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1. Introduction

Differential equations (DEs) are mathematical models used to study phenomena that occur in
nature, where each dependent variable represents a quantity in the modeled phenomenon. Differential
equations made it possible to understand many complex phenomena in our daily lives and play a pivotal
role in many applications in engineering [1–6]. They have become important tools in applied sciences
and technology, used for studying telephone signals, media, conversations and the statistics of online
purchasing. More traditionally, they were used in astronomy to describe the orbits of planets and
the motion of stars [7]. They are also have many applications in biology and the medical sciences.
Recently, differential equations were used to describe the evolution of COVID-19 pandemic [8–10].
By describing those phenomena with variables that symbolize time and place, differential equations
can provide insights about the phenomena’s future.

Differential equations with delays, known as delay differential equations (DDEs), are used to
model systems where time delays play a significant role in the dynamics. They are used to model
phenomenon where the current state of the system depends not only on its current inputs and initial
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conditions, but also on its past inputs or states over a certain time interval. These equations have been
used in ecological models of population dynamics, chemical kinetics of reactions, neurobiology and
neuroscience. By contrast, advanced differential equations (ADEs) are used to describe phenomenon
in which the evolution of the system depends on both present and future time. The possibility of
introducing an advance into the equation to take into account future influence that may actually affect
the present, makes such equations a useful tool in various economic problems, population dynamics
and in mechanical control [11].

The problem of establishing the oscillation criteria for differential equations with deviating
arguments remained a stumbling block for scientists until the appearance of Fite’s paper [12] in 1921.
Since then, the study of oscillation criteria for equations of different orders has become a very active
field [13–17]. For a differential equation, the presence of oscillating solutions typically indicates
the presence of periodic terms or sinusoidal functions in the solution. This can be seen through
trigonometric functions such as sine or cosine. In contrast, non-oscillating solutions generally do
not involve periodic terms or sinusoidal functions. They can take various forms such as exponential
decay, polynomial functions or constant values.

It should be noted that the vast majority of the published paper are concerned with differential
equations with delay, while the equations with advanced arguments did not receive the attention they
deserve. Furthermore, those studies that considered advanced arguments were restricted to second
order differential equations [18–20]. In [21, 22] the authors established new oscillation criteria for the
linear second-order advanced differential equation

ρ′′ (ι) + h (ι) ρ (Ω (ι)) = 0.

Dzurina in [23] investigated the advanced canonical equations of the form(
νρ′

)′ (ι) + h (ι) ρ (Ω (ι)) = 0

and presented new properties of nonoscillatory solutions. Several papers also studied similar
equations [24–27].

For the third-order delay differential equations (DDEs), the authors in [28–33] studied the following
third-order nonlinear delay differential equation(

ν(ι)(ρ
′′

(ι))α
)′
+ h(ι)ρα(Ω(ι))) = 0

and established some results of oscillation in both the canonical and noncanonical cases. In [20,34,35],
different oscillation results for the third-order quasilinear delay differential equation(

ν(ι)(ρ
′′

(ι))α
)′
+ h(ι)ρβ(Ω(ι))) = 0

were achieved. Li et al. [36] obtained sufficient conditions for the solution ρ for the equation(
ν1(ι)(ν2(ι)ρ

′

(ι))
′
)′
+ h(ι)ρα(Ω(ι)) = 0

to be oscillatory or satisfy limι→∞ ρ(ι) = 0.
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The oscillation of the following advanced differential equation(
ν2 (ι)

((
ν1 (ι)

(
ρ′ (ι)

)α)′)β)′
+ h (ι) ρ (Ω (ι)) = 0, ι ≥ ι0 > 0 (1.1)

was discussed in [37]. The author in [37] obtained some conditions that guarantee that the solutions of
Eq (1.1) are either oscillatory or tend to zero under conditions∫ ι

ν−1/α
i (s) ds < ∞, i = 1, 2

and
Ω′ (ι) ≥ 0. (1.2)

The oscillation criteria for the equation(
ν (ι)

(
ρ′ (ι)

)α)′′
+ h (ι) ρ (Ω (ι)) = 0, ι ≥ ι0 > 0

were studied by Dzurina and Baculikova [38, 39] under conditions
∫ ι
ν−1/α (s) ds = ∞ and (1.2).

