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1. Introduction

Let α ∈ (0, 2], an α-time resolvent family S α(t) gives the solution to the α-order Cauchy problems

Dα
t u(t) = Au(t), t > 0,
u(0) = x, ( in addtion u′(0) = 0 if α > 1)

by u(t) = S α(t)x, where Dα
t is the Caputo derivative of order α. See [28] for definitions and

properties of fractional derivatives and fractional differential equations. This definition of fractional
resolvent calculus has many applications, such as [16, 24] for abstract Cauchy problems and [30, 31]
for engineering applications, and some applications on numerical simulations are given in [32, 33].

The main results of this article are the following three aspects: First, we give a counter-example
of the point-spectral mapping theorem; second, we give the constant estimate of decay estimate of
fractional resolvent family, and some examples are given at the end of this section. Third, we prove
that Dαβ

t S α(t) exist and continuous iff x ∈ D((I − A)β).
The main method we used in this paper is the resolution of identity corresponding to a normal
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operator A. By [25, Theorem 13.33], every normal operator A has a unique spectral decomposition and

A =

∫
σ(A)

λdP(λ). (1.1)

If A generates a bounded fractional resolvent family {S α(t)}, by using the properties of P(λ) and Eα(t)
we can represent {S α(t)} as follows:

S α(t) =

∫
σ(A)

Eα(λtα)dP(λ). (1.2)

It should be noticed that the above representation is a special case of functional calculus [15, 25],
which has been widely used to deal with semigroup problems, such as decay estimate, continuation,
approximation, and resolvent representation, etc. More details about these topics can be found
in [3, 6, 10–13]. The main question addressed in this article are: How to use this integral
representation to show the relationship between the spectrum of the generator and the regularity of
the fractional resolvent family, and the main results can be summarized as follows.

The first one is the spectral mapping theorem of the resolvent family. In [8, Section 4.3], the authors
discuss this problem in semigroup sense in detail and give a large number of examples to show that the
conditions of theorems are optimal in some cases. In [19], authors proved that the spectral inclusion
theorem is valid for the fractional resolvent family.

Theorem 1.1. [19, Theorem 3.2] Suppose that there is an α-times resolvent family {S α(t)} for A, where
α ∈ (0, 2], then
(1) Eα(tασ(A)) ⊆ σ(S α(t)).
(2) Eα(tασap(A)) ⊆ σap(S α(t)).
(3) Eα(tασp(A)) ⊆ σp(S α(t)).
(4) Eα(tασr(A)) ⊆ σr(S α(t)).

Since the spectral mapping theorem is closely connected with the stability of the resolvent
family and the decay rate can be given by spectral bound by using spectral mapping theorem (for
example, [8, Proposition 1.7, Lemma 1.9]), it is very important to prove the spectral mapping theorem
or construct a counter-example. Our first result is that we constrcut a normal operator A, which
generates a fractional resolvent family {S α(t)}, such that λ ∈ σap(A)/σp(A) but Eα(λ) ∈ σp(S α(1)).

Another topic we discussed here is decay estimate, which is also an important subject. There
are numerous articles and books discussing this subject and giving very detailed results, but we only
mentioned one of these results here,

Theorem 1.2. [2, Theorem 5.1.9] Let T be a C0-semigroup on Banach space X with generator A.
Then

s(A) = hol(T̂ ) ≤ ω1(T ) = abs(T ) ≤ s0(A) ≤ ω(T ). (1.3)

An important question is whether we can prove a similar theorem for fractional resolvent
families. The decay estimate of the fractional resolvent family has been given in many pieces of
literature ( [20, Proposition 3.3] and [21, Proposition 3.1]) and they show this theorem does not hold
for the fractional resolvent family in general. In this paper, we proved that if fractional resolvent
family {S α(t)} generated by a normal operator A is stable, then it is polynomial stable and the constants
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are determined by spectral bound s(A), which can be seen as the Datko-Pazy theorem for fractional
resolvent family. Additionally, we give some applications of this decay estimate.

The third one is the partial answer to the question: under which condition can S α(t)x have a
continuous derivative of order β > 0? It was proved by [17] that t → S 1(t)x has a continuous fractional
derivative of order α > 0 if and only if x belongs to D(bI − A)α. In [9], the author proved that
for {S 2(t)}, the strongly continuous cosine functions, if S 2(t)x has a continuous Riemann-Liouville
fractional derivative of order α , n = 1

2 , n = 0.1.2....., then x ∈ D(bI − A)α.

