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Abstract: Probabilistic group theory is concerned with the probability of group elements or group
subgroups satisfying certain conditions. On the other hand, a polygroup is a generalization of a group
and a special case of a hypergroup. This paper generalizes probabilistic group theory to probabilistic
polygroup theory. In this regard, we extend the concept of the subgroup commutativity degree of a
finite group to the subpolygroup commutativity degree of a finite polygroup P. The latter measures
the probability of two random subpolygroups H,K of P commuting (i.e., HK = KH). First, using
the subgroup commutativity table and the subpolygroup commutativity table, we present some results
related to the new defined concept for groups and for polygroups. We then consider the special case of
a polygroup associated to a group. We study the subpolygroup lattice and relate this to the subgroup
lattice of the base group; this includes deriving an explicit formula for the subpolygroup commutativity
degree in terms of the subgroup commutativity degree. Finally, we illustrate our results via non-trivial
examples by applying the formulas that we prove to the associated polygroups of some well-known
groups such as the dihedral group and the symmetric group.
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1. Introduction

Probability in finite groups has grabbed the interest of algebraists in the last few years. One
of the concepts that have been studied is the probability that two group elements of a finite group
G commute [17], denoted by d(G). Another concept [10] is the relative commutativity degree of
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a subgroup H of a finite group G, denoted by d(H,G). The latter measures the probability that
an element of the subgroup H commutes with an element of the group G. Furthermore, subgroup
commutativity degree of a finite group G [21] measures the probability of two random subgroups of
G commuting. Other related work can be found in [7, 12, 13], and a survey on statistical group theory
can be found in [8]. On the other hand, hypergroup theory, a generalization of group theory, is a field
that was introduced by Marty [14] in 1934. Special classes of hypergroups are canonical hypergroups,
introduced in 1970 [15,16], and quasi-canonical hypergroups, introduced in 1981 [3,4]. The latter was
studied by Comer [5] in 1984 under the name polygroup. For details about hyperstructure theory and
its applications, we refer to [6, 9]. Researchers involved in this field try to check the validity of the
known results in group theory for hypergroups. Indeed, some generalizations have been accomplished,
but the fact that the class of hypergroups is much larger than that of groups makes it more difficult to
generalize many conceptsRecently, there has been a growing interest in the use of probability in finite
polygroup theory. Some related concepts were introduced such as the commutativity degree of finite
polygroups, and some related work can be found in [18–20].

Inspired by the subgroup commutativity degree of a finite group G, our paper generalizes this
concept to finite polygroups, and it is organized as follows: After an introduction, Section 2 presents
some results related to the subgroup commutativity degree of finite groups. Then, Section 3 presents
some results on the subpolygroups lattice of a particular class of polygroups. Finally, Section 4 defines
the subpolygroup commutativity degree of a finite polygroup and presents some related results and
examples by using the subpolygroup commutativity table. Moreover, it considers a special class of
polygroups and finds an explicit formula for the subpolygroup commutativity degree of these.

2. Subgroup commutativity degrees of finite groups

In [21], Tarnauceanu defined the subgroup commutativity degree of finite groups and found explicit
formulas for the subgroup commutativity degrees of some special finite groups. In this section, we
present some of their results and discuss some other related results.

Definition 2.1. Let (G, ·) be a finite group and L(G) be the set of all subgroups of G. Then, the subgroup
commutativity degree of G is defined as follows:

sd(G) =
|{(H,K) ∈ L(G)2 : HK = KH}|

|L(G)|2
.

Remark 1. If all subgroups of G are normal, for instance, if G is abelian or if G is the quaternion
group Q8, then sd(G) = 1.

Remark 2. Let (G, ·) be a finite group. Then, 0 < sd(G) ≤ 1.

Definition 2.2. Let k be a positive integer and (G, ·) be a finite group with distinct subgroups
H1, . . . ,Hk. Then, the subgroup commutativity table of G is defined in Table 1.
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Table 1. Subgroup commutativity table of G.

· H1 H2 . . . Hk

H1 H11 H12 . . . H1k

H2 H21 H22 . . . H2k
...

...
...

...
...

Hk Hk1 Hk2 . . . Hkk

Here, for all 1 ≤ i, j ≤ k, Hi j =

1 if Hi · H j = H j · Hi,

0 otherwise.

