M → CB(S) be a generalized multivalued
Fd−contraction satisfying the following axioms:

i) For each m ∈ M0 we have L(m) ⊆ S0, and the pair (M,S) satisfies the pd−property.

ii) For m0,m1 ∈ M0 there exists s1 ∈ Lm0 such that

d(m0,m1) > 0 and d(m1, s1) = d(M,S).

Then L has a BPP provided that the function f (m) = d(m,Lm) is a lower semicontinuous with
respect to τd.
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Corollary 2. Let (G, d) be a complete metric space, L : M → CB(S) a generalized multivalued
Fd∗−contraction satisfying the following axioms:

i) For each m ∈ M0 we have L(m) ⊆ S0, and the pair (M,S) satisfies the pd∗−property.

ii) For m0,m1 ∈ M0 there exists s1 ∈ Lm0 such that

d(m0,m1) > 0 and d(s1,m1) = d(S,M).

Then L has a BPP provided that the function f (m) = d(m,Lm) is a lower semicontinuous with
respect to τd.

Corollary 3. Let (G, d) be a left K−complete T1 − Q metric. L : G → CB(G) be a generalized
multivalued Fd−contraction then L has a fixed point provided that f (g) = d(g,Lg) is lower
semicontinuous with respect to τd.

Corollary 4. Let (G, d) be a right K−complete T1 − Q metric. L : G → CB(G) be a generalized
Fd∗−contraction then L has a fixed point provided that f (g) = d(g,Lg) is lower semicontinuous with
respect to τd.

Remark 5. If we replace generalized multivalued Fd−contraction by multivalued Fd−contraction,
then Theorem 2 becomes the corollary of Corollary 3.

3. Conclusions

In this paper, we obtained left and right best proximity points of generalized multivalued
F−contractions of quasi metric spaces. On quasi metric spaces, due to the lack of symmetry property,
left and right versions of best proximity points and p−properties have been introduced and all these
versions reduce to their metric analogues. In the literature, there are not many instances of best
proximity point theorems in quasi metric spaces and the results in this article will open up more
directions for further research in the best proximity point theory of asymmetric distance spaces, for
instance we can develop semi best proximity points in partially ordered quasi metric spaces and quasi
metric spaces endowed with a graphical structure.
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