Theorem 1.3. [9, Theorem 3.1] Let α > 0, α , n + 1
2 , n = 0, 1, .... Then

E−2α,β ⊆ Fα, E+
2α,β ⊆ Fα.

If we consider the Caputo fractional derivatives and let α ∈ (0, 2), suppose {S α(t)} is the fractional
resolvent family generated by normal operator A. Then, by using spectral measure presentation, we
can prove that S α(t)x has a continuous derivative of order αβ > 0 if and only if x ∈ D(I − A)β.

This paper is organized as follows. In Section 2, we give some necessary definitions and properties
of Mittag-Leffler functions and fractional resolvent families. Section 3 focuses on the conditions for
the generation of resolvent families by normal operators and the representation of resolvent families.
Proofs of the above main results are given in Section 4, together with some examples.

2. Preliminaries

2.1. Basic notations

Throughout this paper, H is a separable Hilbert space, and L(H) is the Banach algebra of all bounded
linear operators on H. We always assume that A is a closed unbounded operator, densely defined
on H. We will denote by N(A), D(A), and R(A) the kernel, domain, and range of A respectively.
Additionally, by ρ(A), σ(A), σp(A), σr(A) we denote the resolvent set, spectrum, point spectrum and
residual spectrum of A, respectively. R(λ, A) := (λ−A)−1 means the resolvent of A at λ if λ ∈ ρ(A), and
notation s(A) means the spectral bound of σ(A), s(A) := sup

{
<(λ)|λ ∈ σ(A)

}
; by the Hahn-Banach

theorem σr(A) = σp(A∗), where A∗ is the adjoint of A. By W(A) we denote the numerical range of A if
A is defined on Hilbert space H,

W(A) = {〈Ax, x〉 ∈ C|x ∈ D(A), ‖x‖ = 1}.

And sector Σθ is defined as
Σθ = {λ ∈ C|λ , 0 and |argλ| < θ}

for θ ∈ (0, π) and Σ0 = (0,∞).

2.2. Special functions

We recall two important functions in the theory of fractional calculus. For details of these special
functions and the general theory of fractional calculus, we refer to [1, 24] and the references therein.

The Mittag-leffler function Eα,β(z) is defined by

Eα,β(z) :=
∞∑

n=0

zβ

Γ(αn + β)
=

1
2πi

∫
Ha

µα−βeµ

µα − z
dµ, z ∈ C,
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where α, β > 0, Ha is the Hankel contour which starts and ends at −∞, and encircles the disc |t| ≤ |z|
1
α

counter clockwise. We use Eα(t) := Eα,1(t) for short. The Mittag-Leffler function Eα(t) satisfies the
fractional differential equation

Dα
t Eα(ωtα) = ωEα(ωtα),

where Dα
t is the Caputo derivative of α-order (see [4]). The most important properties of this function

are associated with their Laplace integral∫ ∞

0
e−λttβ−1Eα,β(stα)dt =

λα−β

λα − s
, <(λ) > |s|

1
α ,

and their asymptotic expansion as z→ ∞. For 0 < α < 2 and β = 1,

Proposition 2.1. [24, Proposition 3.5] Let α ∈ (0, 2) and

απ

2
< θ < min{π, απ}.

Then we have the following asymptotics for formulas in which N is an arbitrary positive integer

Eα(z) =
1
α

exp(z
1
α ) + εα(z), | arg z| ≤ θ, |z| → ∞, (2.1)

Eα(z) = εα(z), θ ≤ | arg(z)| ≤ π, |z| → ∞, (2.2)

where

εα(z) = −

N−1∑
n=1

z−n

Γ(1 − αn)
+ O(|z|−N).

From the asymptotic expansion one knows that Eα(−ωtα) = O(t−α) as t → ∞ when ω > 0.

2.3. Resolvent family

Here we define fractional resolvent families and list some basic properties [4, 18].

Definition 2.2. Let 0 < α ≤ 2, a family {S α(t)}t≥0 ⊂ L(X) is called an α-times resolvent family
generated by A if the following conditions are satisfied:

(1) S α(t) is strongly continuous for t ≥ 0 and S α(0) = I;
(2) S α(t)A ⊂ AS α(t) for t ≥ 0;
(3) for x ∈ D(A), the resolvent equation

S α(t)x = x + A
∫ t

0
gα(t − s)S α(t)xds

holds for all t ≥ 0, where gα(t) := tα−1

Γ(α) .