Remark 3. Let (G, ·) be a finite group with subgroup commutativity table (Hi j). Then,

sd(G) =

k∑
j=1

k∑
i=1

Hi j

|L(G)|2
.

Example 1. Let S 3 be the symmetric group on three letters. Then, the subgroup commutativity table
of S 3 is given in Table 2.

Table 2. Subgroup commutativity table of S 3.

{(1)} {(1), (12)} {(1), (13)} {(1), (23)} {(1), (123), (132)} S 3

{(1)} 1 1 1 1 1 1
{(1), (12)} 1 1 0 0 1 1
{(1), (13)} 1 0 1 0 1 1
{(1), (23)} 1 0 0 1 1 1
{(1), (123), (132)} 1 1 1 1 1 1
S 3 1 1 1 1 1 1

It is clear that sd(S 3) = 5
6 .

Proposition 2.1. Let (G, ·) be a finite group. Then, sd(G) = 1, or sd(G) ≥ 9
|L(G)|2 .

Proof. Let G be a finite group with identity e and M(G) = {(H,K) ∈ L(G)2 : HK = KH}. We consider
the following cases.

If G is the trivial group, or G has no proper non-trivial subgroups, then sd(G) = 1. If G has a proper
non-trivial subgroup H, then ({e}, {e}), ({e},H), ({e},G), (H, {e}), (H,H), (H,G), (G, {e}), (G,H), and
(G,G) are all in M(G). Thus, |M(G)| ≥ 9, and hence, sd(G) =

|M(G)|
|L(G)|2 ≥

9
|L(G)|2 . �

Example 2. Let S 3 be the symmetric group on three letters. Then, sd(S 3) = 5
6 ≥

9
36 = 9

|L(S 3)|2 .
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Proposition 2.2. Let (G, ·) be a finite group and R be the relation on G defined as follows:

HRK if and only if HK = KH.

Then, R is a reflexive and symmetric relation.

Proof. The proof is straightforward by using the subgroup commutativity table of (G, ·) . �

Theorem 2.1. [21] Let G,G′ be finite groups with coprime orders. Then,

sd(G ×G′) = sd(G)sd(G′).

The dihedral group Dn is the symmetry group of a regular polygon with n sides. and it has the
order 2n. The generalized quaternion group Q2m can be expressed via the following presentation:

Q2m = 〈x, y : x2m−1
= y4 = 1, yxy−1 = x2m−1−1〉.

The quasi-dihedral group S 2m with m ≥ 4 can be expressed via the following presentation:

S 2m = 〈x, y : x2m−1
= y2 = 1, y−1xy = x2m−2−1〉.

In [21], Tarnauceanu found explicit formulas for the subgroup commutativity degrees of some finite
groups such as the dihedral group, quasi-dihedral group, and generalized quaternion group. Let n ≥ 2
be a positive integer and n = pα1

1 . . . pαk
k be the decomposition of n as a product of prime factors. Then,

τ(n), σ(n) are the number and the sum of all divisors of n, respectivelym and

g(n) =

k∏
i=1

(2αi + 1)pαi+2
i − (2αi + 3)pαi+1

i + pi + 1
(pi − 1)2 .

Theorem 2.2. [21] Let Dn be as above and n = 2αn′ with n′ odd. Thenm

sd(Dn) =
τ(n)2 + 2τ(n)σ(n) + [(α − 1)2α+3 + 9]g(n′)

(τ(n) + σ(n))2 .

Example 3. Let D4,D6 be the symmetry groups of regular polygons with 4, 6 sides, respectively. Then,
sd(D4) = 22

25 and sd(D6) = 101
128 .

Theorem 2.3. [21] Let D2m−1 , Q2m , and S 2m be as above. Then,

sd(D2m−1) =
(m − 2)2m+2 + m2m+1 + (m − 1)2 + 8

(m − 1 + 2m)2 , m ≥ 2,

sd(Q2m) =
(m − 3)2m+1 + m2m + (m − 1)2 + 8

(m − 1 + 2m−1)2 , m ≥ 2,

sd(S 2m) =
(m − 3)2m+1 + m2m + (3m − 2)2m−1 + (m − 1)2 + 8

(m − 1 + 3 · 2m−2)2 , m ≥ 4.

In particular, limm→∞ sd(D2m−1) = limm→∞ sd(Q2m) = limm→∞ sd(S 2m) = 0.
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3. Subpolygroup lattice of polygroups

In this section, we present some basic results and examples related to polygroup theory that are used
throughout the paper. Moreover, we study the subpolygroup lattice for a particular class of polygroups.