In this paper, we establish some properties of third-order advanced differential equations of the form

(
ν (ι)

(
ρ′′ (ι)

)α)′
+

∫ d

c
h (ι, s) f (ρ (Ω (ι, s))) ds = 0, ι ≥ ι0 > 0. (1.3)

As to our knowledge, the above equation and the advanced differential equations of the third order
in general did not receive the attention of researchers due to the difficulty of obtaining relationships to
reach conditions that guarantee the oscillation of all their solutions.

The obtained results also apply to the following third-order advanced differential equation(
ν (ι) |ρ′′ (ι)|α−1 ρ′′ (ι)

)′
+

∫ d

c
h (ι, s) |ρ (Ω (ι, s))|α−1 ρ (Ω (ι, s)) ds = 0, where α > 0. (1.4)

The purpose of this research is to contribute to the less-developed oscillation theory of third-order
equations with advanced argument. Using the new approach taken in this paper, we present new and
more general results than the previous studies mentioned above. The paper is organized as follows. The
second section presents background results that are necessary to obtain the main results. In Section 3,
Theorems 3.1, 3.3 and 3.4 and Corollaries 3.1 and 3.2 present some conditions that guarantee the
exclusion of positive increasing solutions. Theorem 3.2 guarantees that any nonoscillatory solution to
Eq (1.3), under certain conditions, tends to zero. Examples given in this paper illustrate the significance
of our results and improvements to known oscillation criteria are provided in Section 4.

2. Preliminaries

In this section, we present background definitions and results needed for later sections. Throughout
this paper, we assume the following:

(H1) h (ι, s) ∈ C ([ι0,∞) × [c, d], (0,∞)) , Ω (ι, s) ∈ C ([ι0,∞) × [c, d], (0,∞)) , ν ∈ C ([ι0,∞), (0,∞)) ,
Ω (ι, s) ≥ ι ≥ ι0 > 0, Ω′ (ι, s) ≥ Ω0 > 0, h (ι, s) does not vanish identically and∫ ι

ι0

1
ν1/α (s)

ds = ∞. (2.1)
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(H2) f ∈ C (R,R) such that ρ f (ρ) > 0 for ρ , 0 and satisfies the following condition:

f (ρ) /δ > ρα for all ρ , 0,

where δ > 0 and α is a quotient of odd positive integers.
Note that the conditions in the first line of (H1) ensure that Eq (1.3) has a solution.

Definition 2.1. We say ρ is a solution of Eq (1.3) if ρ ∈ C2
(
[ιρ,∞), [0,∞)

)
, ιρ > ι0, with ν (ρ′′)α ∈

C1
(
[ιρ,∞), [0,∞)

)
and satisfies Eq (1.3) on [ιρ,∞).

We consider those solutions of Eq (1.3) defined on some half-line [ιρ,∞) and satisfying

sup{|ρ (ι)| : T ≤ ι < ∞} > 0 for any T ≥ ιρ.

Definition 2.2. A solution ρ of Eq (1.3) is said to be oscillatory if it has arbitrary large zeros on [ιρ,∞),
otherwise, it is called nonoscillatory. If all solutions of Eq (1.3) are oscillatory, then Eq (1.3) is said to
be oscillatory.

The next lemma classifies the sign of nonoscillatory solutions.

Lemma 2.1. If ρ > 0 be a solution of Eq (1.3), then

ρ (ι)
(
ν (ι)

(
ρ′′ (ι)

)α)′ < 0, ρ (ι) ρ′′ (ι) > 0

and only one of the following cases holds:

ρ (ι) ρ′ (ι) < 0, (2.2)
ρ (ι) ρ′ (ι) > 0, eventually. (2.3)

Proof. Let ρ > 0 be a solution of Eq (1.3), for some ι ≥ ι0. By Eq (1.3), we have(
ν (ι)

(
ρ′′ (ι)

)α)′ < 0, eventually.