By this definition, we know that a 1-times resolvent family is exactly a C0-semigroup, and a 2-times
resolvent family is a cosine operator.
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Definition 2.3. An α-times resolvent family S α(t) is said to be exponentially bounded if there exists a
constant M ≥ 1 and ω ≥ 0 such that ‖S α(t)‖ ≤ Meωt for every t ≥ 0. S α(t) is called bounded if ω can
be taken as 0, i.e., ‖S α(t)‖ ≤ M for all t ≥ 0.

Let θ0 ∈ (0, π], an α-times resolvent family S α(t) is called analytic of angle θ0 if S α(t) admits an
analytic extension to the sectorial sector Σθ0 := {z ∈ C : z , 0 and | arg z| < θ0}. An analytic α-
times resolvent family S α(t) is called to be bounded if ‖S α(z)‖ is uniformly bounded for z ∈ Σθ for
any 0 < θ < θ0.

Lemma 2.4. [4, Theorems 2.8 and 2.9] Let 0 < α ≤ 2, S α(t) be an α-times resolvent family generated
by A. Then ‖S α(t)‖ ≤ Meωt for every t ≥ 0 if and only if (ωα,∞) ∈ ρ(A) and∥∥∥∥ dn

dλn (λα−1R(λα, A))
∥∥∥∥ ≤ Mn!

(λ − ω)n+1 , λ > ω, n ∈ N0.

In this case {λα : Re λ > ω} ⊂ ρ(A) and

λα−1R(λα, A)x =

∫ ∞

0
e−λtS α(t)x dt, <(λ) > ω

for every x ∈ X. In particular, if S α(t) is bounded, then supλ>0 ‖λR(λ, A)‖ < ∞.

The relationship between the generator of the analytic bounded resolvent operator and the sectorial
operator can be narrated as follows.

Lemma 2.5. [5, Lemma 2.7] Let α ∈ (0, 2) and θ0 ∈ (0,min
{
π
2 ,

π
α
− π

2

}
). The following assertions are

equivalent.
(1) A generates a bounded analytic α-times resolvent operator of angle θ0.
(2) Σα( π2 +θ) ∈ ρ(A) and for every θ ∈ (0, θ0) there is a constant Mθ such that

‖λR(λ, A)‖ ≤ Mθ, λ ∈ Σα( π2 +θ).

(3) −A ∈ sect(π − α(π2 + θ0)).

The following subordination principle is a very powerful tool. For a more general subordination
principle for the fractional powers of the generators see [18], and for regularized resolvent families
see [1].

Lemma 2.6. (Subordination principle) Let 0 < β < α ≤ 2. If A generates an exponentially bounded α-
times resolvent family S α(t), then A generates exponentially bounded analytic β-times resolvent family
S β(t) which is subordinated to S α(t) by

S β(t) =

∫ ∞

0
t−

β
α W
−
β
α ,1−

β
α
(st−

β
α )S α(s)ds, t > 0. (2.3)

Moreover, if S α(t) is bounded, then S β(t) is analytic and bounded in a sector with an angle smaller
than (α/β − 1)π/2.

Where W
−
β
α ,1−

β
α
(st−

β
α ) is the Wright-type function, for details of this function, we refer to [1,24,28].
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3. Fractional resolvent family generated by normal operators

Let (Ω,Σ, µ) be a σ-finite measure space. Let 1 ≤ p < ∞, define Banach space X := Lp(Ω, µ), and
suppose q is a measurable function on X, define set qess(Ω):

qess(Ω) := {λ ∈ C : µ({s ∈ Ω : |q(s) − λ| < ε}) , 0,∀ε > 0}

be the essential range of function q. Using function q we can define a multiplication operator Mq on X.

Mq f := q · f f ∈ D(Mq) := { f ∈ X : q · f ∈ X}. (3.1)

Some properties of the multiplication operator are summarized as follows.

Lemma 3.1. [8, Proposition 4.10] Let Mq be the multiplication operator on X = Lp(Ω, µ) defined by
measurable function q and (3.1), the following conclusion is valid:

(1) Mq is a closed operator with a dense domain.
(2) Mq is a bounded operator if and only if q is an essential bounded function, that is, essential

range qess(Ω) is a bounded set, and

‖Mq‖ = ‖q‖∞ := sup{|λ| : λ ∈ qess(Ω)}.

(3) The spectral of Mq is equal to the essential range of q.

Next, we give a conclusion about the generation of resolvent families by multiplication operators.

Theorem 3.2. Let 0 < α < 2 and q is a measurable function, q : Ω 7→ C, if

q̃ := sup{<(q(x)
1
α ) : q(x) ∈ qess(Ω) ∩ Σ απ

2
, x ∈ Ω} < ∞.

