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Abstract: This paper is concerned with a generalization of the atom-bond sum-connectivity (ABS)
index, devised recently in [A. Ali, B. Furtula, I. Redžepović, I. Gutman, Atom-bond sum-connectivity
index, J. Math. Chem., 60 (2022), 2081–2093]. For a connected graph G with an order greater than 2,
the general atom-bond sum-connectivity index is represented as ABS γ(G) and is defined as the sum of
the quantities (1−2(dx+dy)−1)γ over all edges xy of the graph G, where dx and dy represent the degrees
of the vertices x and y of G, respectively, and γ is any real number. For −10 ≤ γ ≤ 10, the significance
of ABS γ is examined on the data set of octane isomers for predicting six selected physicochemical
properties of the mentioned compounds; promising results are obtained when the approximated value
of γ belongs to the set {−3, 1, 3}. The effect of the addition of an edge between two non-adjacent
vertices of a graph under ABS γ is also investigated. Moreover, the graphs possessing the maximum
value of ABS γ, with γ > 0, are characterized from the set of all connected graphs of a fixed order and
a fixed (i) vertex connectivity not greater than a given number or (ii) matching number.
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1. Introduction

A property of a graph that is preserved by the graph isomorphism is called a graph invariant [9].
Topological indices are widely used to refer to real-valued graph invariants. We refer the reader to the
books [5, 9, 23] for (chemical-)graph-theory terminology and notations.

Among the much-investigated and applied topological indices, the connectivity index [10] (also
known as the Randić index, which was invented in [19] under the name branching index) has secured a
prominent place. According to [10], the connectivity index is presumed to be the topological index that
has been predominantly examined, both theoretically and practically. The following number associated
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with a graph G is the connectivity index of G:

R(G) =
∑

st∈E(G)

1
√

dsdt
,

where E(G) represents the edge set of G and dv denotes the degree of a vertex v in G. (If two or more
graphs are being considered at a time, then we use dv(G) to represent the degree of v in G to avoid
confusion.) The survey papers [13, 18], books [11, 12] and related articles referred therein provide
further information regarding the investigation of the connectivity index.

The popularity of the connectivity index has led to the introduction of several variants of this
index in the literature. Among the extensively researched variants of the connectivity index are the
sum-connectivity (SC) index [24] and the atom-bond connectivity (ABC) index [6,7] (see also [20,21]),
which are defined by

S C(G) =
∑

st∈E(G)

1
√

ds + dt

and

ABC(G) =
∑

st∈E(G)

√
ds + dt − 2

dsdt
,

respectively. A new version of the ABC index, known as the atom-bond sum-connectivity (ABS) index,
was developed in [2] using the basic concept of the SC index. For a graph G, the ABS index is defined
as follows:

ABS (G) =
∑

st∈E(G)

√
1 −

2
ds + dt

.

Some extremal problems regarding the ABS index of (molecular) tree graphs and general graphs
were solved in [2]. In [3], not only was an extremal problem regarding the ABS index for unicyclic
graphs solved, but also chemical applications of the ABS index were reported. The trees, with a given
number of vertices of degree 1 and with a given order, having the least ABS index were independently
investigated in preprints [4, 16]; the maximal version of this problem was solved recently in [17].

The general ABS index [3] is defined by

ABS γ(G) =
∑

st∈E(G)

(
1 −

2
ds + dt

)γ
,

where γ may take any real number, provided that if γ < 0, then the graph G satisfies the inequality
ds + dt > 2 for every st ∈ E(G). We make a note here that the general ABS index (and hence the ABS
index) is a particular form of a more general topological index of this kind, as introduced in [22]. For
a recent study on the general ABS index, we refer the reader to [1].