This means that the function ν (ρ′′)α of fixed sign eventually. If ν (ι) (ρ′′ (ι))α < 0, then both ρ (ι) < 0
and ρ′ (ι) < 0 which leads to a contradiction. That is,

ν (ι)
(
ρ′′ (ι)

)α > 0, eventually.

Thus, ρ (ι) is of fixed sign for all ι large enough, i.e., either Cases (2.2) or (2.3) holds. □

Definition 2.3. We say that Eq (1.3) has property (A) if every positive solutions of Eq (1.3) satisfies

ρ (ι) ρ′ (ι) < 0.

Lemma 2.2. If ρ(ι) > 0 and ρ′(ι) is positive increasing, eventually, then

ι ρ (Ω (ι, s)) − K0 Ω (ι, s) ρ (ι) ≥ 0, K0 ∈ (0, 1), eventually. (2.4)
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Proof. Since ρ′(ι) is positive increasing, we have

ρ (Ω (ι, s)) − ρ (ι) =
∫ Ω(ι,s)

ι

ρ′ (s) ds

≥ ρ′(ι) (Ω (ι, s) − ι) .

Equivalently,
ρ (Ω (ι, s))
ρ (ι)

− 1 ≥
ρ′(ι)
ρ(ι)

(Ω (ι, s) − ι) . (2.5)

Using the fact limι→∞ ρ(ι) = ∞, there exists a ι1 large enough, such that

K0 ρ (ι) ≤ ρ (ι) − ρ (ι1) =
∫ ι

ι1

ρ′ (s) ds

≤ ρ′(ι) (ι − ι1) ≤ ρ′(ι)ι, for any K0 ∈ (0, 1),

i.e.,
ι ρ′(ι) ≥ K0 ρ(ι). (2.6)

Substituting in (2.5), we get

ρ (Ω (ι, s))
ρ(ι)

≥
K0 (Ω (ι, s) − ι)

ι
+ 1 ≥

K0 Ω (ι, s)
ι

,

which implies the result. □

3. Main results

The current section contains the main results of this work. To ease notations, we set

Ψ (ι) = δ
∫ ∞

ι

h (ι, s)
(
Ω (ι, s)

s

)α
ds and Γ (ι) =

∫ ι

ι1

ν−1/α (s) ds. (3.1)

Theorem 3.1. If

lim inf
ι→∞

1
Ψ (ι)

∫ ∞

ι

Γ (s)Ψ1+1/α (s) ds >
1

(α + 1)
1+1/α , (3.2)

then Eq (1.3) has property (A).

Proof. Let ρ > 0 be a solution of Eq (1.3) and satisfying Case (2.3). From Eq (1.3), we obtain

(
ν (ι)

(
ρ′′ (ι)

)α)′
≤ −

∫ d

c
δ h (ι, ϑ) ρα (Ω (ι, ϑ)) dϑ

≤ −δ ρα (Ω (ι, c))
∫ d

c
h (ι, ϑ) dϑ. (3.3)

Using (2.4), we have

(
ν (ι)

(
ρ′′ (ι)

)α)′
≤ −δK

(
Ω (ι, c)
ι

)α
ρα (ι)

∫ d

c
h (ι, ϑ) dϑ, (3.4)
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where K = (K0)α. Define the positive function

w (ι) =
ν (ι) (ρ′′ (ι))α

ρα (ι)
. (3.5)

That is
w′ (ι) =

1
ρα (ι)

(
ν (ι)

(
ρ′′ (ι)

)α)′
− αν (ι)

(
ρ′′ (ι)

)α ρ′ (ι)
ρα (ι) ρ (ι)

. (3.6)

Eqations (3.4) and (3.6) imply

w′ (ι) ≤
(ν (ι) (ρ′′ (ι))α)′

ρα (ι)
− α
ν (ι) (ρ′′ (ι))α

ρα (ι)
ρ′ (ι)
ρ (ι)