Then the operator family S q
α(t) defined by

S q
α(t)g := Eα(tαq)g, g ∈ Lp(Ω, µ)

is a α-times resolvent family generated by Mq. And S q
α(t) is uniformly bounded if and only if qess ⊆

C − Σ απ
2

.

Proof. By asymptotic estimate of Mittag-Leffler function (2.2),

sup{|Eα(z)| : | arg(z)| ≥
απ

2
} < ∞,

and when z→ ∞,
Eα(z) = O(e<(z

1
α )), | arg(z)| ≤

απ

2
.

Because q̃ < ∞, by Lemma 3.1, operator family S q
α(t) is exponentially bounded,

‖S q
α(t)‖ = ‖Eα(tαq)‖∞ ≤ Metq̃.

Since
‖S q

α(t)g − g‖p =

∫
Ω

|Eα(tαq(x)) − 1|p · |g(x)|pdx,

so the strong convergence of S q
α(t) can be proved directly by the dominant convergence theorem. Then

it is easy to see that operator family S q
α(t) is an α-times resolvent family generated by Mq. �

The following unitary isomorphism theorem is a classical theorem describing normal operators.
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Theorem 3.3. [15, Appendix D, Spectral Theorem] Suppose operator A is a normal operator on H,
then there exist a σ-finite measure space (Ω,Σ, µ) and measurable function q : Ω 7→ C, such that
operator A is unitary isomorphic to a multiplication operator Mq defined on L2(Ω, µ). This means
there exists a unitary operator U ∈ L(H, L2(Ω, µ)), such that

A = U∗MqU = U−1MqU,

and σ(A) = σ(Mq) = qess(Ω).

From the above discussion, it can be seen that if the normal operator A unitary isomorphic to the
multiplication operator Mq which is defined on L2(Ω, µ), and qess(Ω) ⊆ C − Σ α

2 π
, then A generates a

bounded α-times resolvent family. Additionally, the converse can be proved directly by Theorems 2.4
and 3.3.

Recall that for a normal operator A, there is a unique resolution of identity P(λ), which satisfies

〈Ax, y〉 =

∫
σ(A)

λd〈P(λ)x, y〉, x ∈ D(A), y ∈ H. (3.2)

Then for every measureble function f : σ(A)→ C, we can define operator f (A) as follows:

f (A) :=
∫
σ(A)

f (λ)dP(λ),

with domain
D( f (A)) := {x ∈ H :

∫
σ(A)
| f (λ)|d〈P(λ)x, x〉 < ∞}.

For more information about the resolution of identity and proofs please refer to [25, Section 13],
especially [25, Lemma 13.22, Theorems 13.23 and 13.24].

Now suppose that A is a normal operator with σ(A) ⊆ C − Σ α
2 π

, since Eα(tαλ) is bounded in σ(A),
therefore we can define an operator family {Eα(tαA)}t≥0 with domain D(Eα(tαA)) = H,

Eα(tαA) :=
∫
σ(A)

Eα(tαλ)dP(λ).

The operator family {Eα(tαA)}t≥0 is uniformly bounded and for every µ > 0,∫ ∞

0
Eα(tαA)e−µtdt =

∫
σ(A)

µα−1

µ − λ
dP(λ) = µα−1R(µ, A).

Since the strong continuity of Eα(tαA) can be easily deduced by the dominant convergence theorem,
which means that {Eα(tαA)}t≥0 is the bounded α-times resolvent family generated by A.

Combining the above discussion, we deduce the following proposition.

Proposition 3.4. Suppose A is a densely defined, closed normal operator on H, α ∈ (0, 2). Then
operator A generates an bounded α-times resolvent family {S α(t)}t≥0 if and only if σ(A) ⊆ C − Σ α

2 π
.

Moreover, if A generates a bounded fractional resolvent family {S α(t)}t≥0, then it can be represented as:

S α(t) =

∫
σ(A)

Eα(tαλ)dP(λ), (3.3)

where P(λ) is the resolution of identity corresponding to A which satisfies the Eq (3.2).

AIMS Mathematics Volume 8, Issue 10, 23815–23832.
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4. Applications

In this section, we give some applications of Proposition 3.4. We shall use the properties of zeros
of the Mittag-Leffler function several times, then distributions of zeros of the Mittag-Leffler function
can be found in [24, Sections 3.5 and 4.6].