3.1. Polygroups

Let P be a non-empty set and P∗(P) be the family of all non-empty subsets of P. A binary
hyperoperation on P is a mapping ◦ : P × P→ P∗(P). The couple (P, ◦) is called a hypergroupoid.

In the above definition, if H and K are two non-empty subsets of P and p ∈ P, then we define:

H ◦ K =
⋃

h∈H
k∈K

h ◦ k, p ◦ H = {p} ◦ H and H ◦ p = H ◦ {p}.

Definition 3.1. [5] A polygroup is a system 〈P, ·, e,−1 〉, where (P, ·) is a hypergroupoid, e ∈ P, −1 :
P→ P is a unary operation on P, and the following axioms hold for all x, y, z ∈ P:

(1) (x · y) · z = x · (y · z),
(2) e · x = x · e = {x},
(3) x ∈ y · z implies y ∈ x · z−1 and z ∈ y−1 · x.

For simplicity, we write x instead of {x} for all x in the polygroup 〈P, ·, e,−1 〉.
A canonical hypergroup 〈P, ·, e,−1 〉 is a commutative polygroup, i.e., x · y = y · x for all x, y ∈ P. For

more details, we refer to [15, 16].

Example 4. Let P = {m0,m1,m2} and (P, ◦) be defined by Table 3.

Table 3. The canonical hypergroup (P, ◦).

◦ m0 m1 m2

m0 m0 m1 m2

m1 m1 {m0,m2} {m1,m2}

m2 m2 {m1,m2} {m0,m1}

The identity under ◦ is n0, and x−1 = x for all x ∈ P. Then, 〈P, ◦,m0,
−1 〉 is a canonical hypergroup.

Example 5. [11] Let P′ = {n0, n1, n2, n3} and (P′, ·) be defined by Table 4.

Table 4. The polygroup (P′, ·).

· n0 n1 n2 n3

n0 n0 n1 n2 n3

n1 n1 n1 P′ n3

n2 n2 {n0, n1, n2} n2 {n2, n3}

n3 n3 {n1, n3} n3 P′

Then, 〈P′, ·, n0,
−1 〉 is a non-canonical hypergroup.
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Remark 4. Every group is a polygroup.

Let 〈P, ◦, e,−1 〉 be a polygroup and H ⊆ P. Then, H is a subpolygroup of P if for all x, y ∈ H, we
have x ◦ y ⊆ H and x−1 ∈ H.

Example 6. Let 〈P′, ·, n0,
−1 〉 be the polygroup in Example 5. Then, {n0} and P′ are the only

subpolygroups of P′, i.e., P′ has no non-trivial proper subpolygroups.

In [11], Jafarpour et al. described a method to get a polygroup from a group. Let (G, ·) be a group,
a < G, and PG = G ∪ {a}. Define “◦” on PG as follows:

(1) a ◦ a = e;
(2) e ◦ x = x ◦ e = x for all x ∈ PG;
(3) a ◦ x = x ◦ a = x for all x ∈ PG − {e, a};
(4) x ◦ y = x · y for all x, y ∈ G with y , x−1;
(5) x ◦ x−1 = {e, a} for all x ∈ PG − {e, a}.

Proposition 3.1. [11] If (G, ·) is a group, then 〈PG, ◦, e,−1 〉 is a polygroup where e and −1 are the
identity and inversion operations of G, respectively.

Example 7. Let (Z3,+) be the group of integers modulo 3 under standard addition modulo 3. Then.
〈PZ3 , ◦, 0,

−1 ) is a polygroup, and it is given by Table 5.

Table 5. The associated polygroup 〈PZ3 , ◦, 0,
−1 〉.

◦ 0 1 2 a
0 0 1 2 a
1 1 2 {0, a} 1
2 2 {0, a} 1 2
a a 1 2 0

Definition 3.2. [9] Let 〈P1, ·1, e1,
−1 〉, 〈P2, ·2, e2,

−1 〉 be polygroups and ψ : P1 → P2 be a function.
Then,

(1) ψ is a homomorphism if ψ(x ·1 y) ⊆ ψ(x) ·2 ψ(y) for all x, y ∈ P1, and ψ is a strong homomorphism
if all these containments are equalities.