≤ −δK
(
Ω (ι, c)
ι

)α ∫ d

c
h (ι, ϑ) dϑ − αw (ι)

ρ′ (ι)
ρ (ι)
. (3.7)

Using that (ν (ι) (ρ′′ (ι))α)′ ≤ 0, we obtain

ρ′ (ι) ≥
∫ ι

ι1

(
ν (s)

(
ρ′′ (s)

)α)1/α 1
ν1/α (s)

ds ≥
(
ν (ι)

(
ρ′′ (ι)

)α)1/α
∫ ι

ι1

ν−1/α (s) ds

≥ K
(
ν (ι)

(
ρ′′ (ι)

)α)1/α
Γ (ι) . (3.8)

Equation (3.7) yields

w′ (ι) ≤ −δK
(
Ω (ι, c)
ι

)α ∫ d

c
h (ι, s) ds − αw1+1/α (ι)Γ (ι) .

Integrating from ι to∞, we get

w (ι) ≥ K Ψ (ι) + K
∫ ∞

ι

αw1+1/α (s)Γ (s) ds. (3.9)

Equivalently,
w (ι)

K Ψ (ι)
≥ αK1+1/α 1

Ψ (ι)

∫ ∞

ι

Γ (s)Ψ1+1/α (s)
(

w (s)
K Ψ (s)

)1+1/α

ds + 1.

Since w (ι) − K Ψ (ι) > 0, infι≥ι1 w (ι) /K Ψ (ι) = λ, λ ∈ [0,∞). i.e.,

w (ι)
K Ψ (ι)

≥ α (Kλ)1+1/α 1
Ψ (ι)

∫ ∞

ι

Γ (s)Ψ1+1/α (s) ds + 1. (3.10)

Using Eq (3.2), we obtain

lim inf
ι→∞

K1+1/α 1
Ψ (ι)

∫ ∞

ι

Γ (s)Ψ1+1/α (s) ds >
1

(α + 1)
1+1/α ,

for 0 < K < 1. Thus, there exists a positive η such that

K1+1/α 1
Ψ (ι)

∫ ∞

ι

Γ (s)Ψ1+1/α (s) ds > η >
1

(α + 1)
1+1/α . (3.11)
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Substituting (3.10) in (3.11) yields

w (ι)
K Ψ (ι)

≥ α η
(
λ1+1/α

)
+ 1.

i.e.,

λ ≥ α η λ1+1/α + 1 >
α
(
λ1+1/α

)
(α + 1)

1+1/α + 1.

Hence,
1
α + 1

+
1
α + 1

α

(α + 1)
1+1/α λ

1+1/α −
1
α + 1

λ < 0.

Set
g (x) =

1
α + 1

+
1
α + 1

x1+1/α − x.

This contradicts the fact that g (x) > 0 for all x > 0, which completes the proof. □

Corollary 3.1. If either

∫ ∞

ι0

Ωα (ι, c)
sα

(∫ d

c
h (ι, ϑ) dϑ

)
ds = ∞ (3.12)

or ∫ ∞

ι0

Ψ (s)1+1/α Γ (s) ds = ∞ (3.13)

is satisfied, then Eq (1.3) has property (A).

Proof. Assume that Eq (1.3) satisfies Case (2.3). Similar to the proof of Theorem 3.1, we obtain (3.9),
which contradicts (3.12). Using (3.9) and w(ι) − K Ψ(ι) > 0, we obtain

w (ι1) ≥ K
(
Ψ (ι1) + K1+1/α

∫ ∞

ι1

αΨ1+1/α (s)Γ (s) ds
)
,

which contradicts (3.13). □

Theorem 3.2. Assume that Eq (1.3) has property (A). If

∫ ∞

ι0

∫ ∞

v
ν−1/α (u)

(∫ ∞

u

(∫ d

c
h (ι, ϑ) dϑ

)
ds

)1/α

du dv = ∞, (3.14)

then every nonoscillatory solution ρ(ι) of Eq (1.3) tends to zero as ι→ ∞.