4.1. A counter-example for point-spectral mapping theorem

It has been proved that if A generates a strong-continuous semigroup {T (t)}, then we have

σp(A)\{0} = etσp(A). (4.1)

This equation is called the spectral mapping theorem for point spectral or point-spectral mapping
theorem, the proof of this equation can be found in [8, Chapter 4, Section 3.7]. In paper [19], authors
prove the point-spectral inclusion theorem for a fractional resolvent family

Eα(σp(A)tα) ⊆ σp(S α(t)) (4.2)

by using the following lemma.

Lemma 4.1. [19, Lemma 3.1] Denote ma(t) = tα−1Eα,α(atα), a ∈ C. Suppose {S α(t)} is a fractional
resolvent family generated by A with α ∈ (0, 2], then

(a − A)
∫ t

0
ma(s)S α(t − s)xds = Eα(atα)x − S α(t)x, x ∈ X. (4.3)

∫ t

0
ma(s)S α(t − s)(a − A)xds = Eα(atα)x − S α(t)x, x ∈ D(A). (4.4)

Here, we will use Proposition 3.4, Lemma 4.1, and properties of resolution of identity to construct
an operator A such that

0 , λ ∈ σap(A)\σp(A), Eα(λtα) ∈ σp(S α(t)), 1 , α ∈ (0, 2]. (4.5)

Let A be a normal operator which satisfies Proposition 3.4, then the fractional resolvent family
{S α(t)} generated by A is given by

S α(t) =

∫
σ(A)

Eα(tαλ)dP(λ), (4.6)

where P(λ) is the resolution of identity corresponding to A. Moreover, suppose operator A satisfies the
following condition.
Condition 1: Let λ0 ∈ σ(A)\σp(A) and λ1 ∈ σ(A)\{λ0} satisfies P(λ1) > 0 and Eα,α+1(λ0) =

Eα,α+1(λ1) = 0.
There indeed exists an operator A satisfies Condition 1, since there are infinitely zeros of Eα,α+1(λ)

lies in the C − Σ α
2 π

.
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Example 4.2. By using Lemma 4.1, [24, (4.4.10)] and let t = 1, we have

(λ0 − A)
∫ 1

0
mλ0(s)S α(1 − s)xds

= (λ0 − A)
∫ 1

0
mλ0(s)

∫
σ(A)

Eα((1 − s)αλ)dP(λ)xds

= (λ0 − A)
∫
σ(A)

∫ 1

0
mλ0(s)Eα((1 − s)αλ)dsdP(λ)x

= (λ0 − A)
∫
σ(A)

fλ0(λ)dP(λ)x

= Eα(λ0)x − S α(1)x,

where
fλ0(λ) = −

λEα,α+1(λ)
λ0 − λ

. (4.7)

Then we have
fλ0(λ1) = 0,

Since P(λ1) > 0 we know that P(ω) > 0, where ω =
{
λ ∈ σ(A) : fλ0(λ) = 0

}
.

Then choose 0 , x0 ∈ R(P(ω)), by using the proof of [25, Theorem 13.27(a)] we have∫
σ(A)

fλ0(λ)dP(λ)x0 = 0. (4.8)

That is,
Eα(λ0)x0 − S α(1)x0 = 0, (4.9)

this means Eα(λ0) ∈ σp(S α(1)) with λ0 < σp(A).

Since we construct this example in Hilbert space and A is a normal operator, then we can prove the
following claim for A satisfies Condition 1 directly,

Eα(σrtα) $ σr(S α(t)). (4.10)

One question is how to add some more conditions on normal generator A to ensure the correctness
of the point-spectral mapping theorem. Notice that we prove Eα(λ0)x0 − S α(1)x0 = 0 only for t = 1, so
if we want to prove the point-spectral mapping theorem for all fractional resolvent family, we at least
should prove that for every t > 0,∫

σ(A)

λ0Eα,α+1(λ0tα) − λEα,α+1(λtα)
λ0 − λ

tαdP(λ) (4.11)

is an injective operator then the point-spectral mapping theorem is valid for the fractional
resolvent family with this normal generator. However, this is difficult since instead of explicit
representation of zeros, we only have the asymptotic behavior of zeros of Mittag-Leffler function
Eα,α(λ) except α = 1 [24, Sections 3.5 and 4.6], in this case, E1,1(λ) = eλ has no zeros and the fractional
resolvent operator is a strongly continuous semigroup and satisfies the point-spectral mapping theorem.
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23824

It should be noticed that in strong continuous semigroup sense (α = 1), the spectral
mapping theorem holds if this semigroup is eventually norm-continuous [8, Chapter 4, 3.10], but
we can find an operator satisfies Condition 1 which generates an analytic fractional resolvent
family (α ∈ (0, 2), α , 1), so we conclude that the point-spectral mapping theorem does not hold
for the fractional resolvent family in general, even if for analytic fractional resolvent family or vector-
valued cosine function.