(2) ψ is an isomorphism if it is a bijective strong homomorphism. In this case, we say that P1 and P2

are isomorphic polygroups.

3.2. Subpolygroup lattice of PG

We classify the subpolygroup lattice of PG in relation to the subgroup lattice of G.

Theorem 3.1. Let (G, ·) be a group, PG be its associated polygroup, and ∅ , N ⊆ PG. Then, N is a
subpolygroup of PG if and only if N = {e} or N = PS for some subgroup S of G.
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Proof. Let S be a subgroup of G. Having e ∈ S implies that e ∈ PS , and hence, PS , ∅. Let x ∈ PS .
Then,

x−1 =

a, if x = a,
x−1, if x ∈ S ,

∈ PS .

For x, y ∈ PS , we have

x ◦ y =



xy, if x, y ∈ S and y , x−1,
x, if y = a and x ∈ S ,
y, if x = a and y ∈ S ,
e, if x = y = a,
{e, a}, if x, y ∈ S and y = x−1,

⊆ PS .

Thus, PS is a subpolygroup of PG.
Conversely, let N , {e} be a subpolygroup of PG. Then, there exists x , e ∈ N. Since N is a

subpolygroup of PG, it follows that x−1 ∈ N, and hence, x ◦ x−1 =

{e, a}, if x , a,
{a}, otherwise,

⊆ N. Having

a ∈ N implies that we can write N = S ∪ {a} (with a < S ). We need to show that S is a subgroup
of G. Let x ∈ S . Then, x , a ∈ N, and hence, x−1 , a ∈ N. Thus, x−1 ∈ S . Let x, y ∈ S . Then,

x ◦ y =

xy , a, if y , x−1,
{e, a}, otherwise,

⊆ N. Thus, xy ∈ S . �

Corollary 3.1. Let n be a positive integer, (Zn,+) be the group of integers modulo n under standard
addition of integers modulo n, and S be a subpolygroup of the polygroup PZn . Then, S = {0} or S = P〈k〉
for integers k that are divisors of n.

Theorem 3.1 is important to construct the subpolygroup lattice of the associated polygroup PG.

Example 8. Let (Z6,+) be the group of integers modulo 6 under standard addition modulo 6 and
PZ6 be its associated polygroup. Then, the subgroup lattice of Z6 is presented in Figure 1, and the
subpolygroup lattice of PZ6 is presented in Figure 2.

〈0〉

〈2〉 〈3〉

Z6

Figure 1. The subgroup lattice of the group (Z6,+).
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P〈0〉

P〈2〉 P〈3〉

PZ6

{0}

Figure 2. The subpolygroup lattice of the polygroup PZ6 .

Notation 1. For a group G and a polygroup P, L(G), L(P) denote the sets of subgroups of G and
subpolygroups of P, respectively, and |L(G)|, |L(P)| are their cardinalities.

Corollary 3.2. Let (G, ·) be a finite group and 〈PG, ◦, e,−1 〉 its associated polygroup. Then, |L(PG)| =
|L(G)| + 1.

Lemma 3.1. Let (G, ·) be a group with subgroups H and K and 〈PG, ◦, e,−1 〉 be the associated
polygroup. Then, HK = KH if and only if PH ◦ PK = PK ◦ PH.

Proof. Let HK = KH. If PH ◦ PK = (H ∪ {a}) ◦ (K ∪ {a}) = HK ∪ {a} and HK = KH then
PH ◦ PK = KH ∪ {a} = PK ◦ PH. Similarly, if PH ◦ PK = PK ◦ PH, then HK = KH. �

Corollary 3.3. Let (G, ·) be a group with subgroups H and K and 〈PG, ◦, e,−1 〉 be the associated
polygroup. Then, HK ∈ L(G) if and only if PH ◦ PK ∈ L(PG).

Proof. This follows from Lemma 3.1. �

A lattice L is called modular if, for any x, y, z ∈ L with x ≤ y, x∨(y∧z) = y∧(x∨z). For more details
about lattice theory, we refer to [2]. We prove that under a certain condition, the lattice subpolygroup
of the associated polygroup is modular.

Lemma 3.2. Let (G, ·) be a group and 〈PG, ◦, e,−1 〉 be its associated polygroup. If HK = KH for all
subgroups H,K of G, then (L(PG) ,∧,∨) is a lattice associated to PG. Here,

PHi ∧ PH j = PHi ∩ PH j ,

PHi ∨ PH j = PHi ◦ PH j , i, j ∈ {1, ..., |L(G)|}.