Proof. Let ρ be a solution of Eq (1.3) such ρ(ι) satisfies Case (2.2). Therefore, lim
ι→∞
ρ(ι) = l ≥ 0. If

l , 0, then l is positive, and ρ(Ω (ι, s)) > l. Integrating (3.3) yields

ν (ι)
(
ρ′′ (ι)

)α
≥ δ

∫ ∞

ι

(∫ d

c
h (ι, ϑ) dϑ

)
ρα(Ω (ι, s))ds

≥ δ lα
∫ ∞

ι

(∫ d

c
h (ι, ϑ) dϑ

)
ds, (3.15)
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which implies that (3.15) becomes

ρ′′ (ι) ≥
δl

ν
1
α (ι)

(∫ ∞

ι

(∫ d

c
h (ι, ϑ) dϑ

)
ds

) 1
α

. (3.16)

By integrating (3.16), we obtain

−ρ′ (ι) ≥ δ l
∫ ∞

ι

1
ν1/α (u)

(∫ ∞

u

(∫ d

c
h (ι, ϑ) dϑ

)
ds

)1/α

du.

Integrating again from ι1 to∞ implies

ρ (ι1) ≥ δ l
∫ ∞

ι1

∫ ∞

v

1
ν1/α (u)

(∫ ∞

u

(∫ d

c
h (ι, ϑ) dϑ

)
ds

)1/α

dudv,

which contradicts (3.14). Thus, lim
ι→∞
ρ(ι) = 0. □

Definition 3.1. Let A0 (ι) = K Ψ (ι) , K ∈ (0, 1) and for each γ = 0, 1, 2, ...

Aγ+1 (ι) = A0 (ι) + αK
∫ ∞

ι

A1+1/α
γ (s)Γ (s) ds. (3.17)

Theorem 3.3. If there exists some Aγ(ι) such that∫ ∞

ι0

(∫ d

c
h (ι, ϑ) dϑ

)
Ωα (ι, c)
ια

(
eαK

∫ ι
ι0
Γ(s)A1/α

γ (s)ds
)

dι = ∞ for some K ∈ (0, 1), (3.18)

then Eq (1.3) has property (A).

Proof. Let ρ > 0 a solution of Eq (1.3) and satisfy Case (2.3). Similar to the proof of Theorem 3.1, we
obtain (3.9). By using (3.9) and definition of A0(ι), we have w(ι) ≥ A0(ι). Thus,

A1 (ι) = A0 (ι) + αK
∫ ∞

ι

A1+1/α
0 (s)Γ (s) ds

≤ A0 (ι) + αK
∫ ∞

ι

w1+1/α (s)Γ (s) ds ≤ w (ι) .

By induction, the sequence
{
Aγ (ι)

}∞
γ=0

is nondecreasing and w(ι) − Aγ(ι) ≥ 0. So, {Aγ(ι)}∞γ=0 tends to
A(ι). Let γ → ∞. By Lebesgue monotone theorem, the equation in (3.17) implies

A (ι) = A0 (ι) + αK
∫ ∞

ι

Γ (s) A1+1/α (s) ds.

Taking into account A(ι) − Aγ(ι) ≥ 0, we obtain

A′ (ι) ≤ −δK
(
Ω (ι, c)
ι

)α (∫ d

c
h (ι, ϑ) dϑ

)
− αKA (ι) A1/α

γ (ι)Γ (ι) , for ι ≥ ι1.
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i.e., (
A (ι)

(
eαK

∫ ι
ι1
Γ(s)A1/α

γ (s)ds
))′
≤ −
δKΩα (ι, c)
ια

(∫ d

c
h (ι, ϑ) dϑ

) (
eαK

∫ ι
ι1
Γ(s)A1/α

γ (s)ds
)
.