The method we used in the above example can be used to construct another example that shows that
there exists a fractional resolvent family {S α(t)} and a positive constant t0 such that

S α(t0) = 0.

It is well known that if there is a t0 and a semigroup {T (t)} such that

T (t0) = 0,

then
T (t) = 0, t ≥ t0,

then we conclude that for any postive constant ω, we can find another constant M such that

‖T (t)‖ ≤ Me−ωt,

then we conclude that the generator of {T (t)} has an empty spectrum set, which is impossible if {T (t)}
is a semigroup of normal operator,

Example 4.3. Denote set B = {λ : Eα(λ) = 0, λ ∈ C − Σ απ
2
} and let A be the normal operator with

σ(A) = B. Then we know that A generates a fractional resolvent family {S α(t)} with representation

S α(t) =

∫
σ(A)

Eα(λtα)dP(λ). (4.12)

Then we have

S α(1) =

∫
B

Eα(λ)dP(λ) = 0. (4.13)

This construction can not be applied on semigroup because E1(λ) = eλ has no zeros.

4.2. The constant of decay estimate

It has been proved that if A generates a stable semigroup, then this semigroup is exponentially stable
and there exists a constant ω < 0 such that

σ(A) ⊆ {λ : <(λ) < ω}.

But a similar property has not been proved for the general fractional resolvent family. By using
Proposition 3.4 we can prove the following theorem.

AIMS Mathematics Volume 8, Issue 10, 23815–23832.
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Theorem 4.4. Suppose A is a normal operator which generates a stable fractional resolvent
family {S α(t)}, then there exists a constant ω > 0 such that

ω + σ(A) ⊆ C − Σ απ
2
, (4.14)

and
‖S α(t)‖ ≤

1
ωΓ(1 − α)

t−α + o(t−2α), t → ∞. (4.15)

Proof. We prove the first claim by a contradiction. If there is no such a constant ω satisfies the
Eq (4.14), then there must be a sequence {zn} ⊆ σ(A) such that

<(z
1
α
n )→ 0, as n→ ∞. (4.16)

Since {S α(t)} is stable, then 0 ∈ ρ(A) and we can choose t0 big enough and ε < 1
3α such that ‖S α(t)‖ ≤ ε,

and tα0 zn satisfies Proposition 2.1,

Eα(tα0 zn) =
1
α

exp((tα0 zn)
1
α ) + εα((tα0 zn)).

Since<(z
1
α
n )→ 0, we can choose n0 big enough and t1 > t0 such that ‖S α(t1)‖ < ε and

|Eα(tα1 zn0)| >
1

2α
. (4.17)

By spectral inclusion theorem [19, Theorem 3.2] we have

Eα(tα1 zn0) ∈ σ(S α(t1)). (4.18)

Thus
1

3α
> ε > ‖S α(t1)‖ ≥ |Eα(tα1 zn0)| >

1
2α
. (4.19)

This is a contradiction. Then there exists a constant ω > 0 such that

ω + σ(A) ⊆ C − Σ απ
2
.

The second claim can be proved by Propositions 2.1 and 3.4 directly. Since

‖S α(t)‖ = ‖

∫
σ(A)

Eα(λtα)dP(λ)‖, (4.20)

then for t big enough, we have

‖S α(t)‖ ≤ max{‖Eα(λtα), λ ∈ σ(A)}

≤
1
α

exp((−ωtα)
1
α ) + εα(−ωtα)

≤
1

ωΓ(1 − α)
t−α + o(t−2α).

We shall give some examples to show how to use Theorem 4.4, suppose ∆ is the n-dimension
Laplace operator. More details about the following operators can be found in [26, 29].
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Example 4.5. Let H = L2(Rn), n > 3 and operator A = −1
2∆ + λV, λ > 1. Then, by [26, Theorem B5.2]

we know that if 0 ≥ V ∈ Lp ∩ Lq, p < n
2 < q, and

α2(1) = − ln ‖e−A‖ = 0,

then
lim
t→∞
‖e−tA‖

exists, then for every ω > 0, A +ω = −1
2∆ + λV +ω generates a exponentially stable semigroup. Since

operator A + ω is a normal operator, by using Theorem 4.4 we know that the solution of fractional
differential equation with α < 1,

iαDα
t u(t, x) = (−

1
2

∆ + λV(x))u(t, x) + ωu(t, x), t > 0

u(0, x) = f (x) ∈ L2(Rn)

satisfies the Eq (4.15), that is

‖u(t, x)‖L2(Rn) ≤
cos(απ2 )
ω

t−α

Γ(1 − α)
+ o(t−2α), t → ∞. (4.21)

Example 4.6. Let ∆S be the Laplace operator on S n, n > 1, the n-dimension sphere, and define operator
A on L2(S n) as

A = (−∆S +
(n − 1)2

4
)

1
2 .