Proof. It is clear that PHi ∩ PH j ∈ L(PG). Corollary 3.3 implies that HiH j ∈ L(G) if and only if
PHi ◦ PH j ∈ L(PG). We need to prove that PHi ∪ PH j ⊆ PHi ◦ PH j . Let x ∈ PHi ∪ PH j . Without loss of
generality, we suppose that x ∈ PHi . Having e ∈ PH j , for any j ∈ {1, ..., |L(G)|} implies that x = x ◦ e ⊆
PHi ◦ PH j . Now, we show that PHi ◦ PH j is the smallest polygroup which contains the subpolygroups
PHi and PH j . Let PHk ∈ L(PG) such that PHi ⊆ PHk and PH j ⊆ PHk . So, PHi ◦ PH j ⊆ PHk ◦ PHk = PHk .
Therefore, (L(PG) ,∧,∨) is a lattice associated to PG. �
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Theorem 3.2. Let (G, ·) be a group and 〈PG, ◦, e,−1 〉 its associated polygroup. If HK = KH for all
subgroups H,K of G then (L(PG) ,∧,∨) is a modular lattice associated to PG.

Proof. Let PHi , PH j , PHk ∈ L(PG), where i, j, k ∈ {1, ..., |L(G)|} such that PH j ⊆ PHi . Any lattice satisfies
the modularity inequality:

PH j ∨
(
PHi ∧ PH j

)
⊆ PHi ∧ (PH j ∨ PHk).

We show that PHi ∧ (PH j ∨PHk) ⊆ PH j ∨
(
PHi ∧ PH j

)
. Let x ∈ PHi ∧

(
PH j ∨ PHk

)
. Having x ∈ PHi and x ∈

PH j ◦ PHk implies that there exist y ∈ PH j , z ∈ PHk such that x ∈ y ◦ z. The latter implies that z ∈ y−1 ◦ x.
Having y−1 ∈ PH j implies that

z ∈ y−1 ◦ x ⊆ PH j ◦ PHi ⊆ PHi ◦ PHi = PHi (because PH j ⊆ PHi).

Having z ∈ PHk and z ∈ PHi implies that x ∈ y ◦ z ⊆ PH j ◦
(
PHi ∩ PH j

)
, and hence, PHi ∧ (PH j ∨ PHk) ⊆

PH j ∨
(
PHi ∧ PH j

)
for any PHi , PH j , PHk ∈ L(PG). �

Lemma 3.3. Let G,G′ be any finite non-trivial groups with identities e, e′, respectively. Introduce
elements a, b such that {a, b} ∩ (G ∪ G′) = ∅ and PG = G ∪ {a}, PG′ = G′ ∪ {b}. Then, A1 = {(e, e′)},
A2 = {(e, e′), (a, b)}, A3 = {e} × PS ′ (where S ′ is a subgroup of G′), A4 = PS × {e′} (where S is a
subgroup of G), A5 = PS × PS ′ (where S , S ′ are subgroups of G,G′ respectively) are subpolygroups of
PG × PG′ .

Proof. The proof is straightforward. �

In group theory, it is well known that if G and G′ are finite groups with coprime orders and A is a
subgroup of G × G′ then there exist subgroups S , S ′ of G,G′ respectively such that A = S × S ′. This
fact from group theory may not hold for polygroups. We illustrate this remark via Example 9.

Example 9. Let G,G′ be any non-trivial groups with identities e, e′ respectively. Introduce elements
a, b such that {a, b} ∩ (G ∪ G′) = ∅ and PG = G ∪ {a}, PG′ = G′ ∪ {b}. Then, M = {(e, e′), (a, b)},
represented by Table 6, is a subpolygroup of PG × PG′ .

Table 6. M = {(e, e′), (a, b)}.

? (e, e′) (a, b)
(e, e′) (e, e′) (a, b)
(a, b) (a, b) (e, e′)

It is clear that M can not be written as a Cartesian product of two subpolygroups.

4. Subpolygroup commutativity degree of finite polygroups

In this section, inspired by the definition of the subgroup commutativity degree of finite groups [21],
we define the subpolygroup commutativity degree of finite polygroups. First, we present some general
results. Then, we make a complete study on special polygroups that are associated to finite groups.
We find an explicit formula for the subpolygroup commutativity degree of these polygroups, and we
present some interesting results.
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Definition 4.1. [1] Let 〈P, ·, e,−1 〉 be a finite polygroup. Then,

sd(P) =
|{(H,K) ∈ L(P)2 : H · K = K · H}|

|L(P)|2
.