In the next section, the significance of ABS γ is examined on the data set of octane isomers for
predicting six selected physicochemical properties of the mentioned compounds for −10 ≤ γ ≤ 10;
promising results are obtained when the approximated value of γ belongs to the set {−3, 1, 3}. Section 3
is devoted to investigating the effect of the addition of an edge in a non-complete graph under ABS γ,
where a non-complete graph is a graph different from the complete graph. In Section 4, we characterize
the graphs possessing the maximum value of ABS γ, with γ > 0, in the set of all connected graphs of a
fixed order and a fixed (i) vertex connectivity not greater than a given number or (ii) matching number.
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2. Chemical usefulness of the general ABS index

In [1], the chemical applicability of the ABS γ, with the constraint −10 ≤ γ ≤ 10, was tested on the
data set of 25 benzenoid hydrocarbons for predicting their enthalpy of formation; it was concluded that
the predictive ability of ABS γ for the considered property of the examined hydrocarbons is comparable
to other existing general indices of this kind. In the present section, the significance of ABS γ is
examined on the data set of octane isomers for predicting six selected physicochemical properties
of the mentioned compounds for −10 ≤ γ ≤ 10. These six properties are the following: enthalpy of
vaporization, boiling point, acentric factor, enthalpy of formation, entropy and standard enthalpy of
vaporization. The experimental data for these selected properties can be found in [15].

The positive values of the correlation r (between the selected properties of the considered
compounds and ABS γ), with γ ∈ [−10, 10], are depicted in Figures 1–6. The maximum positive
values of the correlation r (between the selected properties of the considered compounds and ABS γ),
with γ ∈ [−10, 10] and with γ ∈ [−3, 3], are given in Tables 1 and 2, respectively.

-10 -5 0 5 10

0.78

0.79

0.80

0.81

0.82

0.83

0.84

0.85

Γ

r

Boiling Point

Figure 1. The positive values of the correlation r (between the boiling point of the considered
compounds and ABS γ) when γ ∈ [−10, 10].
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Figure 2. The positive values of the correlation r (between the entropy of the considered
compounds and ABS γ) when γ ∈ [−10, 10].
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Figure 3. The positive values of the correlation r (between the enthalpy of vaporization of
the considered compounds and ABS γ) when γ ∈ [−10, 10].
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Figure 4. The positive values of the correlation r (between the standard enthalpy of
vaporization (DHVAP) of the considered compounds and ABS γ) when γ ∈ [−10, 10].
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Figure 5. The positive values of the correlation r (between the enthalpy of formation
(HFORM) of the considered compounds and ABS γ) when γ ∈ [−10, 10].
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Figure 6. The positive values of the correlation r (between the acentric factor of the
considered compounds and ABS γ) when γ ∈ [−10, 10].

Table 1. The maximum positive values of the correlation r, between the selected properties
of octane isomers and ABS γ, when γ ∈ [−10, 10].

r γ

Boiling point 0.8511 -6.5275
Enthalpy of vaporization 0.9558 -6.1399
Standard enthalpy of vaporization 0.9600 -3.3760
Entropy 0.8903 5.9019
Acentric factor 0.8801 1.3381
Enthalpy of formation 0.8679 -4.2677

Table 2. The maximum positive values of the correlation r, between the selected properties
of octane isomers and ABS γ, when γ ∈ [−3, 3].

r γ

Boiling point 0.8478 -3.0000
Enthalpy of vaporization 0.9529 -3.0000
Standard enthalpy of vaporization 0.9600 -3.0000
Entropy 0.8884 3.0000
Acentric factor 0.8801 1.3381
Enthalpy of formation 0.8674 -3.0000

In Tables 1 and 2, corresponding to every listed property, we observe that there is only a slight
difference between the two values of r. (For example, in the case of boiling point, the mentioned
difference is 0.0033.) However, there is a considerable difference between the corresponding two
values of γ. In view of these observations, we conclude that the approximated values of γ concerning
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any promising results belong to the set {−3, 1, 3}. These findings suggest that the following three
particular versions of ABS γ deserve to be examined further:
(i) The topological index ABS1 is useful in predicting the acentric factor of octane isomers. It seems to
be interesting to note that

ABS1(G) =
∑

st∈E(G)

(
1 −

2
ds + dt

)
= |E(G)| − H(G),

where H(G) is the harmonic index, first appeared in [8].
(ii) The topological index ABS−3 is useful in predicting the enthalpy of vaporization, boiling point,
enthalpy of formation and standard enthalpy of vaporization of octane isomers.
(iii) The topological index ABS3 is useful in predicting the entropy of octane isomers.