Then by [29, Proposition 4.1] we know that A is self-adjoint and

σ(A) ⊆ {
1
2

(n − 1) + k : k = 0, 1, 2, ...}

Thus, for every α ∈ (0, 2), the equation

iαDα
t u(t, x) = −(−∆S +

(n − 1)2

4
)

1
2 u(t, x), t > 0

u(0, x) = f (x) ∈ L2(S n)

has a solution u(t, x) satisfies

‖u(t, x)‖L2(S n) ≤
2 cos(απ2 )

n − 1
t−α

Γ(1 − α)
+ o(t−2α), t → ∞. (4.22)

Example 4.7. Let ∆S be the Laplace operator on Hn, n > 1, the n-dimension hyperbolic space,
defined as

Hn = {v ∈ Rn+1 : 〈v, v〉 = 1, vn+1 > 0},

Since Hn is a compact Riemannian manifold, then by [29, Proposition 2.1] and the proof of [29,
Proposition 5.1] we know that ∆ is self-adjoint and

σ(∆) ⊆ (−∞,
1
4

(n − 1)2].
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Then we know that for every α ∈ (0, 2), the equation

iαDα
t u(t, x) = ∆u(t, x), t > 0
u(0, x) = f (x) ∈ L2(Hn)

has a solution u(t, x) satisfies

‖u(t, x)‖L2(Hn) ≤
4 cos(απ2 )
(n − 1)2

t−α

Γ(1 − α)
+ o(t−2α), t → ∞. (4.23)

4.3. Fractional domain and fractional derivative

It has been proved in [17] that for every exponentially bounded semigroup {T (t)} with generator A
and x ∈ A, that T (t)x has a continuous fractional derivative of order α > 0 if and only if x belongs to
D((bI − A)α) for some b ∈ ρ(A). More precisely, in [9], the following theorem has been proved.

Theorem 4.8. [9, Theorem 2.1] Let α > 0 and {T (t)} be the exponentially bounded semigroup
generated by A which satisfies

‖T (t)‖ ≤ Meωt.

Then
E+
α,β = Fα. (4.24)

Where Fα := D((bI − A)α) with b ∈ ρ(A) and β > ω, x ∈ E+
α,β means there exists a continuous function

f such that

e−βtT (t)x =
eiπα

Γ(α)

∫ ∞

t
(s − t)α−1 f (s)ds.

And similar results for vector-valued cosine function family are also proved in [9]. It should be
noticed that the fractional derivative used in these papers are Riemann-Liouville fractional derivative,
which is different from the Caputo fractional derivative we used here, by using Proposition 3.4 we can
prove a similar result for fractional resolvent family generated by the normal operator.

Theorem 4.9. Let {S α(t)} be the bounded fractional resolvent family generated by normal operator A.
Fβ = D((I − A)β), β > 0 and x ∈ Eα,β means there exists a continuous operator family { f (t)} such that

Dαβ
t S α(t)x = f (t)x, (4.25)

then the following two assertions hold:
(1) if αβ < 1, then

Fβ = Eα,β.

(2) If αβ ≥ 1, then
Fβ ⊆ Eα,β.

Proof. We only need to prove this theorem for β < 1. If β ≥ 1, then x ∈ D(Aβ) ⊆ D(A) means
Ax ∈ D(Aβ−1), by definition of fractional resolvent family we know that

x ∈ D(A) iff Dα
t S α(t)x = AS α(t)x = S α(t)Ax. (4.26)
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Now we assume β < 1 and x ∈ Fβ, then S α(x) = (I − A)−βS α(t)(I − A)βx, since 1
(1−λ)β is bounded in

σ(A) and (I − A)−β is a bound operator, then we have

S α(t)x = (I − A)−βS α(t)(I − A)βx

=

∫
σ(A)

1
(1 − λ)β

Eα(λtα)dP(λ)(I − A)βx.