Integrating from ι1 to ι, we get

0 ≤ A (ι)
(
eαK

∫ ι
ι1

A1/α
γ (s)Γ(s)ds

)
≤ A (ι1) − δK

∫ ι

ι1

Ωα (ι, c)
uα

(∫ d

c
h (ι, ϑ) dϑ

) (
eαK

∫ u
ι1
Γ(s)A1/α

γ (s)ds
)

du,

which implies that

K
∫ ι

ι1

Ωα (ι, c)
uα

(∫ d

c
h (ι, ϑ) dϑ

) (
eαK

∫ u
ι1
Γ(s)A1/α

γ (s)ds
)

du ≤
A (ι1)
δ
,

which contradict the assumption. □

Theorem 3.4. If there exists some Aγ(ι) such that

lim sup
ι→∞

(∫ ι

ι1

(Γ (s) − Γ (ι1)) ds
)α

Aγ (ι) > 1, (3.19)

then Eq (1.3) has property (A).

Proof. Let ρ (ι) be a solution of Eq (1.3) and ρ(ι) > 0 satisfies Case (2.3). By (3.8), since ι < Ω (ι, s),
we have

ρ (ι) ≥ ν
1
α (ι) ρ′′ (ι)

∫ ι

ι1

∫ u

ι1

ν−1/α (s) dsdu. (3.20)

Combining (3.5) with (3.20) yields

1
w (ι)

=
ρα (ι)

ν (ι) (ρ′′ (ι))α
≥

(∫ ι

ι1

Γ (s) − Γ (ι1) ds
)α
.

Therefore, (∫ ι

ι1

(Γ (s) − Γ (ι1)) ds
)α

Aγ (ι) ≤
(∫ ι

ι1

(Γ (s) − Γ (ι1)) ds
)α

w (ι) ≤ 1,

which contradicts the assumption (3.19). □

Remark 3.1. Note that since the sequence {Aγ(ι)}∞γ=0 is increasing, the greater value of γ in (3.18)
and (3.19), the better criteria is obtained.

The following result is obtained by letting γ = 0 and γ = 1 in Theorem 3.4.

Corollary 3.2. If either
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lim sup
ι→∞

(∫ ι

t1
Γ (s) − Γ (ι1) ds

)α ∫ ∞

ι

Ωα (ι, s)
sα

(∫ d

c
h (ι, ϑ) dϑ

)
ds > 1 (3.21)

or

lim sup
ι→∞

(∫ ι

ι1

Γ (s) − Γ (ι1) ds
)α Ψ (ι) + α

(
Ω0ς0

ς0 + pα0

)1/α ∫ ∞

ι

Ψ1+1/α (s)Γ (s) ds
 > 1, (3.22)

then Eq (1.3) has property (A).
By summarizing the results of this section, we obtain criteria that ensure that every solution of

Eq (1.3) is either oscillatory or tends to zero.

Theorem 3.5. Assume that Eq (3.14) holds. If one the Eqs (3.2), (3.12) or (3.13) is satisfied, then every
solution of Eq (1.3) oscillates or converges to zero.

Theorem 3.6. Assume that Eq (3.14) holds. If there exists some Aγ(ι) such that one of the
Eqs (3.18), (3.19), (3.21) or (3.22) is satisfied, then every solution of Eq (1.3) oscillates or converges
to zero.

4. Examples and comments

Example 4.1. Consider the following advanced differential equation

(
ι
(
ρ′′ (ι)

)3
)′
+

∫ 1

0

β

s6ρ
3 (λs) ds = 0, β > 0, λ ∈ [1,∞), ι ≥ 1. (4.1)

It is in the form of Eq (1.3) with ν (ι) = ι, f (ρ) = ρ3, h (ι, s) = β

s6 ,Ω (ι, s) = λs, α = 3, c = 0, d = 1.
Using Eq (3.1) to compute Ψ(ι) and Γ(ι) with δ = 1, ι1 = 0, we obtain

Ψ (ι) =
λ3β

5ι5
and Γ(ι) =

3 ι2/3

2
.

By Theorem 3.1, Eq (4.1) has property (A) if

β >

(
2
3

)3 (
5
4

)4 1
λ3 .

By Theorem 3.2, the equation in (3.14) holds. Therefore, every nonoscillatory solution ρ(ι) of Eq (4.1)
tends to zero as ι→ ∞.