3. On the index ABS γ and addition of an edge in a graph

For a graph G and st < E(G), the graph generated from G by inserting the edge st is represented
by G + st. In this section, the difference ABS γ(G + st) − ABS γ(G) is investigated. We start with the
following known result.

Corollary 3.1. [1] For a graph G, if st < E(G) such that max{ds(G), dt(G)} ≥ 1, then,

ABS γ(G + st) > ABS γ(G) for γ ≥ 0.

Proposition 3.1. For a graph G, if st < E(G) such that ds(G) = 1 and dt(G) = 0, then,

ABS γ(G + st) > ABS γ(G) for every γ.

Proof. If γ ≥ 0, then the required conclusion follows from Corollary 3.1. In the remaining proof,
suppose that γ < 0. By the definition of ABS γ, G contains no component isomorphic to K2 and it holds
that

ABS γ(G + st) − ABS γ(G) =
(

ds′(G)
ds′(G) + 2

)γ
−

(
ds′(G) − 1
ds′(G) + 1

)γ
+

(
1
3

)γ
, (3.1)

where s′ is the unique vertex adjacent with s in G. Since the degree of s is 1 in G (and γ < 0), by the
definition of ABS γ we must have ds′(G) > 1 (for otherwise G contains a component isomorphic to K2).
Note that the function ϕγ, with the following definition, is strictly increasing for α > 1:

ϕγ(α) =
(
α

α + 2

)γ
−

(
α − 1
α + 1

)γ
,

because its derivative function ϕ′γ is

ϕ′γ(α) = 2γ
(

fγ(α + 1) − fγ(α)
)
,

where

fγ(α) =
(α − 1)γ−1

(α + 1)γ+1 and f ′γ(α) =
2(γ − α)(α − 1)γ−2

(α + 1)γ+2 < 0, for γ < 0 and α > 1.
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Consequently, (
ds′

ds′ + 2

)γ
−

(
ds′ − 1
ds′ + 1

)γ
+

(
1
3

)γ
= ϕγ(ds′) +

(
1
3

)γ
≥ ϕγ(2) +

(
1
3

)γ
> 0,

which together with Eq (3.1) give ABS γ(G + st) − ABS γ(G) > 0.
For a graph G and w ∈ V(G), let NG(w) = {x ∈ V(G) : xw ∈ E(G)}.

Proposition 3.2. For a graph G, if st < E(G) such that ds(G) = dt(G) = 1, then,

ABS γ(G + st) > ABS γ(G) for γ > −1.

Proof. If γ ≥ 0, then the required conclusion follows from Corollary 3.1. In the following, we assume
that −1 < γ < 0. Take NG(s) = {s′} and NG(t) = {t′}. Since ds(G) = 1 = dt(G) and −1 < γ < 0, by
the definition of ABS γ, we must have min{ds′(G), dt′(G)} > 1 (for otherwise G contains a component
isomorphic to K2). Note that the function ϕγ, with the following definition, is strictly increasing for
α > 1 and γ < 0 (see the proof of Proposition 3.1):

ϕγ(α) =
(
α

α + 2

)γ
−

(
α − 1
α + 1

)γ
.

Thus, for −1 < γ < 0, we have

ABS γ(G + st) − ABS γ(G)

=

(
ds′(G)

ds′(G) + 2

)γ
−

(
ds′(G) − 1
ds′(G) + 1

)γ
+

(
dt′(G)

dt′(G) + 2

)γ
−

(
dt′(G) − 1
dt′(G) + 1

)γ
+

(
1
2

)γ
=ϕγ(ds′) + ϕγ(dt′) +

(
1
2

)γ
≥2ϕγ(2) +

(
1
2

)γ
> 0.