Since we have ( [24, Equation 4.4.5])

1
Γ(β)

∫ t

0
(t − s)β−1Eα(λsα)ds = tβEα,β+1(λtα). (4.27)

Then we can define the operator h(t) as

h(t) := tα(1−β)
∫
σ(A)

λ

(1 − λ)β
Eα,α(1−β)+1(λtα)dP(λ). (4.28)

Now using the asymptotic formula of Mittag-Leffler function [24, Theorem 4.3] and
dominant convergence theorem, we deduce that h(t) is a strongly continuous operator, and for
every x ∈ D((I − A)β),

(gα ∗ h)(t)(I − A)βx =

∫
σ(A)

gα(t) ∗ (gα(1−β)(t) ∗
λ

(1 − λ)β
Eα(λtα))dP(λ)(I − A)βx

=

∫
σ(A)

gα(1−β)(t) ∗
1

(1 − λ)β
(Eα(λtα) + k(t))dP(λ)(I − A)βx

= (gα(1−β) ∗ (I − A)−βS α)(t)(I − A)βx − (gα(1−β) ∗ k)(t)(I − A)βx

= (gα(1−β) ∗ S α)(t)x − (gα(1−β) ∗ k)(t)(I − A)βx,

where k(t) are defined as

k(t) = 1 if α < 1, or k(t) =
t

Γ(α + 1)
, if 1 < α < 2. (4.29)

Thus
S α(t)x = ((gαβ ∗ h)(t) + k(t))(I − A)βx, (4.30)

this shows that S α(t)x is continuous differentiable of order αβ.
Next we suppose that αβ < 1 and S α(t)x is continuous differentiable of order αβ, thus there exists a

continuous operator f (t) such that
S α(t)x = (gαβ ∗ f )(t)x. (4.31)

Since
Eα(λtα) = gαβ(t) ∗ t−αβEα,1−αβ(λtα),

thus by the uniqueness of Laplace transform we deduce that

f (t)x = t−αβ
∫
σ(A)

Eα,1−αβ(λtα)dP(λ)x. (4.32)
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Then we can prove that

h(t)x =

∫
σ(A)

λβ+1

1 − λ
Eα(λtα)dP(λ)x (4.33)

is well defined too, by using the asymptotic formulas of Eα,1−αβ(λtα) and λβEα(λtα). Then

(gα ∗ h)(t)x =

∫
σ(A)

Eα(λtα)
λβ

1 − λ
+ k(t)dP(λ)x = S αAβ(I − A)−1x + k(t)x, (4.34)

this shows that S αAβ(I − A)−1x is continuous differentiable of order α, then Aβ(I − A)−1x ∈ D(A) and
x ∈ D(Aβ).

There is proof of assertion (2) without using Proposition 3.4, instead, we use the Theorem 3.3. By
using this theorem and the uniqueness of the Laplace transform we deduce that∫ ∞

0
e−λtS α(t)xdt = λα−1(λα − A)−1x

= λα−1(λα − U∗qU)−1x

= U∗λα−1(λα − q)−1Ux

= U∗
∫ ∞

0
e−λtEα(qtα)dtUx

=

∫ ∞

0
e−λtU∗Eα(qtα)Uxdt,

that is
S α(t)x = U∗Eα(qtα)Ux. (4.35)

Since we know that S α(t)x is continuous differentiable of order αβ, then

Dαβ
t S α(t)x = U∗Dαβ

t Eα(qtα)Ux = U∗tαEα.1−αβ(qtα)Ux, (4.36)

this means for every t > 0, tαEα.1−αβ(qtα)Ux ∈ L2(Ω, µ), then by using asymptotic beheavior of Mittag-
Leffler function we have

qβ+1

(1 − q)
Eα(qtα)Ux ∈ L2(Ω, µ),

and

U∗
qβ+1

(1 − q)
Eα(qtα)Ux ∈ H,

thus

gα(t) ∗ U∗
qβ+1

(1 − q)
Eα(qtα)Ux = U∗gα(t) ∗

qβ+1

(1 − q)
Eα(qtα)Ux

= U∗
qβ

(1 − q)
Eα(qtα)Ux + k(t)x

= S α(t)Aβ(I − A)−1x + k(t)x.

This shows S α(t)Aβ(I − A)−1x is continuous diffenertiable of order α and x ∈ D(Aβ).
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5. Conclusions

By using the resolution of identity of a normal operator A, we deduce an integral representation of
the fractional resolvent family generated by A. And then by using this representation, some applications
are given here, especially, we show that the spectral mapping theorem does not hold for the fractional
resolvent family.
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