It is clear that 0 < sd(P) ≤ 1.

Remark 5. Let 〈P, ·, e,−1 〉 be a finite polygroup. Then, sd(P) = 1 if P is commutative, or every two
subpolygroups commute.

Example 10. Let 〈P′, ·, n0,
−1 〉 be the non-canonical hypergroup in Example 5. Since {n0}, P′ are the

only subpolygroups of P′, it follows that sd(P′) = 1.

Proposition 4.1. Let 〈P, ·, e,−1 〉 be a polygroup and H,K be subpolygroups of P. If H ·K = K ·H, then
H · K ∈ L(P).

Proof. The proof is straightforward. �

Proposition 4.2. Let 〈P, ·, e,−1 〉 be a finite polygroup. Then, sd(P) = 1 or sd(P) ≥ 9
|L(P)|2 .

Proof. The proof is similar to that of Proposition 2.1. �

Corollary 4.1. Let 〈P, ·, e,−1 〉 be a finite polygroup. Then, the following statements hold.

(1) If |L(P)| ≤ 3, then sd(P) = 1.
(2) If |L(P)| ≤ 9, then sd(P) ≥ 1

2 .

Proof. This follows from Proposition 4.2. �

Proposition 4.3. Let 〈P1, ·1, e1,
−1 〉 and 〈P2, ·2, e2,

−1 〉 be isomorphic finite polygroups. Then, sd(P1) =

sd(P2).

Proof. The proof is straightforward. �

Remark 6. The converse of Proposition 4.3 may not hold. The polygroups in Examples 4 and 5
have the same subpolygroup commutativity degree (which is equal to 1), but they are non-isomorphic
polygroups.

Definition 4.2. Let 〈P, ·, e,−1 〉 be a finite polygroup with distinct subpolygroups H1, . . . ,Hk where k is
a positive integer. Then, the subpolygroup commutativity table of P is defined via Table 7.

Table 7. Subpolygroup commutativity table of P.

· H1 H2 . . . Hk

H1 H11 H12 . . . H1k

H2 H21 H22 . . . H2k
...

...
...

...
...

Hk Hk1 Hk2 . . . Hkk

Here for all 1 ≤ i, j ≤ k, Hi j =

1, if Hi · H j = H j · Hi,

0, otherwise.
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Remark 7. Let 〈P, ·, e,−1 〉 be a finite polygroup with subpolygroup commutativity table (Hi j). Then,

sd(P) =

k∑
j=1

k∑
i=1

Hi j

|L(P)|2
.

Example 11. Let S 3 be the symmetric group on three letters and PS 3 be its associated polygroup. Then,
the subpolygroup commutativity table of PS 3 is given in Table 8.

Table 8. Subpolygroup commutativity table of PS 3 .

◦ {(1)} P{(1)} P{(1),(12)} P{(1),(13)} P{(1),(23)} P{(1),(123),(132)} PS 3

{(1)} 1 1 1 1 1 1 1
P{(1)} 1 1 1 1 1 1 1
P{(1),(12)} 1 1 1 0 0 1 1
P{(1),(13)} 1 1 0 1 0 1 1
P{(1),(23)} 1 1 0 0 1 1 1
P{(1),(123),(132)} 1 1 1 1 1 1 1
PS 3 1 1 1 1 1 1 1

It is clear that sd(PS 3) = 43
49 .

Proposition 4.4. Let 〈P, ·, e,−1 〉 be a finite polygroup. Then, sd(P) ≥ 5|L(P)|−6
|L(P)|2 .

Proof. Using the subpolygroup commutativity table, the first row and column, the last row and column
and the diagonal are entirely 1’s. So, we have at least 5|L(P)|−6 of 1’s after removing the repetitive 1’s.
Therefore, sd(P) ≥ 5|L(P)|−6

|L(P)|2 . �

Next, we find a formula for the subpolygroup commutativity degree of the polygroup PG associated
to a finite group G.

Theorem 4.1. Let (G, ·) be a finite group and PG be its associated polygroup. Then,

sd(PG) =
|L(G)|2sd(G) + 2|L(G)| + 1

(|L(G)| + 1)2 .