Although the next result’s proof is similar to the proof of Proposition 3.2, we include it here for
completeness.

Proposition 3.3. For a graph G, if st < E(G) such that both the vertices s, t have degree 1 (in G) and
that one of their unique neighbors has a degree greater than 3 (in G) and the other unique neighbor
has a degree greater than 2 (in G), then,

ABS γ(G + st) > ABS γ(G) for every γ.

Proof. If γ ≥ 0, then the required conclusion follows from Corollary 3.1. In the following, we assume
γ < 0. Take NG(s) = {s′} and NG(t) = {t′}. By the given constraints, min{ds′(G), dt′(G)} > 2 and
max{ds′(G), dt′(G)} > 3. Note that the function ϕγ, with the following definition, is strictly increasing
for α > 1 and γ < 0 (see the proof of Proposition 3.1):

ϕγ(α) =
(
α

α + 2

)γ
−

(
α − 1
α + 1

)γ
.
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Thus, for γ < 0, we have

ABS γ(G + st) − ABS γ(G)

=

(
ds′(G)

ds′(G) + 2

)γ
−

(
ds′(G) − 1
ds′(G) + 1

)γ
+

(
dt′(G)

dt′(G) + 2

)γ
−

(
dt′(G) − 1
dt′(G) + 1

)γ
+

(
1
2

)γ
=ϕγ(ds′) + ϕγ(dt′) +

(
1
2

)γ
≥ϕγ(3) + ϕγ(4) +

(
1
2

)γ
> 0.

4. Extremal results

In the current section, we characterize the graphs possessing the maximum value of ABS γ, with
γ > 0, in the set of all connected graphs of a fixed order and a fixed (i) vertex connectivity not greater
than a given number or (ii) matching number. The following lemma is very crucial in proving the first
main result of this section.

Lemma 4.1. Define the functions Φ1 and Φ2 as

Φ1(x) =
(
t + x − 2
t + x − 1

)γ x(x − 1)
2

and

Φ2(x) =
(

x + n + t − 4
x + n + t − 2

)γ
t x

with the constraint 1 ≤ x ≤ n−t
2 , where γ is a fixed positive real number greater than zero, while t and n

are fixed positive integers. DefineΦ(x) = Φ1(x)+Φ2(x). If either of the following two conditions holds:

(i) t ≥ 2;

(ii) 2 ≤ x ≤
n − t

2
and t = 1,

then, the inequality
Φ(n − t − x) + Φ(x) ≤ Φ(n − t − 1) + Φ(1)

holds with equality if and only if x = 1.

Proof. First, we assume that t ≥ 2. The second-derivative function Φ′′1 of Φ1 is given as

Φ′′1 (x) =
Ψ1(x)

2(t + x − 2)2(t + x − 1)2

(
t + x − 2
t + x − 1

)γ
,

where

Ψ1(x) = γ
(
2t2(2x − 1) + 2t

(
x(3x − 7) + 3

)
+ (x − 1)

(
x(2x − 7) + 4

))
+ 2(t + x − 2)2(t + x − 1)2 + γ2(x − 1)x.
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In the expression of Ψ1, note that the coefficient of γ attains its minimum value at t = 2 and hence is
positive (because t ≥ 2 and x ≥ 1). Thus, Ψ1(x) > 0 (as γ > 0), and therefore Φ′′1 (x) > 0. Additionally,
the second-derivative function Φ′′2 of Φ2 is given as

Φ′′2 (x) =
4 γ t · Ψ2(x)

(n + t + x − 4)2(n + t + x − 2)2

(
n + t + x − 4
n + t + x − 2

)γ
,

where
Ψ2(x) = n2 + n(2t + x − 6) + t(t + x − 6) + γx − 3x + 8.

Here, Ψ′2(x) = n + t + γ − 3 > 0 because n ≥ 4, t ≥ 2 and γ > 0. Since x ≥ 1, we have

Ψ2(x) ≥ Ψ2(1) = (n − 4)(n − 1) + t(2n + t − 5) + γ + 1 > 0.