Example 4.2. Consider the advanced differential equation

(
ι
(
ρ′′ (ι)

)3
)′
+

∫ 1

0

β

s9ρ
3
(
s2

)
ds = 0, β > 0, ι ≥ 1. (4.2)

It is in the form of Eq (1.3) with ν (ι) = ι, f (ρ) = ρ3, h (ι, s) = β

s9 ,Ω (ι, s) = s2, α = 3, c = 0, d = 1.
Similar to the previous example, we compute Ψ(ι) and Γ(ι) with δ = 1, ι1 = 0, to obtain

Ψ (ι) =
β

5ι5
and Γ(ι) =

3 ι2/3

2
.
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By Theorem 3.1, Eq (4.2) has property (A) if

β >

(
2
3

)3 (
5
4

)4

.

Example 4.3. Consider the equation

(
ι2

(
ρ′′ (ι)

)3
)′
+

∫ 1

0

β

s5ρ
3 (λs) ds = 0, β > 0, λ ∈ [1,∞), ι ≥ 1. (4.3)

It is an advanced differential equation in the form of Eq (1.3) with ν (ι) = ι2, f (ρ) = ρ3, h (ι, s) =
β

s5 ,Ω (ι, s) = λs, α = 3, c = 0, d = 1. Computing Ψ(ι) and Γ(ι) with δ = 1, ι1 = 0, we obtain

Ψ (ι) =
λ3β

4ι4
and Γ(ι) = 3 ι1/3.

By Corollary 3.2, Eq (4.3) has property (A) if

β >
44

93

1
λ3 , (4.4)

since this implies
93

44λ
3β > 1 −

94

416/3λ
4β4/3, (4.5)

then Eq (3.14) holds. Therefore, by Theorem 3.2, every nonoscillatory solution ρ(ι) of Eq (4.3) tends
to zero as ι→ ∞.

Example 4.4. Consider the advanced differential equation of the form

(
ιa |ρ′′ (ι)|α−1 ρ′′ (ι)

)′
+

∫ 1

0

β

sb

∣∣∣ρ (st)∣∣∣α−1
ρ
(
st) = 0, ι ≥ 1, (4.6)

where 0 < a < α, b, β > 0, t ≥ 1. It is in the form of Eq (1.4) with ν (ι) = ιa, h (ι, s) = β

sb ,Ω (ι, s) =
st, c = 0, d = 1.

Computing Ψ(ι) and Γ(ι) with δ = 1, ι1 = 0, we obtain

Ψ (ι) = βsαt−α−b+1 (αt − α − b + 1)−1
∣∣∣∞
ι

and Γ(ι) =
ι1−

a
α

1 − a
α

.

Therefore, Eq (4.6) has property (A) if one of the following conditions holds

- 1 − α ≥ b − αt (by Corollary 3.1) or

- 1 − α < b − αt and 1
α
− α + 1 ≥ a

α+2 +
(

1
α
− 1

)
b − αt (by Corollary 3.2) or

- 1−α < b−αt, 1
α
−α+1 < a

α+2+
(

1
α
− 1

)
b−αt 1

α
+1 = a

α
+ b
α
−t and 1

(α−a)(b+α−αt−1)1+1/α >
1

αβ1/α(α+1)1+1/α

(by Theorem 3.1).
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5. Conclusions

In this work, we classified the positive solutions of the equation in 1.3 according to the sign of its
derivatives and studied some properties of these solutions. Using these properties, we found different
conditions that ensure that Eq (1.3) satisfies the property (A). We also established condition 3.14 to
guarantee every nonoscillatory solutions tends to zero as ι→ ∞. Finally, we obtained new criteria that
guarantee the solutions of (1.3) are either oscillatory or converge to zero. We hope this work inspire
other researchers to extend the results to the following advanced differential equation:

(
ν1 (ι)

(
ν2 (ι)

(
ρ′′ (ι)

)α))′
+

∫ d

c
h (ι, s) f (ρ (Ω (ι, s))) ds = 0, ι ≥ ι0 > 0.
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