Proof. We have sd(PG) =
|M(PG)|
|L(PG)|2 where M(PG) = {(A, B) ∈ L2(PG) : A ◦ B = B ◦ A} and |L(PG)| =

|L(G)| + 1. Lemma 3.1 implies that M(PG) = M0 ∪ M1 ∪ M2 where M0 = {(A, {e}) : A ∈ L(PG)},
M1 = {({e}, A) : A ∈ L(PG)} and M2 = {(PH, PK) : HK = KH}. Having |M0| = |M1| = |L(G)| + 1,
M0 ∩ M1 = {(e, e)}, M0 ∩ M2 = M1 ∩ M2 = ∅, and |M2| = |L(G)|2sd(G) imply that

sd(PG) =
|L(G)|2sd(G) + 2|L(G)| + 1

(|L(G)| + 1)2 .

�
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Example 12. Let S 3 be the symmetric group on three letters and PS 3 be its associated polygroup.
Having sd(S 3) = 5

6 and |L(S 3)| = 6 implies that sd(PS 3) =
30+2(6)+1

72 = 43
49 .

Corollary 4.2. Let n = 2αn′ with n′ odd, Dn be the dihedral group, and PDn be its associated polygroup.
Then,

sd(PDn) =
τ(n)2 + 2τ(n)σ(n) + [(α − 1)2α+3 + 9]g(n′) + 2τ(n) + 2σ(n) + 1

(τ(n) + σ(n) + 1)2 .

Proof. The proof follows from Theorems 2.2 and 4.1. �

Corollary 4.3. Let m be a positive integer, and PD2m−1 , PQ2m , PS 2m be the associated polygroups of
D2m−1 , Q2m , and S 2m , respectively. Then,

sd(PD2m−1 ) =
(m − 2)2m+2 + (m + 1)2m+1 + m2 + 8

(m + 2m)2 , m ≥ 2,

sd(PQ2m ) =
(m − 3)2m+1 + (m + 1)2m + m2 + 8

(m + 2m−1)2 , m ≥ 2,

sd(PS 2m ) =
(m − 3)2m+1 + m2m + (3m + 1)2m−1 + m2 + 8

(m + 3 · 2m−2)2 , m ≥ 4.

In particular, limm→∞ sd(PD2m−1 ) = limm→∞ sd(PQ2m ) = limm→∞ sd(PS 2m ) = 0.

Proof. The proof follows from Theorems 2.3 and 4.1. �

Proposition 4.5. Let (G, ·) be a finite group and PG be its associated polygroup. Then, sd(PG) ≥ sd(G).
Moreover, the equality holds if and only if sd(G) = 1.

Proof. Having

sd(PG) − sd(G) =
(1 − sd(G))(2L(G) + 1)

(|L(G)| + 1)2 ≥ 0

implies that sd(PG) ≥ sd(G). �

Proposition 4.6. Let (G, ·) be a finite group and PG be its associated polygroup. Then, sd(PG) ≤ sd(G)+1
2 .

Proof. If |L(G)| ≤ 3, then sd(G) = sd(PG) = 1, and the inequality holds. If |L(G)|〉3, then
|L(G)|2−2|L(G)| − 1〉0. Having |L(G)|2 − 2|L(G)| − 1 ≥ 0 implies that

sd(PG) −
sd(G) + 1

2
=

(sd(G) − 1)(|L(G)|2 − 2|L(G)| − 1)
2(|L(G)| + 1)2 ≤ 0,

and hence, sd(PG) ≤ sd(G)+1
2 . �

5. Conclusions

This paper dealt with polygroup probability by introducing the subpolygroup commutativity degree
of finite polygroups. Some basic results were elaborated, and some examples were presented.
Moreover, an explicit formula for the subpolygroup commutativity degree of a particular class of finite
polygroups was derived and applied to the polygroups associated to the dihedral group, to the quasi-
dihedral group and to the generalized quaternion groups.

For future research, we raise some open problems.
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(1) Find an explicit formula for the subpolygroup commutativity degree of other classes of finite
polygroups.

(2) Given finite polygroups P1, . . . , Pn, find a necessary and sufficient condition so that sd(P1 × . . . ×

Pn) = sd(P1) . . . sd(Pn).
(3) For a finite polygroup 〈P, ·, e,−1 〉, find a relationship between its commutativity degree and its

subpolygroup commutativity degree.
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