Therefore, it holds that Φ′′2 (x) > 0. Because Φ(x) = Φ1(x)+Φ2(x), we conclude that the first-derivative
function Φ′ of Φ is strictly increasing. Since x ≤ n − t − x, we have

d
dx

(Φ(x) + Φ(n − t − x)) = Φ′(x) − Φ′(n − t − x) ≤ 0,

where the equality
d
dx

(Φ(x) + Φ(n − t − x)) = 0

holds if and only if x = n − t − x. Consequently, we deduce that the expression Φ(x) + Φ(n − t − x)
attains its maximum possible value only at x = 1.

The desired inequality when 2 ≤ x ≤ n−t
2 and t = 1 remains to be proved. In what follows, it is

assumed that 2 ≤ x ≤ n−t
2 and t = 1. The second-derivative function Φ′′1 of Φ1 is given as

Φ′′1 (x) =
(x − 1)γ−1x−γ−1

2

(
2x(x − 1) + γ(2x − 1) + γ2

)
,

which is certainly positive (because γ > 0 and x ≥ 2). Additionally, the second-derivative function Φ′′2
of Φ2 is given as

Φ′′2 (x) = 4γ
(
n + x − 3
n + x − 1

)γ n(n − 4) + x(n − 2) + γx + 3
(n + x − 3)2(n + x − 1)2 ,

which is positive too because n ≥ 5, x ≥ 2 and γ > 0. Thus, in the case under consideration, the
expression Φ(x) + Φ(n − 1 − x) attains its maximum possible value only at x = 2. Thus, in order to
complete the proof, it is enough to show that

Φ(2) + Φ(n − 3) − Φ(1) − Φ(n − 2) < 0.

Take Θ(n, γ) = Φ(2) + Φ(n − 3) − Φ(1) − Φ(n − 2). Then, we have

Θ(n, γ) =
[(

1
2

)γ
−

(
n − 2

n

)γ ]
+

(n − 4)(n − 3)
2

[(
n − 4
n − 3

)γ
−

(
n − 3
n − 2

)γ ]

+

[
2
(
n − 1
n + 1

)γ
− (n − 2)

(
2n − 5
2n − 3

)γ ]
. (4.1)
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Since (
n − 1
n + 1

)γ
<

(
2n − 5
2n − 3

)γ
for n ≥ 5 and γ > 0,

it holds that

2
(
n − 1
n + 1

)γ
< (n − 2)

(
n − 1
n + 1

)γ
< (n − 2)

(
2n − 5
2n − 3

)γ
for n ≥ 5 and γ > 0.

Additionally, for n ≥ 5 and γ > 0, we have(
1
2

)γ
<

(
n − 2

n

)γ
and (

n − 4
n − 3

)γ
<

(
n − 3
n − 2

)γ
.

Therefore, Eq (4.1) yields Θ(n, γ) < 0, as desired.

Theorem 4.1. In the set of all n-order connected graphs having the vertex connectivity at most t (being
a positive integer satisfying 1 ≤ t ≤ n− 2), the graph K(t)

n uniquely possesses the largest value of ABS γ
for γ > 0, where n ≥ 5 and K(t)

n is the graph formed by joining a new vertex (through edges) to exactly t
vertices of the complete graph Kn−1. The mentioned maximum value is as follows:

ABS γ
(
K(t)

n

)
=

(
n − 2
n − 1

)γ t(t − 1)
2
+ t

(
t + n − 3
t + n − 1

)γ
+

(n − t − 2)(n − t − 1)
2

(
n − 3
n − 2

)γ
+ (n − t − 1)t

(
2n − 5
2n − 3

)γ
.

Proof. First, we consider a positive integer s less than t. Observe that K(t)
n can be formed by adding

some edge(s) in the graph K(s)
n . Thus, by Corollary 3.1, the inequality ABS γ

(
K(s)

n

)
< ABS γ

(
K(t)

n

)
holds

for γ > 0. Consequently, it is adequate to prove the theorem only for the n-order connected graphs
having the vertex connectivity t.

Let G∗ be a graph possessing the largest value of ABS γ in the set of all n-order connected graphs
having the vertex connectivity t for γ > 0, where n ≥ 5 and 1 ≤ t ≤ n−2. Since the vertex connectivity
of G∗ is t, there exists a subset A of the vertex set of G∗ such that |A| = t and G∗ − A consists of at
least two components, where G∗ − A is the graph formed from G∗ by removing all the vertices (and
their incident edges) of A. If the graph G∗ − A has more than two components, then adding an edge
connecting the vertices lying in two different components of G∗−A increases the value of ABS γ(G∗) (by
Corollary 3.1); however, the vertex connectivity of G∗ remains the same, which is antithetical to the
maximality of ABS γ(G∗). Thereby, the graph G∗ − A must have only two components; we name them
as C1 and C2. Additionally, by Corollary 3.1, the graphs C1, C2 and G∗[A] are complete, and every
vertex of both the components C1,C2, is adjacent to every vertex of the set A in G∗, where G∗[A] is the
induced subgraph of G formed on the vertices of A. For i ∈ {1, 2}, let ci be the order of Ci and suppose
that c1 ≤ c2. Then, t + c1 + c2 = n and c1 ≤

n−t
2 . Note that the degree of every vertex belonging to Ci is

AIMS Mathematics Volume 8, Issue 10, 23771–23785.
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ci − 1 + t in G∗, where i = 1, 2. Moreover, the degree of every vertex belonging to A is n − 1 in G∗. By
utilizing the formula of ABS γ, we obtain the following:

ABS γ (G∗) =
(
t + c1 − 2
t + c1 − 1

)γ c1 (c1 − 1)
2

+

(
n + t + c1 − 4
n + t + c1 − 2

)γ
c1t +

(
t + c2 − 2
t + c2 − 1

)γ c2 (c2 − 1)
2

+

(
n + t + c2 − 4
n + t + c2 − 2

)γ
c2t +

(
n − 2
n − 1

)γ t(t − 1)
2
.

By making use of the definition of the function Φ defined in Lemma 4.1, we obtain the following:

ABS γ (G∗) = Φ (c1) + Φ (c2) +
(
n − 2
n − 1

)γ t(t − 1)
2
.

Utilizing the fact that c2 = n − c1 − t, we arrive at the following:

ABS γ (G∗) = Φ (c1) + Φ (n − t − c1) +
(
n − 2
n − 1

)γ t(t − 1)
2
.

By making use of Lemma 4.1 and the definition of G∗, we conclude that

ABS γ (G∗) = Φ (c1) + Φ (n − t − c1) +
(
n − 2
n − 1

)γ t(t − 1)
2

= Φ (1) + Φ (n − t − 1) +
(
n − 2
n − 1

)γ t(t − 1)
2
,

which implies that c1 = 1 and thereby the graph G∗ is isomorphic to K(t)
n . Hence,

ABS γ
(
K(t)

n

)
= Φ (1) + Φ (n − t − 1) +

(
n − 2
n − 1

)γ t(t − 1)
2
.

or

ABS γ
(
K(t)

n

)
=

(
n − 2
n − 1

)γ t(t − 1)
2
+ t

(
t + n − 3
t + n − 1

)γ
+

(n − t − 2)(n − t − 1)
2

(
n − 3
n − 2

)γ
+ (n − t − 1)t

(
2n − 5
2n − 3

)γ
.

A component C of a graph is said to be an odd component if the order of C is odd. Let CGn,β be the
set of all connected n-order graphs having a matching number β, where 1 ≤ β ≤ ⌊n/2⌋ (this condition is
imposed because the matching number of any n-order connected graph cannot be greater than ⌊n/2⌋).
Note that the n-order complete graph Kn has the matching number ⌊n/2⌋. Thus, by Corollary 3.1, Kn

uniquely possesses the largest value of ABS γ over CGn,⌊n/2⌋ for γ > 0. Thereby, in the next result, we
consider the case when 1 ≤ β ≤ ⌊n/2⌋ − 1.

Theorem 4.2. In the set CGn,β, the graph Kn−β + Kβ uniquely possesses the largest value of ABS γ
for γ > 0, where Kn−β denotes the complement of the complete graph Kn−β, “+” denotes the graph-
operation join, 1 ≤ β ≤ ⌊n/2⌋ − 1 and n ≥ 5. Additionally, the mentioned maximum value is as
follows:

ABS γ
(
Kn−β + Kβ

)
=

(
n − 2
n − 1

)β
β(β − 1)

2
+

(
β + n − 3
β + n − 1

)α
(n − β)β.
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Proof. Let G∗ be a graph possessing the maximum value of ABS γ in the set CGn,β for γ > 0, provided
that 1 ≤ β ≤ ⌊n/2⌋−1 and n ≥ 5. The Tutte-Berge formula (see [14]) confirms that the vertex set V(G∗)
has a subset W such that

n − 2β = o(G∗ −W) − |W |, (4.2)

where o(G∗ −W) is the number of odd components of the graph G∗ −W (which is the graph formed by
dropping all the vertices (and the edges incident with them) of W from G∗). Note that

n ≥ o(G∗ −W) + |W |,

which together with (4.2) imply that β ≥ |W |.
If |W | = 0, then from Eq (4.2), we deduce that either n = 2β or n = 2β + 1 because G∗ is connected.

Whether n = 2β or n = 2β + 1, one has ⌊n/2⌋ = β, which is impossible under the given constraints.
Thus, β ≥ |W | ≥ 1, and from Eq (4.2), we get o(G∗ −W) ≥ 3 because β ≤ ⌊n/2⌋ − 1.

Let G∗1, . . . ,G
∗
q be odd components of the graph G∗−W, where q = o(G∗−W) ≥ 3. For i = 1, . . . , q,

suppose that G∗i has ri vertices and assume that rq ≥ rq−1 ≥ · · · ≥ r1. Now, we show that the graph
G∗ −W does not have any even component. On the contrary, suppose that G∗q+1 is an even component
of the graph G∗ −W. Construct a new graph G∗∗ from G∗ by adding an edge w1wq+1 such that wq+1 ∈

V(G∗q+1) and w1 ∈ V(G∗1). Then, certainly we have β(G∗∗) ≥ β(G∗). Moreover, by the Tutte-Berge
formula, we have the following:

o(G∗∗ −W) − |W | ≤ n − 2β(G∗∗). (4.3)

Note that o(G∗∗ −W) = o(G∗ −W), which together with Eq (4.2) implies that

o(G∗∗ −W) − |W | = n − 2β(G∗);

this last equation and (4.3) yield β(G∗) ≥ β(G∗∗). Thus, β(G∗∗) = β(G∗). However, by Corollary 3.1,
it holds that ABS γ (G∗) < ABS γ (G∗∗) for γ > 0, which is antithetical to the maximality of ABS γ (G∗).
Therefore, the graph G∗ −W does not possess any even component.

By Corollary 3.1, each of the graphs G∗i (for i = 1, . . . , q) and G∗[W] is complete, and every vertex
of W is adjacent to every vertex of all the graphs G∗1, . . . ,G

∗
q. Therefore, G∗ =

(
Kr1 ∪ · · · ∪ Krq

)
+ Kp,

where 1 ≤ p = |W | ≤ β; o(G∗ −W) = q ≥ 3;
∑q

i=1 ri + p = n; n − 2β = q − p and each of the numbers
r1, r2, . . . , rq is odd, with rq ≥ rq−1 ≥ · · · ≥ r1.

Case 1. When rq = 1.
In this case, rq = rq−1 = · · · = r1 = 1 and p = β. Since n − 2β = q − p, we have G∗ = Kn−β + Kβ, as

desired.
Case 2. When rq ≥ 3 and rq−1 = 1.

In this case, rq−1 = · · · = r1 = 1. From the equations
∑q

i=1 ri + p = n and n − 2β = q − p, we get
rq = 1 − 2p + 2β (which implies that β > p because rq ≥ 3). Thus,

G∗ = (Kq−1 ∪ Krq) + Kp = (Kn+p−2β−1 ∪ K1−2p+2β) + Kp. (4.4)

Observe that (Kn+p−2β−1 ∪ K1−2p+2β) + Kp is a spanning subgraph of the graph Kn−β + Kβ and thus by
making use of Corollary 3.1, we deduce that

ABS γ (G∗) = ABS γ
(
(Kn+p−2β−1 ∪ K1−2p+2β) + Kp

)
< ABS γ

(
Kn−β + Kβ

)
AIMS Mathematics Volume 8, Issue 10, 23771–23785.
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for γ > 0. This is antithetical to the maximality of G∗. Therefore, this case is not possible.

Case 3. When rq−1 ≥ 3.
In this case, rq ≥ 3 as rq ≥ rq−1. Take

Θ = ABS γ
((

Kr1 ∪ · · · ∪ Kr q−2 ∪ K1 ∪ Krq+r q−1−1

)
+ Kp

)
− ABS γ (G∗) . (4.5)

After elementary computations, we obtain

Θ =

(
p + n − 3
p + n − 1

)γ
p +

(
p + rq + rq−1 − 3
p + rq + rq−1 − 2

)γ (rq + rq−1 − 1)
(
rq + rq−1 − 2

)
2

+

(
p + rq + rq−1 + n − 5
p + rq + rq−1 + n − 3

)γ
(rq + rq−1 − 1)p

−

(
p + rq−1 − 2
p + rq−1 − 1

)γ rq−1

(
rq−1 − 1

)
2

+

(
p + rq−1 + n − 4
p + rq−1 + n − 2

)γ
rq−1 p

−

(
p + rq − 2
p + rq − 1

)γ rq

(
rq − 1

)
2

+

(
p + rq + n − 4
p + rq + n − 2

)γ
rq p

=Φ(1) + Φ(rq + rq−1 − 1) − Φ(rq−1) − Φ(rq),

where the definition of the function Φ is given in Lemma 4.1. Set rq + rq−1 + β = n′. Then rq−1 ≤
n′−β

2
because rq−1 ≤ rq. Thus,

Θ = Φ(1) + Φ(n′ − β − 1) − Φ(rq−1) − Φ(n′ − β − rq−1),

and by Lemma 4.1, the right-handed expression of this equation is greater than 0. Therefore, Eq (4.5)
yields a contradiction to the maximality of ABS γ(G∗). Consequently, this case is also impossible.

5. Conclusions

In this paper, the chemical usefulness and several mathematical aspects of the index ABS γ have
been considered and studied. For −10 ≤ γ ≤ 10, the significance of ABS γ is examined on the data set
of octane isomers for predicting six selected physicochemical properties of the mentioned compounds;
promising results are obtained when the approximated value of γ belongs to the set {−3, 1, 3}. (The
selected six properties are the following: enthalpy of vaporization, boiling point, acentric factor,
enthalpy of formation, entropy, and standard enthalpy of vaporization.) The value γ = 1 corresponds
to the index that can be written in the form of an existing index, namely the harmonic index. The
findings of Section 2 indicate that the topological indices ABS1 and ABS3 are useful in predicting
the acentric factor and the entropy of octane isomers, respectively; the index ABS−3 can be utilized
to predict the remaining four selected properties (enthalpy of vaporization, boiling point, enthalpy of
formation, and standard enthalpy of vaporization) of octane isomers. The effect of the addition of an
edge between two non-adjacent vertices of a graph under ABS γ has also been investigated. Moreover,
the graphs possessing the maximum value of ABS γ, with γ > 0, are characterized from the set of all
connected graphs of a fixed order and a fixed (i) vertex connectivity not greater than a given number
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or (ii) matching number. From the above-mentioned set of three values of γ, the choices γ = −3, 3,
yield two new indices with promising chemical usefulness. Thus, these two indices, namely ABS−3

and ABS3, deserve to be examined further.
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